ənбоן甲еว ع00て－乙00て
 ‘səןрроW әэецәұи৷ ‘sıəسII ‘sКеןәу

Son ind

 TISvag－o9zoss60 dヨ OINOLN OLNVS ：OצはIVシ STE＇ગel！s опеוం eny

 ＊＇s＇n－8isoc $\forall 0$＇poong

 VIONTV O809t－ 9805×09－ 0 d

 uабелsuogens

Э尹Hsquil
 －

SOS6 8898 Z／0で $+\times$ ．

Nis

6LO6Sع6＇tuo／ $6 \varepsilon+\times$ xe

（OL）ヨsヨul＊OャOOL－
 $\forall d S$ yannt

шоэ＇ұәиләри！＇：м м м งэри！（1）

Finder's 10,000 different products represent one of the most extensive product lines available on the market. They are the result of specialization across a variety of relay types: step relays, light dependent relays, miniature and sub-miniature p.c.b relays, plug-in general purpose and power relays, relay interface modules, timers relay sockets and accessories.

Our four factories produce over 150,000 relays every day, using machines which have been designed and built in-house by our own team of technicians, who are experts in their own right in production techniques and industrial automation.

Finder has always followed a product value strategy aimed at constantly increasing quality. Product line reliability has been recognized through approvals by international standards organizations such as the BBJ, BEAB, CSA, DEMKO, FIMKO, GL, GOST, IMQ, IRAM, N EM KO, RIN A, SEV, SEM KO, UL, UTE and VDE, and through CE certification.

As important as these quality approvals are, Finder considers it no more important than its partnerships with customers, who are able to value the quality of its products and after-sales service.

FINDER S.p.A.
Via Drubiaglio, 14
10040 ALMESE (TO)
ITA LIA
Tel. $+39 / 011.9346211$
Fax $+39 / 011.9359079$
Export@findernet.com

For further information on the following, please complete and return:

30 Series - Subminiature D.I.L Relays 1.25 A

Low level switching capability
Sensitive DC coil, 200 mW

- Relay technology: RT III

4

ORDERING INFORMATION

TECHNICAL DATA

INSULATON

INSULATIO N according to EN 61810-5	insulation rated voltage	V
	rated impulse withstand voltage	kV
	1.2	
	pollution degree	2
	overvoltage category	I

OTHER DATA

VIBRATIO N RESISTANCE (10...55 Hz): $\mathrm{NO} / \mathrm{NC}$ C l /g	10/10
POW ER LOST TO THE EN VIRONMENT without contact current W	0.2
with rated current W	0.4
RECOMMEN DED DISTAN CE between RELAYS mounted on P.C.B.s mm	≥ 5

COIL SPECIFICATIONS

Nominal voltage U_{N}	$\begin{gathered} \text { Coil } \\ \text { code } \end{gathered}$	0 perating range		Resistance R	Rated coil consumption I at U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
v		v	v	Ω	mA
5	7.005	3.7	7.5	125	40
6	7.006	4.5	9	180	33
9	7.009	6.7	13.5	405	22
12	7.012	8.4	18	720	16
24	7.024	16.8	36	2880	8.3
48	7.048	36	72	11520	4.1

Operating range vs ambient temperature.
1 - Max coil voltage permitted.
$\mathbf{2}$ - Min pick-up voltage with coil at ambient temperature.

- Ultra-slim, 5 mm wide

4 - Sensitive DC coil, 170 mW $6 / 8 \mathrm{~mm}$ distance/ creepag $6 \mathrm{kV}(1.2 / 50$ us) between coil and conta

5 mm wide
P.C.B. mounting

* for 400 V applications, requirements for pollution degree 2 are met

Copper side view

Contact specifications	
Contact configuration	1 co
Rated current/ M aximum peak current A	6/10
Rated voltage/ Maximum switching voltage V AC	250/400*
Rated load in AC1 VA	1,500
Rated load in AC15 (230 VAC) VA	300
Single phase motor rating (230 VAC) kW	-
Breaking capacity in DC1: $30 / 110 / 220 \mathrm{~V}$ A	6/0.2/0.12
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	500 (12/10)
Standard contact material	AgNi
Coil specifications	
Nominal voltage (U_{N}) \quad V AC ($50 / 60 \mathrm{~Hz}$)	-
V DC	5-12-24-48-60
Rated power AC/DC VA (50 Hz)/ W	-10.17
0 perating range \quad AC (50 Hz)	-
DC	${ }^{(0.77 . .1 .5)} \mathrm{U}_{\mathrm{N}}$
Holding voltage AC/DC	$-10.4 U_{N}$
Must drop-out voltage AC/DC	$-10.05 U_{N}$
Technical data	
Mechanical life AC/ DC cycles	$-/ 10 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$60 \cdot 10^{3}$
0 perate/ release time (bounce included) ms	$7 / 8$
Insulation according to EN 61810-5	$4 \mathrm{kV} / 3$
Insulation between coil and contacts (1.2/ 50 /s) kV	6 (8 mm)
Dielectric strength between open contacts V AC	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$
Environmental protection	RT II
Approvals: (according to type)	

ORDERING INFORMATION
34 electromechanical relay
Example: a 34 series slim electromechanical relay, 1 CO -6 A , with 24 V sensitive DC coil.

SOLD STATR
Example: a 34 series SSR relay, 2 A , with 24 V DC supply.

SOLD STATE RELAY

other data

| PO W ER LO ST TO THE EN VIRO N M EN T without contact current W | 0.17 |
| :--- | :--- | :--- |

with rated current W

INPUT SPECIFICATION

Nominal voltage U_{N}	$\begin{aligned} & \text { Input } \\ & \text { code } \end{aligned}$	0 perating range		Release voltage	Control current Iat U_{N}
		Umin	U max		
v		v	v	v	mA
24	7.024	16	30	10	7
60	7.060	35	72	20	3

(1) finder

ELECTRO MECHAN ICAL RELAY

TECHNICAL DATA

insulation

INSULATION according to EN $61810-5$	insulation rated voltage	v	250
	rated impulse withstand voltage	kV	4
	pollution degree		3
	overvoltage category		III

IMMUNITY	
CON DUCTED DISTURBAN CE IMMUNITY	BURST (according to EN 61000-4-4) level 4 (4 kV)
	SURGE (according to EN $61000-4-5$) level 3 (2 kV)
OTHER DATA	
VIBRATION RESISTAN CE (10... 55 Hz): $\mathrm{NO} / \mathrm{NC}$ C g/g	10/5
POW ER LOST TO THE EN VIRONMENT without contact current W	0.2
with rated current W	0.5
RECOMMEN DED DISTA N CE between RELAYS mounted on P.C.B.s mm	25

CONTACT SPECIFICATIONS

LO AD RATED CURREN T (A)
Electrical life vs ACI load.

COIL SPECIFICATIONS

Nominal voltage	$\begin{aligned} & \text { Coill } \\ & \text { code } \end{aligned}$	0 perating range		Resistance	Rated coil
U_{N}		$\mathrm{U}_{\text {min }}$	$U_{\text {max }}$	R	$\mathrm{I}_{\text {at }} \mathrm{U}_{\mathrm{N}}$
v		v	V	Ω	mA
5	7.005	3.5	7.5	130	38.4
12	7.012	8.4	18	340	14.2
24	7.024	16.8	36	3,350	7.1
48	7.048	33.6	72	12,300	3.9
60	7.060	42	90	19,700	3

Breaking capacity in DC1 load.

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
the load will permit the same electrical of a diode in parallel with Note: the release time of load will be increase.

O perating range vs ambient temperate
perating r
-Max col voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

Copper side view

$$
\xrightarrow{2}
$$

Copper side view

Contact specification
Contact configuration

Contact configuration
Rated current/ Maximum peak current

Must drop-out voltage Technical data Mechanical life AC/DC Electrical life at rated load AC1 0 perate/ release time (bounce included) Insulation according to EN $61810-5$ Insulation between coil and contacts $(1.2 / 50 \mu \mathrm{~s}) \mathrm{k}$ Dielectric strength between open contacts V AC Ambient temperature range Envirommental protection Approvals: (according to type)

A
ge $V A C$
---:
$V A C$
$V A$

\qquad | $V A$ |
| ---: |
| $V A$ | $\mathrm{VAC} \quad \mathrm{kW}$ $10 / 220 \mathrm{~V} \quad \mathrm{~A}$ VAC $(50 / 60 \mathrm{~Hz}$ \checkmark AC $(50 / 60 \mathrm{~Hz})$ VA $(50 \mathrm{~Hz}) / \mathrm{W}$ $\mathrm{AC}(50 \mathrm{~Hz})$ $A C / D C$ $A C / D C$ $A C / D C$

\qquad
0
$10 / 0$
50 0.37
$10 / 0.2 / 0.1$ AgCdO

ORDERING INFORMATION

TECHN ICAL DATA

INSULATION

insulation rated voltage	V	250
rated impulse withstand voltage	kV	2.5
pollution degree	2	
overvoltage category	II	

CONTACT SPECIFICATIONS

Electrical life vs AC1 load

COIL SPECIFICATIONS

$\begin{aligned} & \text { Nominal } \\ & \text { voltage } \end{aligned}$$U_{N}$	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	Rated coil consumption Iat U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
v		v	v	Ω	mA
3	9.003	2.2	4.5	25	120
5	9.005	3.7	7.5	70	72
6	9.006	4.5	9	100	60
9	9.009	6.7	13.5	225	40
12	9.012	9	18	400	30
24	9.024	18	36	1,600	15
48	9.048	36	72	6,400	7.5

reaking capacity in DC1 load.

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load.

perating range vs ambient temperature
I-Max coil voltage permitted
2 - Min pick-up voltage with coil at ambient temperature.

