TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74ACT299P,TC74ACT299F

8-Bit PIPO Shift Register with Asynchronous Clear

The TC74ACT299 is an advanced high speed CMOS 8-BIT PIPO SHIFT REGISTER fabricated with silicon gate and double-layer metal wiring C²MOS technology.

It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

This device may be used as a level converter for interfacing TLL or NMOS to High Speed CMOS. The inputs are compatible with TTL, NMOS and CMOS output voltage levels.

It has a four modes (HOLD, SHIFT LEFT, SHIFT RIGHT and LOAD DATA) controlled by the two selection inputs (S0, S1).

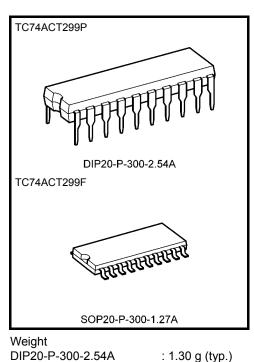
When one or both enable $(\overline{G1}, \overline{G2})$ are high, the eight I/O outputs are forced to the high-impedance state; however, sequential operation or clearing of the register is not affected.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features (Note 1)(Note 2)

- High speed: $f_{max} = 130 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 8 \mu A (max)$ at $Ta = 25^{\circ}C$
- Compatible with TTL outputs: $V_{IL} = 0.8 V (max)$

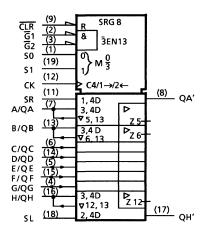
 $V_{IH} = 2.0 V (min)$


- Symmetrical output impedance: $|I_{OH}| = I_{OL} = 24$ mA (min) Capability of driving 50 Ω transmission lines.
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Pin and function compatible with 74F299

Note 1: Do not apply a signal to any bus terminal when it is in the output mode. Damage may result.

Note 2: All floating (high impedance) bus terminals must have their input levels fixed by means of pull up or pull down resistors.

Pin Assignment


S0 G1 G2 G/QG E/QE C/QC A/QA QA' CLR GND	6 7 8 9		19 18 17 16	V _{cc} S1 SL H/QH F/QF D/QD B/QB CK SR
		(TOP	VIEW)	

DIP20-P-300-2.54A SOP20-P-300-1.27A

: 1.30 g (typ.) : 0.22 g (typ.)

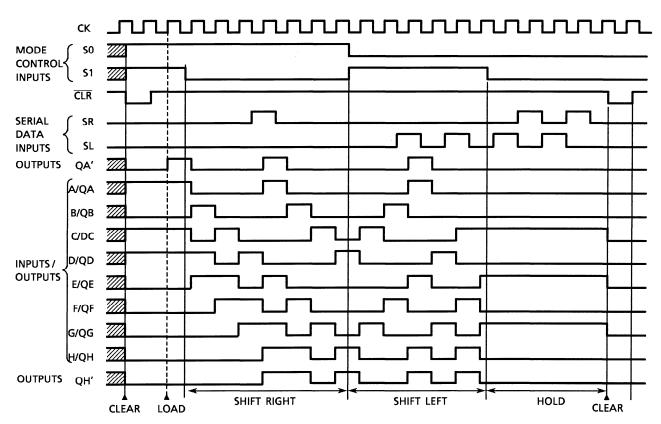
IEC Logic Symbol

Truth Table

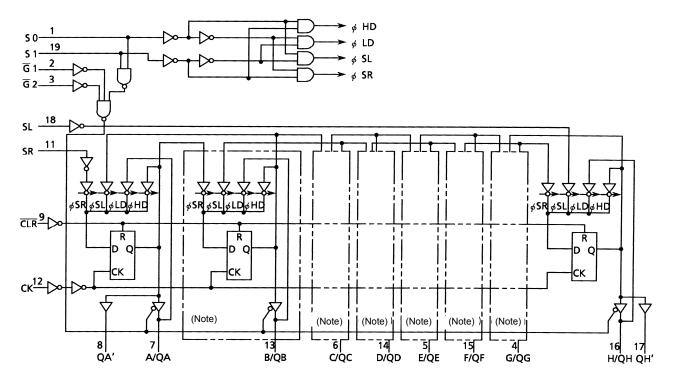
		Inputs								Inputs/ Outputs		puts
Mode	Select			Outputs Control		СК	Serial		A/O A			0.1
		CK	SL	SR	A/QA	H/QH	QA'	QH'				
Z	L	Н	Н	Х	Х	Х	Х	х	Z	Z	L	L
Clear	L	L	Х	L	L	Х	Х	Х	L	L	L	L
Clear	L	х	L	L	L	х	Х	х	L	L	L	L
Hold	Н	L	L	L	L	Х	Х	х	QA0	QH0	QA0	QH0
Shift	Н	L	Н	L	L		Х	Н	Н	QGn	Н	QGn
Right	Н	L	Н	L	L		х	L	L	QGn	L	QGn
Shift	Н	Н	L	L	L		Н	х	QBn	Н	QBn	Н
Left	Н	Н	L	L	L		L	х	QBn	L	QBn	L
Load	Н	Н	Н	Х	Х		Х	Х	а	h	а	h

Note: When one or both output controls are high, the eight input/output terminals are in the high-impedance state; however sequential or clearing of the register is not affected.

