TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

# TC74HC03AP,TC74HC03AF,TC74HC03AFN

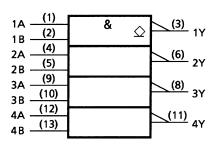
Quad 2-Input NAND Gate (open drain)

The TC74HC03A is a high speed CMOS 2-INPUT NAND GATE fabricated with silicon gate C<sup>2</sup>MOS technology.

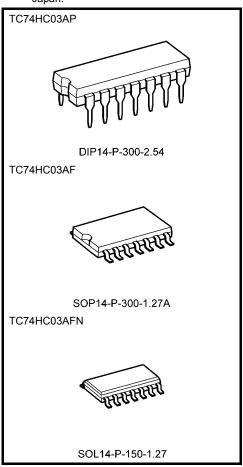
It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.


Pin configuration and function are the same as the TC74HC00A. But the TC74HC03A has, as its outputs, high performance MOS N-channel transistors. (open-drain outputs) This device can, thefore, with a suitable pull-up resistors, be used in wired-AND, LED driver and other application.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.


#### **Features**

- High speed:  $t_{pz} = 5$  ns (typ.) at  $V_{CC} = 5$  V
- Low power dissipation:  $I_{CC} = 1 \mu A \text{ (max)}$  at  $T_{a} = 25 \text{°C}$
- High noise immunity: V<sub>NIH</sub> = V<sub>NIL</sub> = 28% V<sub>CC</sub> (min)
- Output drive capability: 10 LSTTL loads
- Wide operating voltage range: VCC (opr) = 2~6 V
- Open drain structure
- Pin and function compatible with 74LS03


#### **Pin Assignment**



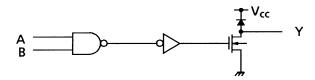
### **IEC Logic Symbol**



Note: xxxFN (JEDEC SOP) is not available in Japan.



Weight


DIP14-P-300-2.54 : 0.96 g (typ.) SOP14-P-300-1.27A : 0.18 g (typ.) SOL14-P-150-1.27 : 0.12 g (typ.)

#### **Truth Table**

| Α | В | Υ |
|---|---|---|
| L | L | Z |
| L | Н | Z |
| Н | L | Z |
| Н | Н | L |

Z: High impedance

### System Diagram (per gate)



#### **Absolute Maximum Ratings (Note 1)**

|                                    | , (11010 1)      | i                            |      |
|------------------------------------|------------------|------------------------------|------|
| Characteristics                    | Symbol           | Rating                       | Unit |
| Supply voltage range               | $V_{CC}$         | -0.5~7                       | V    |
| DC input voltage                   | V <sub>IN</sub>  | -0.5~V <sub>CC</sub> + 0.5   | V    |
| DC output voltage                  | V <sub>OUT</sub> | -0.5~V <sub>CC</sub> + 0.5   | V    |
| Input diode current                | I <sub>IK</sub>  | ±20                          | mA   |
| Output diode current               | lok              | ±20                          | mA   |
| DC output current                  | lout             | +25                          | mA   |
| DC V <sub>CC</sub> /ground current | Icc              | ±50                          | mA   |
| Power dissipation                  | P <sub>D</sub>   | 500 (DIP) (Note 2)/180 (SOP) | mW   |
| Storage temperature                | T <sub>stg</sub> | -65~150                      | °C   |

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: 500 mW in the range of  $Ta = -40^{\circ}C \sim 65^{\circ}C$ . From  $Ta = 65^{\circ}C$  to  $85^{\circ}C$  a derating factor of -10 mW/°C shall be applied until 300 mW.

#### **Operating Ranges (Note)**

| Characteristics          | Symbol                          | Rating                           | Unit |
|--------------------------|---------------------------------|----------------------------------|------|
| Supply voltage           | V <sub>CC</sub>                 | 2~6                              | V    |
| Input voltage            | V <sub>IN</sub>                 | 0~V <sub>CC</sub>                | V    |
| Output voltage           | V <sub>OUT</sub>                | 0~V <sub>CC</sub>                | V    |
| Operating temperature    | T <sub>opr</sub>                | -40~85                           | °C   |
|                          |                                 | 0~1000 (V <sub>CC</sub> = 2.0 V) |      |
| Input rise and fall time | t <sub>r</sub> , t <sub>f</sub> | 0~500 (V <sub>CC</sub> = 4.5 V)  | ns   |
|                          |                                 | 0~400 (V <sub>CC</sub> = 6.0 V)  |      |

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.