40 Series - Miniature P.C.B. Relays 8-10-16 A

- P.C.B. or plug-in mount
AC, DC, sensitive DC or single bistable coil
versions available
$8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and ontacts
40 - Ambient temperature $+85^{\circ} \mathrm{C}$ - Sockets and accessories: see 95,99 and - Sockets a
86 series
- RT III (wash tight) version available

40.31

40.51
40.52

* for 400 V applications, requirements for pollution degree 2 are met

Contact specification
Contact configuration
Rated current/ M aximum peak current Rated voltage/ Maximum switching voltage VAC Rated load in AC1
Rated load in AC15 (230 VAC) Single phase motor rating (230 VAC Breaking capacity in DC1: 30/110/22 M inimum switching load Standard contact material Coil specifications

- 1 pole, 10 A -3.5 mm pinning - P.C.B. / for use with 95 series sockets	- 1 pole, 10 A -5 mm pinning - P.C.B. / for use with 95 series sockets	- 2 pole, 8 A -5 mm pinning - P.C.B. / for use with 95 series sockets

$$
\xrightarrow[29]{4}
$$

Nominal voltage (U. \quad V \quad AC $(50 / 60 \mathrm{~Hz})$ Rated power AC/DC/ sens. DC VA O perating range
Holding voltage
\qquad
 Mechanical life AC/ DC Mechanical life $\mathrm{AC/DC}$
Electrical life at rated load AC1 0 perate/ release time (bounce included) Insulation according to EN 61810-5 Insulation between coil and contacts $(1.2 / 50 \mathrm{\mu s}) \mathrm{kV}$ Dielectric strength between open contacts Ambient temperature range Envirommental protection Approvals: (according to type)

Copper side view
Copper side view
Copper side view

$$
\begin{aligned}
& \text { 3. } 200^{-1 "} \\
& +3,{ }_{29}^{20} .6 \text {. }
\end{aligned}
$$

ORDERING IN FORMATION

Example: a 40 series P.C.B. relay with 2 CO contacts, with coil rated at 230 VAC .

$$
\begin{aligned}
& 2=2 \text { pole } \\
& \text { for } 40.52,8 \mathrm{~A}
\end{aligned}
$$

Coil version

$$
\begin{aligned}
& 6=A C / D C \text { bistable } \\
& 7=\text { Sensitive DC }
\end{aligned}
$$

$$
\begin{aligned}
& 8=A C \\
& 9=D C
\end{aligned}
$$

Coil voltage see coil specifications

Only combinations in the same row are possible

$$
\begin{aligned}
& 7=\text { Sensitive DC } \\
& 8=\mathrm{AC}(50 / 60 \mathrm{H}
\end{aligned}
$$ Preferred versions

	coil version	A	B	C	D
40.31/51	AC/ DC/ sens.DC	0	0	0	0
40.52	AC/ DC/ sens.DC	0	0	0	0
40.61	AC/ DC/ sens.DC	0	0	0	0
All versions					
	coil version	A	B	C	D
40.31/51	AC/ sens. DC	0-2-5	0-3	0	0-1
40.31/51	DC	0-2-5	0-3	0	0-1-3
40.52	AC/ sens.DC	0-2-5	0-3	0	0-1
40.52	DC	0-2.5	0-3	0	0-1-3
40.61	AC/ sens.DC	0-4	0-3	0	0-1
40.61	DC	0-4	0-3	0	0-1-3
$40.31 / 51 /$	bistable	0	0	0	0

TECHNICAL DATA

INSULATIO N according to EN $61810-5$	insulation rated voltage	v	250	
	rated impulse withstand voltage	kV	3.6	
	pollution degree		3 (1 CO)	2 (2CO)
	overvoltage category		III	
IMMUNITY				
CON DUCTED DISTURBAN CEIMMUNITY	BURST (according to EN 61000-4-4) level 4 (4kV)			
	SURGE (according to EN $61000-4-5$) level 3 (2 kV)			
OTHER DATA				
VIBRATION RESISTANCE (10...55 5 Hz): No/NC l C	10/4 (1C0)		3/3 (2C0)	
PO W ER LOST TO THE EN VIRO NMENT without contact current W	0.6			
with rated current W	1.2 (40.31/51)		$2(40.61 / 52)$	
RECO M M EN DED DISTAN CE between RELAYS mounted on P.C.B.s mm	25			

CONTACT SPECIFICATIONS

Electrical life vs AC1 load
1- Type 40.52 (8 A)
Type 40.61 (16 A)

COIL SPECIFICATIONS

DC VERSION DATA ($\mathbf{0 . 6 5} \mathbf{~ w}$ standard)

Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	Rated coil consumption Iat U_{N}
		$U_{\text {min }}$	$U_{\text {max }}$		
v		v	v	Ω	mA
5	9.005	3.65	7.5	38	130
6	9.006	4.4	9	55	109
7	9.007	5.1	10.5	75	94
9	9.009	6.6	13.5	125	72
12	9.012	8.8	18	220	55
14	9.014	10.2	21	300	47
18	9.018	13.1	27	500	36
21	9.021	15.3	31.5	700	30
24	9.024	17.5	36	900	27
28	9.028	20.5	42	1,200	23
36	9.036	26.3	54	2,000	18
48	9.048	35	72	3,500	14
60	9.060	43.8	90	5,500	11
90	9.090	65.7	135	12,500	7.2
110	9.110	80.3	165	18,000	6.2

ac version data

Nominal voltage U_{N}	Coilcode	0 perating range		Resistance R	Rated coil consumption $\mathrm{Iatu}_{\mathrm{N}}(5 \mathrm{~Hz})$
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
v		v	v	Ω	mA
6	8.006	4.8	6.6	21	168
12	8.012	9.6	13.2	80	90
24	8.024	19.2	26.4	320	45
48	8.048	38.4	52.8	1,350	21
60	8.060	48	66	2,100	16.8
110	8.110	88	121	6,900	9.4
120	8.120	96	132	9,000	8.4
230	8.230	184	253	28,000	5
240	8.240	192	264	31,500	4.1

40

Breaking capacity for DC1 load
1 - Type 40.61
2 - Type 40.31
A - Load applied to 1 contact
B- Load applied to 2 contacts in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{\circ}$ cycles. - In case of DC13 loads the connection of a diode in paralle with Note: the release time of load will be increase.

DC VERSION DATA ($0.5 \mathbf{~ W}$ sensitive)

Nominalvoltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	Rated coil consumption Iat U_{N}
		$\mathrm{U}_{\text {min }}{ }^{*}$	$U_{\text {max }}{ }^{*}$		
v		v	V	Ω	
5	7.005	3.7	8.8	50	100
6	7.006	4.4	10.5	75	80
7	7.007	5.1	12.2	100	70
9	7.009	6.6	15.8	160	56
12	7.012	8.8	21	300	40
14	7.014	10.2	24.5	400	35
18	7.018	13.2	31.5	650	27.7
21	7.021	15.4	36.9	900	23.4
24	7.024	17.5	42	1,200	20
28	7.028	20.5	49	1,600	17.5
36	7.036	26.3	63	2,600	13.8
48	7.048	35	84	4,800	10
60	7.060	43.8	105	7,200	8.4
90	7.090	65.7	157	16,200	5.6

$* U_{\text {min }}=0.8 U_{N}$ for $40.61 \quad * * U_{\text {max }}=1.5 U_{N}$ for 40.61
AC/ DC VERSION DATA (bistable)

Nominal voltage U_{N}	Coil	0 perating range		Resistance R	Rated coil consumption Iat U_{N}	$\begin{gathered} \text { DC: Release } \\ \text { resistance** } \\ R_{D C} \end{gathered}$
		$U_{\text {min }}$	$\mathrm{U}_{\text {max }}$			
v		v	v	Ω	mA	Ω
5	6.005	4	5.5	23	215	37
6	6.006	4.8	6.6	33	165	62
12	6.012	9.6	13.2	130	83	220
24	6.024	19.2	26.4	520	40	910
48	6.048	38.4	52.8	2,100	21	3,600
110	6.110	88	121	11,000	10	16,500

$* * R_{D C}=$ Resistance in $D C, R_{A C}=1.3 \times R_{D C}, 1 W$

COIL SPECIFICATIONS

R 40 AC

Wiring Diagram for 40 Series bistable coil version

On momentary closure of the SET switch the relay is magnetised through On momentary closure of the SET switch the relay is magnetised and the the diode and the relay contacts transfer to the set position and remain in relay contacts transfer to the set position and remain in this position. On momentary closure of the RESET switch the relay is demagnetised through limiting resistor ($R_{D C}$) and the contacts return to the reset through limiting resistor (R_{AC}) and the contacts return to the position.
reset position.
Notes: The minimum SET or RESET impulse time is 20 ms . The maximum time can be continuous. In practice, always ensure that the SET and RESET contacts cannot be operated simultaneously.
(1) finder

95 Series - Sockets and Accessories for 40 Series Relays

MAX W IRE SIZE:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$

W Com	21 $\square^{\text {com }}$
	高 用 con

8-way jumper link for 95.03 , and 95.05 sockets

RATED VALUES: $10 \mathrm{~A}-250 \mathrm{~V}$

99.02 modules for 95.03 and 95.05 sockets		BLUE
Diode** (+A1)	(6...220) V DC	99.02.3.000.00
LED	(6...24)V DC/AC	99.02.0.024.59
LED	(28...60) V DC/AC	99.02.0.060.59
LED	(110...240) V DC/AC	99.02.0.230.59
LED + Diode** (+A1)	(6...24) V DC	99.02.9.024.99
LED + Diode** (+A1)	(28...60) V DC	99.02.9.060.99
LED + Diode** (+A1)	(110...220) V DC	99.02.9.220.99
LED + Varistor	(6...24)VDC/AC	99.02.0.024.98
LED + Varistor	(28...60) V DC/AC	99.02.0.060.98
LED + Varistor	(110...240) VDC/AC	99.02.0.230.98
RC	(6...24) VDC/AC	99.02.0.024.09
RC	(28...60) V DC/AC	99.02.0.060.09
RC	(110...240) V DC/AC	99.02.0.230.09
Residual current bypass ($62 \mathrm{k} \Omega / 1 \mathrm{~W}$)	(110...240) V AC	99.02.8.230.07