Z: High impedance


Qn0: The level of Qn before the indicated steady-state input conditions were established.

Qnn: The level of Qn before the most recent active transition indicated by \downarrow or \uparrow .


a, h: The level of the steady-state inputs A, H, respectively.

X: Don't care

Timing Chart

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	–0.5 to 7.0	V
DC input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V
DC output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V
Input diode current	I _{IK}	±20	mA
Output diode current	IOK	±50	mA
DC output current	IOUT	±50	mA
DC V _{CC} /ground current	ICC	±250	mA
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP)	mW
Storage temperature	T _{stg}	–65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: 500 mW in the range of Ta = -40 to 65° C. From Ta = 65 to 85° C a derating factor of -10 mW/°C should be applied up to 300 mW.

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	4.5 to 5.5	V
Input voltage	V _{IN}	0 to V _{CC}	V
Output voltage	V _{OUT}	0 to V _{CC}	V
Operating temperature	T _{opr}	-40 to 85	°C
Input rise and fall time	dt/dV	0 to 10	ns/V

Operating Ranges (Note)

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol		Test Condition			-	Ta = 25°C)	Ta = -40 to 85°C		Unit	
Characteriolico			V _C (V			Min	Тур.	Max	Min	Max		
High-level input voltage	V _{IH}		_			2.0	_		2.0	_	V	
Low-level input voltage	VIL		_			_	_	0.8	_	0.8	V	
		VIN	I _{OH} = -50 μA		4.5	4.4	4.5	_	4.4	_		
High-level output voltage	V _{OH}	= V _{IN} V _{IL}	I _{OH} = -24 mA		4.5	3.94	—	—	3.80	—	V	
5			I _{OH} = -75 mA	(Note)	5.5	—	—	—	3.85	—		
	V _{OL}	V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 50 \ \mu A$		4.5	—	0.0	0.1	—	0.1		
Low-level output voltage			I _{OL} = 24 mA		4.5	—	—	0.36	—	0.44	V	
5			I _{OL} = 75 mA	(Note)	5.5				—	1.65		
3-state output off-state current	I _{OZ}		$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = V_{CC}$ or GND		5.5	_	_	±0.5	_	±5.0	μΑ	
Input leakage current	I _{IN}	$V_{IN} = V_C$	$V_{IN} = V_{CC}$ or GND		5.5	_	_	±0.1	_	±1.0	μA	
	ICC	$V_{IN} = V_C$	$V_{IN} = V_{CC}$ or GND			—	_	8.0	_	80.0	μA	
Quiescent supply current	IC		Per input: $V_{IN} = 3.4 V$ Other input: V_{CC} or GND		5.5	_	_	1.35	_	1.5	mA	

Note: This spec indicates the capability of driving 50 Ω transmission lines.

One output should be tested at a time for a 10 ms maximum duration.

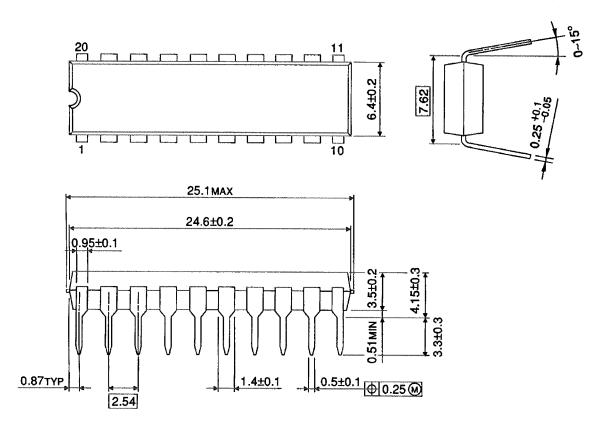
Timing Requirements (input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	Test Condition	Test Condition			Ta = 40 to 85°C	Unit	
			V _{CC} (V)	Typ. Limit		Limit		
Minimum pulse width	t _{W (L)}		5.0 ± 0.5		5.0	5.0	ns	
(CK)	t _{W (H)}		5.0 ± 0.5		5.0	5.0	115	
Minimum pulse width ($\overline{\text{CLR}}$)	^t W (L)	_	5.0 ± 0.5	_	5.0	5.0	ns	
Minimum set-up time (SL, SR, A~H)	ts	_	5.0 ± 0.5	_	3.5	3.5	ns	
Minimum set-up time (S0, S1)	ts	_	5.0 ± 0.5	_	6.0	6.5	ns	
Minimum hold time (SL, SR, A~H)	t _h	_	5.0 ± 0.5		2.0	2.0	ns	
Minimum hold time (S0, S1)	t _h	_	5.0 ± 0.5		0.0	0.0	ns	
Minimum removal time (CLR)	t _{rem}	_	5.0 ± 0.5		2.0	2.0	ns	