### **Electrical Characteristics**

### **DC Characteristics**

| Characteristics Symbol   |                 | Test Condition  Vcc (V)                                                                    |                          | -   | Га = 25°( | )    | Ta = -40~85°C |      |      |      |
|--------------------------|-----------------|--------------------------------------------------------------------------------------------|--------------------------|-----|-----------|------|---------------|------|------|------|
|                          |                 |                                                                                            |                          |     | Min       | Тур. | Max           | Min  | Max  | Unit |
|                          |                 |                                                                                            |                          | 2.0 | 1.50      | _    | _             | 1.50 | _    |      |
| High-level input voltage | $V_{IH}$        |                                                                                            | _                        |     | 3.15      | _    | _             | 3.15 | _    | V    |
| 95                       |                 |                                                                                            |                          | 6.0 | 4.20      | _    | _             | 4.20 | _    |      |
|                          |                 |                                                                                            |                          |     | _         | _    | 0.50          | _    | 0.50 |      |
| Low-level input voltage  | $V_{IL}$        |                                                                                            | _                        | 4.5 | _         | _    | 1.35          | _    | 1.35 | V    |
|                          |                 |                                                                                            |                          | 6.0 | _         | _    | 1.80          | _    | 1.80 |      |
|                          |                 | V <sub>IN</sub><br>= V <sub>IH</sub> or<br>V <sub>IL</sub>                                 |                          | 2.0 | _         | 0.0  | 0.1           | _    | 0.1  |      |
|                          |                 |                                                                                            | I <sub>OL</sub> = 20 μA  | 4.5 | _         | 0.0  | 0.1           | _    | 0.1  |      |
| Low-level output voltage | V <sub>OL</sub> |                                                                                            |                          | 6.0 | _         | 0.0  | 0.1           | _    | 0.1  | V    |
|                          |                 |                                                                                            | I <sub>OL</sub> = 4 mA   | 4.5 | _         | 0.17 | 0.26          | _    | 0.33 |      |
|                          |                 |                                                                                            | I <sub>OL</sub> = 5.2 mA | 6.0 | _         | 0.18 | 0.26          | _    | 0.33 |      |
| Output off-state current | I <sub>OZ</sub> | V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub><br>V <sub>OUT</sub> = V <sub>CC</sub> |                          | 6.0 | _         | _    | ±0.5          | _    | ±5.0 | μА   |
| Input leakage current    | I <sub>IN</sub> | V <sub>IN</sub> = V <sub>CC</sub> or GND                                                   |                          | 6.0 |           | _    | ±0.1          | _    | ±1.0 | μА   |
| Quiescent supply current | Icc             | V <sub>IN</sub> = V <sub>CC</sub> or GND                                                   |                          | 6.0 | _         | _    | 1.0           | _    | 10.0 | μА   |

### AC Characteristics (C<sub>L</sub> = 15 pF, $V_{CC}$ = 5 V, Ta = 25°C, input: $t_r$ = $t_f$ = 6 ns)

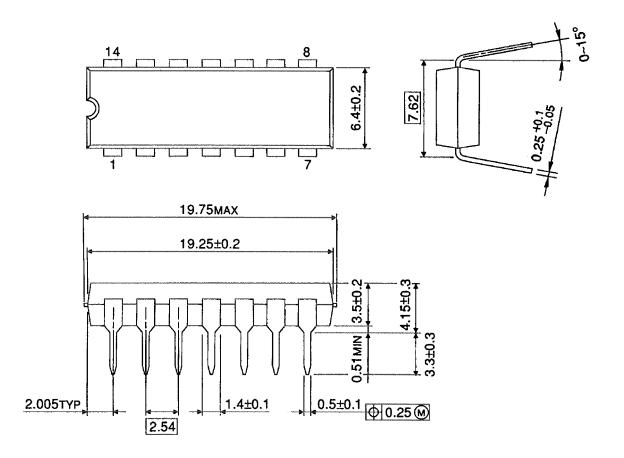
| Characteristics        | Symbol           | Test Condition            | Min | Тур. | Max | Unit |
|------------------------|------------------|---------------------------|-----|------|-----|------|
| Output transition time | t <sub>THL</sub> | _                         | _   | 4    | 8   | ns   |
| Propagation delay time | t <sub>pLZ</sub> | $R_L=1~k\Omega$           |     | 5    | 12  | ns   |
| Propagation delay time | t <sub>pZL</sub> | $R_L = 1 \text{ k}\Omega$ | _   | 5    | 12  | ns   |