Copper side view

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.
Code options according to the last three leters:

| $\mathbf{9}$ | $\mathbf{5}$ | $\mathbf{0}$ | $\mathbf{5}$ | \mathbf{S} | \mathbf{P} | \mathbf{A} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | A Standard packaging

SM M etal retaining clip
SP Plastic retaining clip SP Plastic retaining clip
SX No retaining clip

41 Series - Low-Profile P.C.B. Relays 8-12-16 A

Low-profile, only 15.7 mm high
DC coil versions 0.4 W
$8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{H})$ between coil and contacts
Ambient temperature $+85^{\circ} \mathrm{C}$
Sockets and accessories: see 95 and 99 series

* for 400 V applications, requirements for pollution degree 2 are met

Contact specification

Contact configuration Rated current/ Maximum peak current Rated voltage/ Maximum switching voltage V AC Rated load in AC1 Rated load in AC15 (230 VAC) Single phase motor rating (230 VAC) Breaking capacity in DC1:30/110/ M inimum switching load Standard contact material Coil specifications Nominal voltage (U_{N})

Rated power AC/ DC	VA (50
0 perating range	AC

DC	$(0.7 \ldots 1.5) \mathrm{U}_{\mathrm{N}}$	$(0.7 \ldots 1.5) U_{N}$	(0.7 ..1.5) U_{N}
Holding voltage \quad AC/DC	$-10.4 \mathrm{U}_{\mathrm{N}}$	$-10.4 U_{N}$	$-10.4 U_{N}$
Must drop-out voltage AC/ DC	$-10.1 \mathrm{U}_{\mathrm{N}}$	$-10.1 U_{N}$	$-10.1 \mathrm{U}_{\mathrm{N}}$
Technical data			
Mechanical life AC/ DC cycles	-/30.10 ${ }^{6}$	- $/ 30 \cdot 10^{6}$	-/30.10 ${ }^{6}$
Electrical life at rated load AC1 cycles	$150 \cdot 10^{3}$	$80 \cdot 10^{3}$	$70 \cdot 10^{3}$
0 perate/ release time (bounce included) ms	718	718	7/8
Insulation according to EN 61810-5	$3.6 \mathrm{kV} / 3$	$3.6 \mathrm{kV} / 3$	$3.6 \mathrm{kV} / 3$
Insulation between coil and contacts (1.2/ $50 \mathrm{\mu s)}$ kV	6 (8mm)	6 (8mm)	6 (8mm)
Dielectric strength between open contacts V AC	1,000	1,000	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$	$-40 \ldots+85$	$-40 . . .+85$
Environmental protection	RT II	RT II	RT II
Approvals: (according to type)	GOST ${ }_{\text {c }} \mathrm{T}_{\text {US }}^{\text {U }}$ NOE		

(1) finder

ORDERING INFORMATION

TECHNICAL DATA

INSULATON

INSULATIO N according to EN $61810-5$	insulation rated voltage	V	250
	rated impulse withstand voltage	kV	3.6
	pollution degree	3	
	overvoltage category	III	

OTHER DATA

VIBRATION RESISTAN CE (10... 55 Hz$): ~ \mathrm{NO} / \mathrm{NC}$	g / g	$20 / 5$

PO W ER LOST TO THE EN VIRO NMENT without contact current W 0.4

RECO M M EN DED DISTAN CE between RELAYS mounted on P.C.B.s mm 25

CONTACT SPECIFICATIONS

Contact life vs $\mathrm{AC1}$ load.
1- Type 41.52 (8 A) at 360 cycles/ h .
$\mathbf{2}$ - Type 41.31 (12 A) at 360 cycles/ h . Type 41.61 (16 A) at 360 cycles/ h.
dC VERSION DATA

Nominalvoltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	Rated coi consumption I at U_{N}
		$u_{\text {min }}$	$U_{\text {max }}$		
v		V	v	Ω	mA
12	9.012	8.4	18	360	33.3
24	9.024	16.8	36	1,440	19.7
48	9.048	33.6	72	5,520	8.7
60	9.060	42	90	7,340	8.1
110	9.110	77	165	26,600	4.1

R 41 DC

0 perating range vs ambient temperature,
1- Max coil voltage permitted.
$\mathbf{2}$ - Min pick-up voltage with coil at ambient temperature.

Breaking capacity for DC1 load.
1- Type 41.61
2 - Type 41.31
3 - Type 41.52
A - Load applied to 1 contact
B - Load applied to 2 contacts in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
In case of DC13 loads the connection of a diode in parallel with
the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.
(1) finder

95 Series - Sockets and Accessories for 41 Series Relays

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.

9	5	1	3	S	N	A

A Standard packaging

SN Low profile metal retaining clip
SL Low profile plastic retaining clip
SX No retaining clip
SX No retaining clip
-1 pole 10 A
15.4 mm high
-15.4 mm high

- Very low coil consumption, only 0.25 W
- Very low coil consumption, only 0.25 W
$10 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
Ambient temperature $+85^{\circ}$

43

3.41-0300

* for 400 V applications, requirements for pollution degree 2 are met.

Contact specifications

Contact configuration
Rated current/ M aximum peak current
Rated voltage/ Maximum switching voltage V AC Rated load in AC1
Rated load in AC15 (230 VAC) Single phase motor rating (230 VAC Breaking capacity in DC1:30/110 Minimum switching load $0 / 220 \mathrm{~V}$ A Standard contact material Coil specifications N ominal voltage ($\left.U_{N}\right)$ $\frac{\text { Rated power } \mathrm{AC} / \mathrm{DC}}{0 \text { perating range }}$ Holding voltage
Must drop-out voltage Technical data Mechanical life AC/ DC Electrical life at rated load AC1 0 perate/ release time (bounce included) Insulation according to EN $61810-5$ Insulation between coil and contacts $(1.2 / 50 \mu \mathrm{~s}) \mathrm{k}$ Ambient temperature range Environmental protection Approvals: (according to type)

3.	43.41... 0300
$\begin{array}{\|l\|} \hline-1 \mathrm{CO} \\ -3.2 \mathrm{~mm} \text { pinning } \\ - \text { P.C.B. mounting or sockets } 95 \text { series } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1 \mathrm{NO} \\ -5 \mathrm{~mm} \text { pinning } \\ \text { - P.C.B. mounting } \end{array}$
Copper side view	Copper side view
1 co	1 No
10/15	10/15
250/400*	250/400*
2,500	2,500
500	500
-	-
10/0.3/0.12	10/0.3/0.12
300 (5/5)	300 (5/5)
AgCdo	AgCdO
-	-
3-6-9-12-18-24-36-48	3-6-9-12-18-24-36-48
-10.25	-/ 0.25
-	-
(0.7 ...1.5) U_{N}	(0.7 ...1.5) U_{N}
$-10.4 U_{N}$	$-10.4 U_{N}$
$-10.05 U_{N}$	$-10.05 U_{N}$
- $110 \cdot 10^{6}$	-/10.10 ${ }^{6}$
$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
11/8	11/8
3.6 kV/3	3.6 kV/3
6 (10mm)	6 (10mm)
1,000	1,000
$-40 \ldots+85$	$-40 \ldots+85$
RT II	RT II
GOST ${ }^{\text {c }} \mathbf{N i}^{\text {US }}$ UOE	GOST ${ }^{\text {c }} \mathbf{N L}_{\text {US }}^{\text {U }}$

(1) finder

ORDERING INFORMATION

TECHNICAL DATA

insulaton

INSULATON

IN SULATIO N according to EN $61810-5$	insulation rated voltage	V
	rated impulse withstand voltage	kV
	pollution degree	3.6
	overvoltage category	3

OTHER DATA

CONTACT SPECIFICATIONS

Electrical life vs AC1 load.

COIL SPECIFICATIONS

DC VERSION DATA
Nominal voltage U_{N} Coil code O perating range Resistance Rated coil consumption V $U_{\text {min }}$ $U_{\text {max }}$ R V I at U_{N}
3

Breaking capacity in DC1 load.

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with he load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

R 43 DC

o perating range vs ambient temperature.
1-Max coil voltage permitted
$\mathbf{2}-\mathrm{M}$ in pick-up voltage with coil at ambient temperature.
(1) finder

95 Series - Sockets and Accessories for 43 Series Relays

	Relay type	43.41	
	Colour	BLUE	BLACK
$1 \mathrm{~m}^{1}$	P.C.B. socket (only for CO version) retaining clip 095.43 supplied with socket packaging code SN A	95.23	95.23 .0
95.23	Metal retainig clip	095.43	

Approvals
(according to type):
C $€$ GOSt c $\mathrm{Cl}_{\mathrm{US}}^{\circ}$

- RATED VALUES: $10 \mathrm{~A}-250 \mathrm{~V}$
IN SULATIO $\mathrm{N}: 2 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts

IN SULATIO $\mathrm{N}: \geq 6 \mathrm{kV}(1.2 / 50 \mathrm{ss})$
PROTECTIO $\operatorname{CATEGORY:~IP~} 20$
-AM BIEN T TEM PERATURE: $(-40 \ldots+70)^{\circ} \mathrm{C}$

pper side view

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.