AC Characteristics (C_L = 50 pF, R_L = 500 Ω , input: t_r = t_f = 3 ns)

Characteristics	Symbol	Test Condition		-	Ta = 25°0)	Ta = - 85	Unit	
			V _{CC} (V)	Min	Тур.	Max	Min	Max	
Propagation delay time	t _{pLH}	_	5.0 ± 0.5		7.2	10.5	1.0	12.0	ns
(CK-QA', QH')	tpHL								
Propagation delay time	t _{pHL}		5.0 ± 0.5		6.0	10.0	1.0	11.5	ns
(CLR -QA', QH')									
Propagation delay time	t _{pLH}	_	5.0 ± 0.5	_	7.4	11.4	1.0	13.0	ns
(CK-QA~QH)	t _{pHL}						-		
Propagation delay time	t _{pHL}	_	5.0 ± 0.5	_	6.3	10.5	1.0	12.0	ns
(CLR -QA~QH)									
Output enable time	t _{pZL}	_	5.0 ± 0.5		7.4	11.4	1.0	13.0	ns
	t _{pZH}								
Output disable time	t _{pLZ}	_	5.0 ± 0.5		7.2	9.6	1.0	11.0	ns
	t _{pHZ}		0.0 ± 0.0		1.2	0.0	1.0	11.0	110
Maximum clock frequency	f _{max}	—	5.0 ± 0.5	80	120		80	_	MHz
Input capacitance	C _{IN}	_		_	5	10	_	10	pF
Bus input capacitance	C _{I/O}	_		_	13				pF
Power dissipation	C _{PD}								pF
capacitance	(Note)	—			100				μг

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

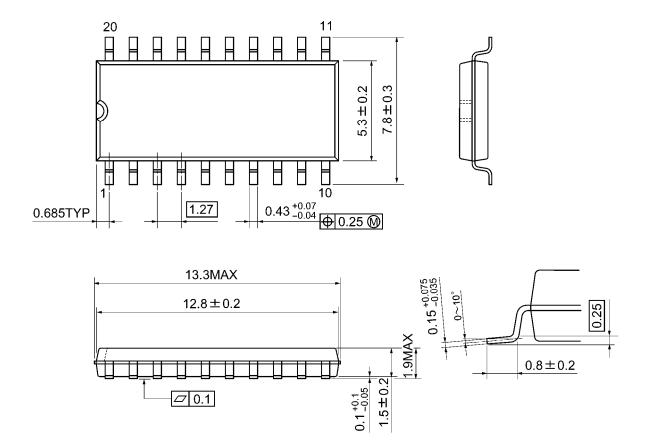

Average operating current can be obtained by the equation:

 I_{CC} (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

Package Dimensions

DIP20-P-300-2.54A

Unit : mm


Weight: 1.30 g (typ.)

Package Dimensions

SOP20-P-300-1.27A

Unit: mm

Weight: 0.22 g (typ.)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Comparators category:

Click to view products by Toshiba manufacturer:

Other Similar products are found below :

 742450X
 74FCT521ATQG
 LMC7221BIM5X/NOPB
 SC2903NG
 M38510/10301BHA
 74HC85D.652
 74HCT4046AD.112
 HEF4046BT.652

 HEF4541BT.512
 SN74ALS520NSR
 SN74LS682NSR
 ADCMP393ARUZ-RL7
 74HC280D.652
 74HC85DB.118
 74HCT9046AD.112

 74HC688DB.118
 74HCT85D.652
 74HC4046AD.652
 74HC4046ADB.112
 74HC4088PW.112
 74HC785DB.118

 74HC688DB.118
 74HCT85D.652
 74HC4046AD.652
 74HC4046ADB.112
 74HC4046APW.112
 74HC785DB.112

 AS339GTR-E1
 MC33298
 74FCT521ATSOG
 74FCT521ATSOG8
 74FCT521CTQG
 74FCT521CTSOG8
 74HC7688N
 004592X

 74HC785D
 74HC688D,652
 74HC688DB,118
 74HC688PW,112
 74HC688PW,112
 74HC85DB,652
 74HC785DB,112

 74HC785D
 74HC688D,652
 74HC688DB,118
 74HC688PW,112
 74HC688PW,118
 74HC85DB,112
 74HC85DB,118

 74HC85PW,118
 74HC688D
 74HC785D,652
 74HC785D,653
 MC14585BDG
 MC14585BDR2G
 MC14585BD
 HA17903APS-E

 MC3363DW
 LM239DG4
 CD74HC7688MG4
 SN74HC688DWRG4
 SN74HC688DWRG4
 SN74HC688DWRG4