3



AC Characteristics ( $C_L = 50 \text{ pF}$ , input:  $t_r = t_f = 6 \text{ ns}$ )

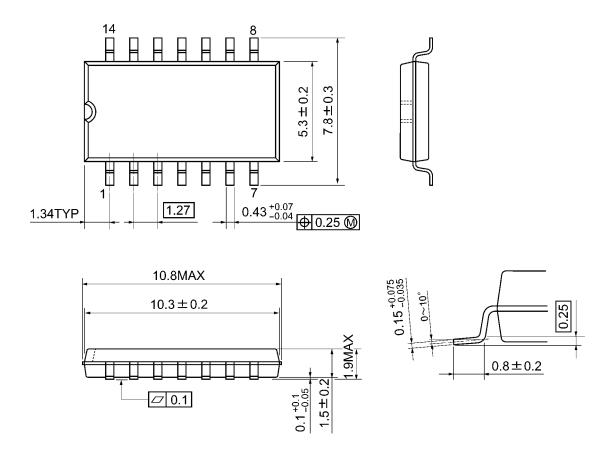
|                               |                        | Test Condition            |                     | Ta = 25°C |      |     | Ta = -40~85°C |     |      |
|-------------------------------|------------------------|---------------------------|---------------------|-----------|------|-----|---------------|-----|------|
| Characteristics Symbol        | Symbol                 |                           | V <sub>CC</sub> (V) | Min       | Тур. | Max | Min           | Max | Unit |
|                               |                        |                           | 2.0                 | _         | 30   | 75  | _             | 95  |      |
| Output transition time        | t <sub>THL</sub>       | _                         | 4.5                 | _         | 8    | 15  | _             | 19  | ns   |
|                               |                        |                           | 6.0                 | _         | 7    | 13  | _             | 16  |      |
|                               |                        |                           | 2.0                 | _         | 20   | 75  | _             | 95  |      |
| Propagation delay time        | t <sub>pLZ</sub>       | $R_L = 1 \text{ k}\Omega$ | 4.5                 | _         | 10   | 15  | _             | 19  | ns   |
|                               |                        |                           | 6.0                 | _         | 9    | 13  | _             | 16  |      |
|                               |                        |                           | 2.0                 | _         | 24   | 75  | _             | 95  |      |
| Propagation delay time        | $t_{pZL}$              | $R_L = 1 \text{ k}\Omega$ | 4.5                 | _         | 8    | 15  | _             | 19  | ns   |
|                               |                        |                           | 6.0                 | _         | 7    | 13  | _             | 16  |      |
| Input capacitance             | C <sub>IN</sub>        | _                         |                     | _         | 5    | 10  | _             | 10  | pF   |
| Output capacitance            | C <sub>OUT</sub>       | _                         |                     | _         | 3    | _   | _             | _   | pF   |
| Power dissipation capacitance | C <sub>PD</sub> (Note) | _                         |                     |           | 5    | _   | _             | _   | pF   |


Note: C<sub>PD</sub> is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

$$I_{CC}$$
 (opr) =  $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/4$  (per gate)

### **Package Dimensions**


DIP14-P-300-2.54 Unit: mm



Weight: 0.96 g (typ.)

### **Package Dimensions**

SOP14-P-300-1.27A Unit: mm



6

Weight: 0.18 g (typ.)

### **Package Dimensions (Note)**

Note: This package is not available in Japan.

Weight: 0.12 g (typ.)

#### RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before creating and producing designs and using, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application that Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document
- · Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
  FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
  WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
  LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
  LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
  SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
  FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without
  limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
  technology products (mass destruction weapons). Product and related software and technology may be controlled under the
  Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product
  or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
   Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by Toshiba manufacturer:

Other Similar products are found below:

00028 00053P0231 8967380000 56956 CR7E-30DB-3.96E(72) 57.404.7355.5 LT4936 57.904.0755.0 5801-0903 5803-0901 5811-0902 5813-0901 58410 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-1003W-10/32-15 LTILA6E-1S-WH-RC-FN12VXCR1 0131700000 00-2240 LTP70N06 LVP640 0158-624-00 5J0-1000LG-SIL 020017-13 LY1D-2-5S-AC120 LY2-0-US-AC120 LY2-US-AC240 LY3-UA-DC24 00-5150 00576P0020 00600P0010 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8609-RDPP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 0207400000 60100564