Code options according to the last three letters

$\begin{array}{llllllll}9 & 5 & 2 & 3 & \text { S N }\end{array}$

A Standard packaging

SN Low profile metal retaining clip
SX No retaining clip

- DC and sensitive $D C$ available
$8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
Ambient temperature $+85^{\circ} \mathrm{C}$
Sockets and accessories: see 95,99 and 86 series
44.52
44.62

-2 pole, 6 A - 5 mm pinning - P.C.B./ for use with 95 series sockets	-2 pole, 10 A -5 mm pinning - P.C.B.I for use with 95 series sockets
Copper side view	Copper side view

$$
\text { pollution degree } 2 \text { are met. }
$$

* for 400 V applications, requirements for

Contact specification

Contact configuration
Rated current/ M aximum peak current

Rated voltage/ Maximum switching voltage V A Rated load in AC1
Rated load in AC15 (230 VAC) Single phase motor rating (230 VAC) Breaking capacity in DC1:30/110/220V M inimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$ Standard contact material mW (V/mA)

Coil specifications

Nominal voltage $\left(U_{N}\right) \quad \operatorname{VAC}(50 / 60 \mathrm{~Hz}$

V D	6 -	
Rated power AC/ DC/ sens. DC VA (50 Hz)/ W	-/0.65/0.5	-/0.65/0.5
0 perating range	-	-
	$(0.73 \ldots 1.5) U_{N} /(0.73 \ldots 1.7) U_{N}$	$(0.73 \ldots 1.5) U_{N} /(0.8 \ldots 1.7) U_{N}$
Holding voltage AC/DC	$-10.4 U_{N}$	- $10.4 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/ DC	$-10.1 U_{N}$	$-10.1 U_{N}$
Technical data		
Mechanical life AC/ DC cycles	$-120 \cdot 10^{6}$	$-/ 20 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$150 \cdot 10^{3}$	$100 \cdot 10^{3}$
0 perate/ release time (bounce included) ms	10/12-(15/12 sens)	10/12-(15/12 sens)
Insulation according to EN 61810-5	3.6 kV/3	3.6 kV/3
Insulation between coil and contacts (1.2/ $50 \mu \mathrm{~s}$) kV	6 (8mm)	6 (8mm)
Dielectic strength between open contacts V AC	1,000	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$	$-40 \ldots+85$
Environmental protection	RT II	RT II
Approvals: (according to type)	(11) GOST (16) RIN	

(1) finder

ORDERING INFORMATION

TECHNICAL DATA

insuLation

IMMUNITY

CONDUCTED DISTURBAN CE IM M UN ITY	BURST (according to EN $61000-4-4)$ level 4 (4kV)
	SURGE (according to EN $61000-4$-5) level 3 (2kV)

OTHER DATA

RECO M MEN DED DISTAN CE between RELAYS mounted on P.C.B.S $\mathrm{mm} \quad \geq 5$

CONTACT SPECIFICATIONS

Electrical life vs AC1 load.

COIL SPECIFICATIONS

DC VERSION DATA ($0.65 \mathbf{W}$ standard)

Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	$\left.\begin{gathered} \text { Rated coil } \\ \text { consumption } \\ \text { I at } U_{N} \end{gathered} \right\rvert\,$
		$U_{\text {min }}$	$u_{\text {max }}$		
v		V	V	Ω	
6	9.006	4.4	9	55	109
9	9.009	6.6	13.5	125	72
12	9.012	8.8	18	220	55
14	9.014	10.2	21	300	47
24	9.024	17.5	36	900	27
28	9.028	20.5	42	1,200	23
48	9.048	35	72	3,500	14
60	9.060	43.8	90	5,500	11
110	9.110	80.3	165	18,000	6.2

o perating range (DC version) vs ambient temperature 1 - Max coil voltage permitted $\mathbf{3 0}^{2-M \text { in pick-up voltage with coil at ambient temperature. }}$
$* U_{\text {min }}=0.8 U_{N}$ for 44.62

Breaking capacity for DC1 load.
1- Type 44.62
2 - Type 44.52
A - Load applied to 1 contact
B - Load applied to 2 contact in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with he load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

DC VERSION DATA ($0.5 \mathbf{W}$ sensitive)

Nominal voltage	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance	Rated coil
$U_{\text {N }}$		$\mathrm{U}_{\text {min }}{ }^{*}$	$\mathrm{U}_{\text {max }}$	R	${ }_{\text {I at }} \mathrm{U}_{\mathrm{N}}$
v		v	V	Ω	mA
6	7.006	4.4	10.2	75	80
9	7.009	6.6	15.3	160	56
12	7.012	8.8	20.4	300	40
14	7.014	10.2	23.8	400	35
24	7.024	17.5	40.8	1,200	20
28	7.028	20.5	47.6	1,600	17.5
48	7.048	35	81.6	4,800	10
60	7.060	43.8	102	7,200	8.4
110	7.110	80.3	187	23,500	4.7

R 44 sens. DC

0 perating range (sensitive DC version) vs ambient temperature

1. Max coil voltage permitted

2 - Min pick-up voltage with coil at ambient temperature.
(1) finder

99.02 modules for 95.03 and 95.05 sockets		BLUE
Diode** (+A1)	(6...220) V DC	99.02.3.000.00
LED	(6...24) V DC/AC	99.02.0.024.59
LED	(28...60) V DC/AC	99.02.0.060.59
LED	(110...240) V DC/AC	99.02.0.230.59
LED + Diode** (+A1)	(6...24) VDC	99.02.9.024.99
LED + Diode** (+A1)	(28...60) V DC	99.02.9.060.99
LED + Diode** (+A1)	(110...220) V DC	99.02.9.220.99
LED + Varistor	(6...24) V DC/AC	99.02.0.024.98
LED + Varistor	(28...60) V DC/AC	99.02.0.060.98
LED + Varistor	(110...240) V DC/AC	99.02.0.230.98
RC	(6...24) V DC/AC	99.02.0.024.09
RC	(28...60) V DC/AC	99.02.0.060.09
RC	(110...240) V DC/AC	99.02.0.230.09
No - remanence ($62 \mathrm{k} \Omega / 1 \mathrm{~W}$)	(110...240) V AC	99.02.8.230.07

**For DC supply, apply the positive to terminal A1
Modules in Black housing are available on request

99.01 modules for 95.63 and 95.75 sockets		BLUE
Diode** (+A1)	(6...220) V DC	99.01.3.000.00
LED	(6...24) V DC/AC	99.01.0.024.59
LED	(28...60)VDC/AC	99.01.0.060.59
LED	(110...240) V DC/AC	99.01.0.230.59
LED + Diode** (+A1)	(6...24) V DC	99.01.9.024.99
LED + Diode** (+A1)	(28...60) V DC	99.01.9.060.99
LED + Diode** (+A1)	(110...220) V DC	99.01.9.220.99
LED + Varistor	(6...24)V DC/AC	99.01.0.024.98
LED + Varistor	(28...60)VDC/AC	99.01.0.060.98
LED + Varistor	(110...240) V DC/AC	99.01.0.230.98
RC	(6...24) V DC/AC	99.01.0.024.09
RC	(28...60)VDC/AC	99.01.0.060.09
RC	(110...240) V DC/AC	99.01.0.230.09
No -remanence ($62 \mathrm{k} \Omega / \mathrm{lW}$)	(110...240) VAC	99.01.8.230.07

**For DC supply, apply the positive to terminal A1. Modules in Black housing are available on request
reen IED is standard. Red IED available on request
(1) fincler

95 Series - Sockets and Accessories for 44 Series Relays

Copper side view

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.
Code options according to the last three letters:

$\mathbf{9}$	$\mathbf{5}$	$\mathbf{0}$	$\mathbf{5}$	\mathbf{S}	\mathbf{P}	\mathbf{A}

A Standard packaging

SM M etal retaining clip
SP Plastic retaining clip SX No retaining clip

45 Series - Miniature P.C.B. Relays 16 A

45

* for 400 V applications, requirements for
pollution degree 2 are met

Contact specification

Contact configuration Rated current/ Maximum peak current Rated load in AC1
Rated load in AC15 (230 VAC) Single phase motor rating (230 VAC) Breaking capacity in DC1:30/110/220V M inimum switching load Standard contact materia Coil specifications

Nominal voltage (U_{N})	-
	6-12-24-48-60
Rated power AC/ DC VA ($50 \mathrm{Hzz} / \mathrm{W}$	-/ 0.36
0 perating range	-
	$(0.7 \mathrm{~F} . .1 .2)^{\prime}$
Holding voltage AC/DC	$-10.4 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	$-10.1 U_{N}$
Technical data	
Mechanical life AC/ DC cycles	-/30 10^{6}
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$
O perate/ release time (bounce included) ms	8/3
Insulation according to EN 61810-5	3.6 kV/3
Insulation between coil and contacts (1.21 $50 \mu \mathrm{ss}$) kV	6 (8mm)
Dielectric strength between open contacts V AC	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+125$
Environmental protection	RT II
Approvals: (according to type)	

ORDERING INFORMATION

TECHNICAL DATA

insulation

INSULATON

IN SULATIO N according to EN $61810-5$	insulation rated voltage	V	250
	rated impulse withstand voltage	kV	3.6
	pollutiol degree	3	
	overvoltage category	3	III

OTHER DATA

VIBRATIO N RESISTAN CE (10...55 Hz): NO / NC	g / g	$10 / 10$

PO W ER LO ST TO THE EN VIRO N M EN T without contact current W 0.4
with rated current W 1.8

CONTACT SPECIFICATIONS

${ }^{4}$ LO AD RATED ${ }^{8}$ CURRENT (A) ${ }^{12}$
Electrical life AC1 load $\left(+85^{\circ} \mathrm{C}\right.$

Breaking capacity for DC1 load.

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with he load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

COIL SPECIFICATIONS

Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	Rated coil consumption I at U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
v		v	v	Ω	mA
6	7.006	4.2	7.2	100	60
12	7.012	8.4	14.4	400	30
24	7.024	16.8	28.8	1,600	15
48	7.048	33.6	57.6	6,400	7.5
60	7.060	42	72	10,000	6

R 45 DC

o perating range vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

Plug-in or P.C.B. versions

AC or DC coils
Lockable test button and mechanical flag indicator as standard on 2 and 4 CO
elays types
86 series

- RT III (wash tight) version available

	- 2 pole - P.C.B. mounting	$\begin{array}{\|l\|} \hline-3 \text { pole } \\ \text { - P.C.B. mounting } \end{array}$	- 4 pole - P.C.B. mounting
Contact specifications			
Contact configuration	2 co	3 co	4 CO
Rated current/ M aximum peak current A	10/20	10/20	5/10
Rated voltage/ M aximum switching voltage V AC	250/400	250/400	250/250
Rated load in AC1 VA	2,500	2,500	1,250
Rated load in AC15 (230 VAC) VA	500	500	250
Single phase motor rating (230 VAC) kW	0.37	0.37	0.125
Breaking capacity in DC1: $30 / 110 / 220 \mathrm{~V}$ A	10/0.25/0.12	10/0.25/0.12	5/0.25/0.12
M inimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (5/5)	300 (5/5)	300 (5/5)
Standard contact material	AgNi	AgNi	AgNi
Coil specifications			
Nominal voltage (U_{N}) V V AC ($50 / 60 \mathrm{~Hz}$)	6-12-24-48-60-110-120-230-240		
V DC	6-12-24-48-60-110		
Rated power AC/ DC VA ($50 \mathrm{~Hz} / \mathrm{W}$	1.5/1	1.5/1	1.5/1
O perating range $\quad \begin{array}{r}\text { AC (} 50 \mathrm{~Hz} \text {) } \\ \\ \hline\end{array}$	(0.8...1.1) U_{N}	(0.8...1.1) U_{N}	(0.8...1.1) U_{N}
	$(0.8 \ldots 1.1)^{\prime}{ }_{N}$	(0.8...1.1) U_{N}	$(0.8 \ldots .1 .1)^{\prime}$
Holding voltage $\mathrm{AC} / \mathrm{DC}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Technical data			
Mechanical life AC/ DC cycles	$20 \cdot 10^{6 / 50} \cdot 10^{6}$	$20 \cdot 10^{6 / 50} \cdot 10^{6}$	$20 \cdot 10^{6 / 50} \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$200 \cdot 10^{3}$	$200 \cdot 10^{3}$	$150 \cdot 10^{3}$
0 perate/ release time (bounce included) ms	10/15	10/15	10/15
Insulation according to EN 61810-5	3.6 kV/2	3.6 kV/2	3.6 kV/2
Insulation between coil and contacts (1.21 $50 \mu \mathrm{~s}$) kV	3.6	3.6	3.6
Dielectric strength between open contacts V AC	1,000	1,000	1,000
A mbient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	$-40 \ldots+70$	$-40 \ldots+70$
Environmental protection	RTI	RTI	RT I
Approvals: (according to type)			

55 Series - Miniature General Purpose Relays 5-10 A
-Plug-in or P.C.B. versions
AC or DC coils
-ockable test button and mechanical flag indicator as standard on 2 and 4 CO elays types
series 86 series

Contact specifications			
Contact configuration	2 CO	3 co	4 CO
Rated current/ M aximum peak current A	10/20	10/20	5/10
Rated voltage/ Maximum swithing voltage V AC	250/400	250/400	250/250
Rated load in AC1 VA	2,500	2,500	1,250
Rated load in AC15 (230 VAC) VA	500	500	250
Single phase motor rating (230 VAC) kW	0.37	0.37	0.125
Breaking capacity in DC1:30/110/220V A	10/0.25/0.12	10/0.25/0.12	5/0.25/0.12
M inimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (5/5)	300 (5/5)	300 (5/5)
Standard contact material	AgNi	AgNi	AgNi
Coil specifications			
Nominal voltage (U_{N}) V V AC ($50 / 60 \mathrm{~Hz}$)	6-12-24-48-60-110-120-230-240		
V DC	6 -12-24-48-60-110		
Rated power AC/DC VA (50 Hz)/ W	1.5/1	1.5/1	1.5/1
O perating range $\begin{array}{r}\text { AC (} 50 \mathrm{~Hz} \text {) } \\ \end{array}$	$(0.8 . .1 .1)^{1} \mathrm{U}_{\mathrm{N}}$	$(0.8 . .1 .1)^{1} \mathrm{U}_{\mathrm{N}}$	$(0.8 . . .1 .1) U_{N}$
	(0.8...1.1) U_{N}	(0.8...1.1) U_{N}	$(0.8 . \ldots 1.1) U_{N}$
Holding voltage $\mathrm{AC/DC}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage \quad AC/ DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 U_{N} / 0.1 U_{N}$	$0.2 U_{N} / 0.1 U_{N}$
Technical data			
Mechanical life AC/ DC cycles	$20 \cdot 10^{6 / 50} \cdot 10^{6}$	$20 \cdot 10^{6} / 50 \cdot 10^{6}$	$20 \cdot 10^{6} / 50 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$200 \cdot 10^{3}$	$200 \cdot 10^{3}$	$150 \cdot 10^{3}$
0 perate/ release time (bounce included) ms	10/15	$10 / 15$	10/15
Insulation according to EN 61810-5	3.6 kV/2	3.6 kV/2	3.6 kV/2
Insulation between coil and contacts (1.2/ $50 \mu \mathrm{~s}$) kV	3.6	3.6	3.6
Dielectric strength between open contacts V AC	1,000	1,000	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	$-40 \ldots+70$	$-40 \ldots+70$
Environmental protection	RTI	RTI	RTI
Approvals: (according to type)			

ORDERING INFORMATION

POSSIBLE OPTIONS

0 ption $=0030$
0074

Lo Ckable test button and mechanicalflag indicator (0040)
The dualpurpose Finder test button can be used in two ways:
Case 1) The plastic pip (located directly above the test button) remains intact In this case, when the test button is pushed, the contacts operate. When the test buton is released the contacts return to their former state. Case 2) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to
the above function), when the test button is pushed and rotated, the contacts are elatched in the operating state, and remain so until the test button is rotated back to its former position. n both cases ensure that the test button actuation is swilt and decisive.

(1) finder
 55 Series - Miniature General Purpose Relays 5-10 A

TECHNICAL DATA

INSULATION
IN SULATIO N according to EN $61810-5$ insulation rated voltage V 250 rated impulse withstand voltage kV pollution degree 3.6 overvoltage category 2

CO N DUCTED DISTURBAN CE IMMUNITY BURST (according to EN $61000-4-4$) level 4 (4 kV)

OTHER DATA

VIBRATIO N RESISTAN CE ($10 \ldots . .55 \mathrm{~Hz}$): N O / NC SURGE (according to EN $61000-4-5$) level 4 (4 kV)
pow er lost to the environment

CONTACT SPECIFICATIONS

Electrical life vs AC1 load.
$\mathbf{1}=4$ co relay type (5 A)
$\mathbf{2}=2.3$ CO relay type $(10 \mathrm{~A})$.

Breaking capacity for DC1 load.
$\mathbf{1}=2-3$ Co type
$\mathbf{2}=4$ co type
$2=4 \mathrm{CO}$ type.
A Load applied to 1 contact
$\mathbf{A}=$ Load applied to 1 contact
$\mathbf{B}=$ Load applied to 2 contacts in series
C= Load applied to to 3 contacts in series
$\mathbf{C}=$ Load applied to 3 contacts in series
$\mathbf{D}=$ Load applied to 4 contacts in series

- When switching a resistive load (DC1) having voltage and
current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
In case of $D C 13$ loads the connection of a diode in parallel with he load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

COIL SPECIFICATIONS

ATA						dC Version data					
Nominal	$\begin{gathered} \text { Coil } \\ \text { code } \end{gathered}$	0 perating range		Resistance R	Rated coil consumption Iat $U_{N}(50 \mathrm{~Hz})$ mA	Nominal voltage U_{N}	Coilcode	0 perating range		Resistance R	Rated coil consumption Iat U_{N}
u_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$					$\mathrm{U}_{\text {min }}$	$U_{\text {max }}$		
v		v	v	Ω				v	v	Ω	
6	8.006	4.8	6.6	12	200	6	9.006	4.8	6.6	40	150
12	8.012	9.6	13.2	50	97	12	9.012	9.6	13.2	140	86
24	8.024	19.2	26.4	190	53	24	9.024	19.2	26.4	600	40
48	8.048	38.4	52.8	770	25	48	9.048	38.4	52.8	2,400	20
60	8.060	48	66	1,200	21	60	9.060	48	66	4,000	15
110	8.110	88	121	4,000	12.5	110	9.110	88	121	12,500	8.8
120	8.120	96	132	4,700	12						

55

R 55 AC

0 perating range (AC type) vs ambient temperature. 1-Max coil voltage permitted
$\mathbf{2}$ - M in pick-up voltage with coil at ambient temperature.

R 55 DC

0 perating range (DC type) vs ambient temperature
1 - Max coil voltage permitted
2-Min pick-up voltage with coil at ambient temperature.

	Relay type	55.32		55.33		55.32, 55.34	
	Colour	BLUE	BLACK	BLUE	BLACK	BLUE	BLACK
	Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 094.71 supplied with socket packaging code SMA	94.02	94.02.0	94.03	94.03 .0	94.04	94.04.0
	M etal retaining clip	094.71					
Approvals	Plastic retaining and release clip	094.01					
(according to type):	6 -way jumper link for $94.02,94.03$ and 94.04 sockets	094.06	094.06.0	094.06	094.06.0	094.06	094.06.0
(\in (1/ GOST	Identification tag	094.00 .4					
c ${ }^{(1)}{ }_{\text {is }}$	M odules (see table below)	99.02					
	Timer modules	86.10, 86.20					
	Sheet of marker tags for retaining and release clip 094.01	060.72					

- RATED VALUES: 10 A - 250 V
- DELECTRIC STREN G TH: $\geq 2 \mathrm{kV}$ AC
- PRO TECTIO CATEG O RY: IP 20
- AM BIEN T TEM PERATURE: $(-40 . . .+70)^{\circ} \mathrm{C}$
(3) SCREW TO RQUE: $0.5 \mathrm{Nm}+70$

IRE STRIP LEN G TH: 8 mm

- MAX W IRE SIZE:

$$
\begin{array}{|l|l|l|}
\hline & \text { solid wire } & \text { stranded wire } \\
\hline \mathrm{mm}^{2} & 1 \times 6 / 2 \times 2.5 & 1 \times 4 / 2 \times 2.5 \\
\hline \mathrm{AWG} & 1 \times 10 / 2 \times 14 & 1 \times 12 / 2 \times 14 \\
\hline
\end{array}
$$

6-way jumper link for $94.02,94.03$ and 94.04 sockets

${ }_{* *}$ For DC supply, apply the positive to terminal A1. Modules in Black housing are available on request
G reen LED is standard. Red LED available on request.

PACKAGING CODES

How to code and identify retaining dip and packaging options for sockets.

Code options according to the last three letters:

\section*{| 9 | 4 | 0 | 4 | S M A |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Plug-in or P.C. B. versions
AC or DC coils
lockable test button and mecharical fag indicator as standard on 2 CO relay type Sockets and accessories: see 96 , and 99 series

* for 400 V applications, requirements for pollution degree 2 are met

Contact specification

Contact configuration
Rated current/ M aximum peak current Rated voltage/ Maximum switching voltage V AC Rated load in AC1 Rated load in AC15 (230 VAC) Single phase motor rating (230 VAC Breaking capacity in DC1:30/110/ M inimum switching load Standard contact material Coil specifications Nominal voltage (U_{N})

Rated power AC/ DC
0 perating range

Technical data

Mechanical life AC/DC
Electrical life at rated load AC1 0 perate/ release time (bounce included) Insulation according to EN 61810-5 Insulation between coil and contacts $(1.2 / 50 \mu \mathrm{~s}) \mathrm{k}$ Ambient temperature range
Environmental protection
Approvals: (according to type)
56.32

2 pole - Plug-in for use with 96 Ser sockets (Faston $187-4.8 \times 0.5 \mathrm{~mm}$) $)$ sockets (Faston $187-4.8 \times 0.5 \mathrm{~mm}$)

$\stackrel{13}{13} \underset{A_{1}}{13}$

56.32-0300 56.34

$\xrightarrow{41} \xrightarrow{27.8}$

\qquad
2 CO
$\stackrel{\text { 最 }}{\text { 20.7 }} \xrightarrow{27.7}$

ORDERING INFORMATION

POSSIBLE OPTIONS

LO CKABLE TEST BUTTON AND MECHANICALFLAG INDICATOR (0040)
The dual-purpose Finder test button can be used in two ways:
Case 1) The plastic pip (located directly above the test button) remains intact. In this case, when the test button is p
former state.
Case 2) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to Case 2bove function), when the test button is pushed and rotated, the contacts are latched in the operating state, and remain so until the test button is rotated back to its former position.

TECHNICAL DATA

INSULATON

IN SULATIO N according to EN 61810-5	insulation rated voltage	V
	250	
	rated impulse withstand voltage	kV
	pollution degree	4
	overvoltage category	3

CONDUCTED DISTURBAN CE IMMUNITY	BURST (according to EN 61000-4-4) level 4 (4 kV)	
	SURGE (according to EN $61000-4-5$) level 4 (4 kV)	
OTHER DATA		
VIBRATIO RESISTAN CE (10...55Hz): $\mathrm{NO} / \mathrm{NC}$ C g / g	$8 / 8$	
Pow er lostto the environment	$2 \mathrm{CO} / 2 \mathrm{NO}$	4 CO
without contact current W	1	1.3
with rated current W	3.8	6.9
RECOMMEN DED DISTAN CE between RELAYS mounted on P.C.B.s mm	≥ 5	

CONTACT SPECIFICATIONS
F56

Electrical life vs AC1 load.
$\mathbf{I}=$ Types $56.32 / 42$
H 56 (CO)

Breaking capacity for DC1 load.
= Load applied to 1 contact.
$\boldsymbol{B}=$ Load applied to 2 contacts in series.
C $=$ Load applied to 3 contacts in series.

W hen switching a resistive load (DC1) having voltage a current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
In case of DC13 loads the connection of a diode in parallel with he load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

H 56 (NO)

Breaking capacity for DC1 load.
$\mathbf{A}=$ Load applied to 1 contact
$\mathbf{B}=$ Load applied to 2 contact in series.

- When switching a resistive load ($D C 1$) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase

COIL SPECIFICATIONS

aC VERSIon data (2 co, 2 no)

Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	Rated coil consumption Iatu (50 Hz
		$\mathrm{U}_{\text {min }}$	$U_{\text {max }}$		
v		V	v	Ω	mA
6	8.006	4.8	6.6	12	200
12	8.012	9.6	13.2	50	97
24	8.024	19.2	26.4	190	53
48	8.048	38.4	52.8	770	25
60	8.060	48	66	1,200	21
110	8.110	88	121	3,940	12.5
120	8.120	96	132	4,700	12
230	8.230	184	253	17,000	6
240	8.240	192	264	19,100	5.3

56 AC VERSION DATA (4 CO)

$\begin{gathered} \text { Nominal } \\ \text { voltage } \end{gathered}$ U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance	Rated coil consumption $\operatorname{Iat}_{\mathrm{N}}(50 \mathrm{~Hz})$
v		v	v	Ω	mA
6	8.006	4.8	6.6	5.7	300
12	8.012	9.6	13.2	22	150
24	8.024	19.2	26.4	81	90
48	8.048	38.4	52.8	380	37
60	8.060	48	66	600	30
110	8.110	88	121	1,900	16.5
120	8.120	96	132	2,560	13.4
230	8.230	184	253	7,700	9
240	8.240	192	264	10,000	7.5

R 56 AC (2 CO, 2 NO)

R 56 AC (4 CO)

[^0] 1 - Max coil voltage permitted.
2-M in pick-up voltage with coil at ambient temperature.

DC VERSION DATA (2 CO)

Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	Rated coil consumption I at U_{N}
		$U_{\text {min }}$	$u_{\text {max }}$		
v		v	v	Ω	mA
6	9.006	5.1	6.6	40	150
12	9.012	10.2	13.2	140	86
24	9.024	20.4	26.4	600	40
48	9.048	40.8	52.8	2,400	20
60	9.0	51	66	4,000	15
110	9.110	93.5	121	12,500	8.8

DC VERSION DATA (4 CO)

Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	Rated coil consumption I at U_{N}
		$U_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
v		v	v	Ω	mA
6	9.006	5.1	6.6	32.5	185
12	9.012	10.2	13.2	123	97
24	9.024	20.4	26.4	490	49
48	9.048	40.8	52.8	1,800	27
60	9.060	51	66	3,000	20
110	9.110	93.5	121	10,400	10.5

R 56 DC (4 Co)

O perating range (DC type) vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature

99.01 modules for 96.72 and 96.74 socket		BLUE
Diode** (+A1)	(6...220) V DC	99.01.3.000.00
Diode (inverted polarity)	(6...220) V DC	99.01.2.000.00
LED	(6...24) V DC/AC	99.01.0.024.59
LED	(28...60) V DC/AC	99.01.0.060.59
LED	(110...240) V DC/AC	99.01.0.230.59
LED + Diode** (+A1)	(6...24) V DC	99.01.9.024.99
LED + Diode** (+A1)	(28...60) V DC	99.01.9.060.99
LED + Diode** (+A1)	(110...220) V DC	99.01.9.220.99
LED + Diode (inverted polarity)	(6...24) V DC	99.01.9.024.79
LED + Diode (inverted polarity)	(28...60) V DC	99.01.9.060.79
LED + Diode (inverted polarity)	(110...220) V DC	99.01.9.220.79
LED + Varistor	(6...24) V DC/AC	99.01.0.024.98
LED + Varistor	(28...60) V DC/AC	99.01.0.060.98
LED + Varistor	(110...240) V DC/AC	99.01.0.230.98
RC circuit	(6...24) V DC/AC	99.01.0.024.09
RC circuit	(28...60) V DC/AC	99.01.0.060.09
RC circuit	(110...240) V DC/AC	99.01.0.230.09
No - remanence (62 k / 1 lW)	(110...240) V AC	99.01.8.230.07

**For DC supply, apply the positive to terminal A1. M odules in Black housing are available on request
G reen LED is standard. Red LED available on request.

96.12	Relay type	56.32	56.34	
	Colour	BLACK	BLUE	BLACK
	P.C.B. socket retaining clip 094.51 supplied with socket pas	96.12 .0	96.14	96.14 .0
	Retaining clip 090.51			
Approvals (according to type): - RATED VALUES: $12 \mathrm{~A}-250 \mathrm{~V}$ (10 A max for each contact circuit) - DIELECTRIC STREN G TH: $\geq 2 \mathrm{kV}$ AC - AM BIEN T TEM PERATURE: $(-40 \ldots+70)^{\circ} \mathrm{C}$				
Copper side view				

ACCESSORIES

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.
Code options according to the last three letters:
$\mathbf{9}$ $\mathbf{6}$ $\mathbf{7}$ $\mathbf{4}$ \mathbf{S} \mathbf{M} \mathbf{A}

	60.12	60.12-0200	60.13
- $8-11$ pin plug-in - AC or DC coils - Lockable test button with mechanical flag indicator - Bifurcated contact option - Sockets and accessories: see 90, 99 and 86 series			
	- 2 pole - 8 pin - Plug-In for use with 90 series sockets	-2 bifurcated contacts - 8 pin - Plug-In for use with 90 series sockets	-3 pole -11 pin - Plug-In for use with 90 series sockets
Contact specifications			
Contact configuration	200	200	3 co
Rated current/ M aximum peak current A	10/20	6/10	10/20
Rated voltage/ Maximum switching voltage V AC	250/400*	250/400*	250/400*
Rated load in AC1 VA	2,500	1,500	2,500
Rated load in AC15 (230 VAC) VA	500	250	500
Single phase motor rating (230 VAC) kW	0.37	0.185	0.37
Breaking capacity in DC1:30/110/220V A	10/0.4/0.15	6/0.3/0.12	10/0.4/0.15
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	500 (10/5)	$50(5 / 5)$	500 (10/5)
Standard contact material	AgNi	AgNi bifurcated contacts	AgNi
Coil specifications			
Nominal voltage (U_{N}) V VAC ($50 / 60 \mathrm{~Hz}$)	6-12-24-48-60-110-120-230-240		
V DC	6-12-24-48-60-110		
Rated power AC/DC VA ($50 \mathrm{~Hz} / \mathrm{l}$ W	$2.2 / 1.3$	2.2/1.3	2.211 .3
O perating range $\quad \begin{array}{r}\text { AC }(50 \mathrm{~Hz}) \\ \mathrm{DC} \\ \hline\end{array}$	$(0.8 . .1 .1)^{1} \mathrm{U}_{\mathrm{N}}$	$(0.8 . .1 .1) \mathrm{U}_{\mathrm{N}}$	$(0.8 . .1 .1)^{1} \mathrm{U}_{\mathrm{N}}$
	(0.8...1.1) U_{N}	$(0.8 \ldots .1 .1)^{*}$	(0.8...1.1) U_{N}
Holding voltage \quad AC/DC	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Technical data			
Mechanical life AC/ DC cycles	$20 \cdot 10^{6 / 50} \cdot 10^{6}$	20-106/50 - 10^{6}	$20 \cdot 10^{6 / 50} \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$200 \cdot 10^{3}$	$250 \cdot 10^{3}$	$200 \cdot 10^{3}$
0 perate/ release time (bounce included) ms	15/15	15/15	15/15
Insulation according to EN 61810-5	3.6 kV/3	3.6 kV/3	3.6 kV/3
Insulation between coil and contacts (1.2/ $50 \mu \mathrm{~s}$) kV	3.6	3.6	3.6
Dielectric strength between open contacts V AC	1,000	1,000	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	$-40 \ldots+70$	$-40 \ldots+70$
Environmental protection	RT I	RTI	RT I
Approvals: (according to type)			

AC or DC coils
Lockable test button with mechanical flag indicator
Sockets and accessories: see 90,99 and 86 series

60.13-0200	60.62	60.63
$\begin{array}{\|l\|} \hline-3 \text { bifurcated contacts } \\ -11 \text { pin } \\ - \text { Plug-In for use with } 90 \text { series sockets } \end{array}$	- 2 pole - Faston 187 (4.8×0.8)mm with flange mount	- 3 pole - Faston 187 (4.8×0.8) mm with flange mount
3 CO	200	3 CO
6/10	10/20	10/20
250/400*	250/400*	250/400*
1,500	2,500	2,500
250	500	500
0.185	0.37	0.37
6/0.3/0.12	10/0.4/0.15	10/0.4/0.15
$50(5 / 5)$	500 (10/5)	500 (10/5)
AgNi bifurcated contacts	AgNi	AgNi
6-12-24-48-60-110-120-230-240		
6-12-24-48-60-110		
2.2/1.3	2.2/1.3	$2.2 / 1.3$
$(0.8 . .1 .1 .1)^{N}$	(0.8...1.1) U_{N}	(0.8...1.1) U_{N}
(0.8...1.1) U_{N}	$(0.8 \ldots 1.1)^{\prime} U_{N}$	(0.8...1.1) U_{N}
$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$
$0.2 U_{N} / 0.1 U_{N}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
$20 \cdot 10^{6 / 50} \cdot 10^{6}$	20.106/50.106	20.106/50.10 ${ }^{6}$
$250 \cdot 10^{3}$	$200 \cdot 10^{3}$	$200 \cdot 10^{3}$
15/15	15/15	15/15
3.6 kV/3	3.6 kV/3	3.6 kV/3
3.6	3.6	3.6
1,000	1,000	1,000
$-40 \ldots+70$	$-40 \ldots+70$	$-40 \ldots+70$
RTI	RT I	RT I

ORDERING INFORMATION

POSSIBLE OPTIONS

ACCESSORIES
060.72: Sheet of marker tags see page 60 .

0 ption $=0030$
0050
0054
0070

Case 2) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to
the above function), when the test butto is pushed and rotated, the contacts are lathed in the operating state, and remain so until the test button is rotated back to its former position. In both cases ensure that the test button actuation is swift and decisive.

TECHNICAL DATA

CONTACT SPECIFICATIONS
F 60

Electrical life vs AC1 load.

Breaking capacity for DC1 load
A = Load applied to 1 contact
$\mathbf{B}=$ Load applied to 2 contacts in series
C $=$ Load applied to 3 contacts in series

- When switching a resistive load (DC1) having voltage and
current values under the curve the expected electrical life is current values und
$\geq 100 \cdot 10^{3}$ cycles.
- In case of DC 13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

COIL SPECIFICATIONS

AC VERSION DATA

Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	Rated coil consumption IatuN $(50 \mathrm{~Hz}$
		$U_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
v		v	v	Ω	mA
6	8.006	4.8	6.6	4.6	367
12	8.012	9.6	13.2	19	183
24	8.024	19.2	26.4	74	90
48	8.048	38.4	52.8	290	47
60	8.060	48	66	450	37
110	8.110	88	121	1,600	20
120	8.120	96	132	1,940	18.6
230	8.230	184	253	7,250	10.5
240	8.240	192	264	8.500	

R 60 AC

O perating range ($A C$ version) vs ambient temperature.
1 - Max coil voltage permitted.

- M in pick-up voltage with coil at ambient temperature

CURRENT SENSING VERSION

Wiring Diagram

Typical application with current sensing relays.
Typical application with current sensing relays.
An open circuit filiment of lamp $L 1$ is detected by the current sensing relay coil (K1) which causes the back-up safety lamp L2 to be energised, and indication of failure at the control panel via lamp S1.
Example: navigation light.
$1=$ Light
$2=$ Safety lig
$L_{2}=$ Safety light
$S_{1}=$ Control light
$\mathrm{S}_{1}=$ Control
$\mathrm{K}_{1}=$ Relay

dC VERSION DATA

Nominal voltage U_{N}	Coil code	O perating range		Resistance R	Rated coi consumption I at U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
v		v	v	Ω	mA
6	9.006	4.8	6.6	28	214
12	9.012	9.6	13.2	110	109
24	9.024	19.2	26.4	445	53.9
48	9.048	38.4	52.8	1,770	27.1
60	9.060	48	66	2,760	21.7
110	9.110	88	121	9,420	11.7

0 perating range (DC version) vs a mbient temperature. $1-M a x$ coil voltage permitted.
2-M in pick-up voltage with coil at ambient temperature.
60 Series - CURRENT SENSING AC

Coil code	$\mathrm{I}_{\text {min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{N}}(\mathrm{A})$	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{R}(\Omega)$
4251	2.1	2.5	3.0	0.05
4181	1.5	1.8	2.2	0.10
4161	1.4	1.6	1.9	0.12
4121	1.0	1.2	1.4	0.22
4101	0.85	1.0	1.2	0.32
4051	0.42	0.5	0.6	1.28
4041	0.34	0.4	0.5	2.00
4031	0.25	0.3	0.4	3.57
4021	0.17	0.2	0.25	8.0
4011	0.085	0.1	0.15	32.1

60 Series - CURRENT SENSING DC
60 Series - CURRENT SENSING DC

Coil code	$\mathrm{I}_{\text {min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{N}}(\mathrm{A})$	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{R}(\Omega)$
4202	1.7	2.0	2.4	0.15
4182	1.5	1.8	2.2	0.19
4162	1.4	1.6	1.9	0.24
4142	1.2	1.4	1.7	0.31
4122	1.0	1.2	1.4	0.42
4102	0.85	1.0	1.2	0.61
4092	0.8	0.9	1.1	0.75
4062	0.5	0.6	0.7	1.70
4032	0.25	0.3	0.4	6.70
4012	0.085	0.1	0.15	61

	99.01 modules for 90.20 and 90.21 sockets		BLUE
	Diode** (+A1)	(6...220) V DC	99.01.3.000.00
	Diode (inverted polarity)	(6...220) V DC	99.01.2.000.00
	LED	(6...24) V DC/AC	99.01.0.024.59
	LED	(28...60)VDC/AC	99.01.0.060.59
	LED	(110...240) V DC/AC	99.01.0.230.59
	LED + Diode** (+A1)	(6...24) V DC	99.01.9.024.99
	LED + Diode** (+A1)	(28...60) V DC	99.01.9.060.99
	LED + Diode** (+A1)	(110...220) V DC	99.01.9.220.99
	LED + Diode (inverted polarity)	(6...24) V DC	99.01.0.024.79
	LED + Diode (inverted polarity)	(28...60) V DC	99.01.9.060.79
	LED + Diode (inverted polarit)	(110...220) V DC	99.01.9.220.79
	LED + Varistor	(6...24) V DC/AC	99.01.0.024.98
	LED + Varistor	(28...60)VDC/AC	99.01.0.060.98
	LED + Varistor	(110...240) V DC/AC	99.01.0.230.98
	RC	(6...24) V DC/AC	99.01.0.024.09
	RC	(28...60)VDC/AC	99.01.0.060.09
	RC	(110...240) V DC/AC	99.01.0.230.09
	No - remanence ($62 \mathrm{k} \Omega / 1 \mathrm{~W}$)	(110...240) V AC	99.01.8.230.07

[^1]G reen LED is standard. Red LED available on request.

W IRE STRIP LEN GTH: 7 mm
MAX W IRE SIZE:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 4$	$1 \times 6 / 2 \times 4$
AWG	$1 \times 10 / 2 \times 12$	$1 \times 10 / 2 \times 12$

\qquad | 60.12 | 60.13 |
| :--- | :--- | retaining clip 090.33 supplied with socket packaging code SM A Retaining clip

BLUE	BLACK	60. $\mathbf{B L U E}$

provals
(according to type):

RATED VALUES: 10 A - 250 V
DIELEC TRIC STREN G TH: $\geq 2 \mathrm{kV}$ AC
PRO TECTIO N CATEG ORY: IP 20
AM BIEN T TEM PERATURE: $(40 \ldots+70)^{\circ} \mathrm{C}$
(f) SC REW TO RQ UE: 0.5 Nm

W IRE STRIP LEN GTH: 7 mm
MAX W IRE SIZE:

Relay type	60.12		60.13	
Colour	BLUE	BLACK	BLUE	BLACK
Flange mount solder socket mount with M 3 screw	90.12	90.12 .0	90.13	90.13 .0
90.12	90.12 90.13			
Approvals (according to type):				
C © © GOST @ $\mathrm{CDH}_{\mathrm{us}}^{\circ}$				
- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$				
- DIELECTRIC STREN G TH: $\geq 2 \mathrm{kV}$ AC				
- Am bien t tem perature: $(-40 \ldots+70)^{\circ} \mathrm{C}$				

ACCESSORIES

| Sheet of marker tags for relay types 60.12 and 60.13 (72 tags) | 060.72 |
| :--- | :--- | :--- |

(1) finder

90 Series - Sockets and Accessories for 60 Series Relays

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.

A Standard packaging

SM M etal retaining clip
SX No retaining clip

	62.22	62.23	62.32
- Plug-in or P.C.B. versions - AC or DC coils - 3 mm gap between open contacts on NO option - $8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts (internal distance)			
	$\begin{array}{\|l\|} \hline-2 \text { pole } \\ - \text { - P.C.B. mounting } \end{array}$	- 3 pole - P.C.B. mounting	- 2 pole - Faston 187 (4.8×0.5)mm Plug-in use 92 Series socket
		Copper side view $\mathrm{h}=49.1 \mathrm{~mm}$	
Contact specifications			
Contact configuration	200	3 co	2 co
Rated current/ M aximum peak current A	16/30	16/30	16/30
Rated voltage/ M aximum switching voltage V AC	250/400	250/400	250/400
Rated load in AC1 VA	4,000	4,000	4,000
Rated load in AC15 (230 VAC) VA	750	750	750
Single phase motor rating (230 VAC) kW	0.8	0.8	0.8
Breaking capacity in DC1:30/110/220V A	16/0.6/0.4	16/0.6/0.4	16/0.6/0.4
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgCdo	AgCdo	AgCdo
Coil specifications			
Nominal voltage (U_{N}) V V AC ($50 / 60 \mathrm{~Hz}$)	6-12-24-48-60-110-120-230-240		
V DC	6-12-24-48-60-110		
Rated power AC/ DC VA (50 Hz)/ W	2.2/1.3	2.2/1.3	$2.2 / 1.3$
0 perating range 	$(0.8 . .1 .1 .1)_{N}$	(0.8...1.1) U_{N}	$(0.8 . . .1 .1) \mathrm{U}_{\mathrm{N}}$
	$(0.8 . .1 .1)^{\prime}$	(0.8...1.1) U_{N}	(0.8...1.1) U_{N}
Holding voltage AC/DC	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Technical data			
Mechanical life AC/ DC cycles	$10 \cdot 10^{6 / 30} \cdot 10^{6}$	$10 \cdot 10^{6 / 30} \cdot 10^{6}$	$10 \cdot 10^{6 / 30} \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
O perate/ release time (bounce included) ms	20/20	20/20	20/20
Insulation according to EN 61810-5	$4 \mathrm{kV} / 3$	$4 \mathrm{kV} / 3$	$4 \mathrm{kV} / 3$
Insulation between coil and contacts (1.21 $50 \mu \mathrm{~s}$) kV	6	6	6
Dielectric strength between open contacts V AC	1,500	1,500	1,500
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	$-40 \ldots+70$	$-40 \ldots+70$
Environmental protection	RT I	RT I	RT I
Approvals: (according to type)	CE ABS	GOSt (10) RINA (S)	(5) cris ${ }^{\text {¢ }}$

	62.33	62.82	62.83
- Plug-in or P.C.B. versions - AC or DC coils - 3 mm gap between open contacts on NO option - $8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts (internal distance)			
	- 3 pole - Faston 187 (4.8×0.5)mm - Plug-in use 92 Series socket	- 2 pole - Faston $250(6.3 \times 0.8) \mathrm{mm}$ with flange mount	- 3 pole - Faston $250(6.3 \times 0.8) \mathrm{mm}$ with flange mount
Contact specifications			
Contact configuration	3 co	2 CO	3 CO
Rated current/ M aximum peak current A	16/30	16/30	16/30
Rated voltage/ Maximum switching voltage V AC	250/400	250/400	250/400
Rated load in AC1 VA	4,000	4,000	4,000
Rated load in AC15 (230 VAC) VA	750	750	750
Single phase motor rating (230 VAC) kW	0.8	0.8	0.8
Breaking capacity in DC1:30/110/220V A	16/0.6/0.4	16/0.6/0.4	16/0.6/0.4
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgCdo	AgCdO	AgCdO
Coil specifications			
Nominal voltage (U_{N}) V VAC ($50 / 60 \mathrm{~Hz}$)	6-12-24-48-60-110-120-230-240		
V DC	6-12-24-48-60-110		
Rated power AC/DC VA ($50 \mathrm{~Hz} / \mathrm{W}$	$2.2 / 1.3$	2.2/1.3	2.211 .3
O perating range $\begin{array}{r}\text { AC (} 50 \mathrm{~Hz} \text {) } \\ \\ \hline\end{array}$	(0.8...1.1) U_{N}	(0.8...1.1) U_{N}	$(0.88 . .1 .1)^{\text {N }}$
	(0.8...1.1) U_{N}	(0.8...1.1) U_{N}	(0.8...1.1) U_{N}
Holding voltage \quad AC/ DC	$0.8 \mathrm{UN}^{\prime} / 0.6 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	$0.2 U_{N} / 0.1 U_{N}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Technical data			
Mechanical life AC/ DC cycles	$10 \cdot 10^{6 / 30} \cdot 10^{6}$	$10 \cdot 10^{6 / 30} \cdot 10^{6}$	10.106/30.10 ${ }^{6}$
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
O perate/ release time (bounce included) ms	20/20	20/20	20/20
Insulation according to EN 61810-5	$4 \mathrm{kV} / 3$	$4 \mathrm{kV} / 3$	$4 \mathrm{kV} / 3$
Insulation between coil and contacts (1.2/ $50 \mu \mathrm{~s}$) kV	6	6	6
Dielectric strength between open contacts V AC	1,500	1,500	1,500
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	$-40 \ldots+70$	$-40 \ldots+70$
Environmental protection	RT I	RT I	RT I
Approvals: (according to type)	C ABS ©	GOSt (10) RINA (S)	

3 mm gap between open contacts on $\mathrm{N} O$ option
8 mm .6 kV
$2 / 50 \mathrm{\mu s}$) between coil and contacts (internal distance)

* Distance betw een contacts $>3 \mathrm{~mm}$ (EN 60335-1)

Contact specification

Contact configuration
Rated current/ M aximum peak current Rated voltage/ Maximum switching voltage V A Rated load in AC1
Rated load in AC15 (230 VAC) Single phase motor rating (230 VAC Breaking capacity in DC1:30/110 M inimum switching load Standard contact material Coil specifications N ominal voltage $\left(U_{N}\right)$

	62.23	
- 2 N O (3mm contact gap) - P.C.B. mounting	- 3 N O (3 mm contact gap) - P.C.B. mounting	- 2 N O (3 mm contact gap) - Faston $187(4.8 \times 0.5) \mathrm{mm}$ -Plug-in use 92 Series socket

	62.33-0300	62.82-0300	62.83-0300
- Plug-in or P.C.B. versions - AC or DC coils - 3 mm gap between open contacts on NO option - $8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts (internal distance)			
	3 NO (3mm contact gap) Faston $187(4.8 \times 0.5) \mathrm{mm}$ - Plug-in use 92 Series socket	- 2 N O (3 mm contact gap) - Faston $250(6.3 \times 0.8) \mathrm{mm}$ with flange mount	- 3 N O (3 mm contact gap) - Faston $250(6.3 \times 0.8) \mathrm{mm}$ with flange mount
Contact specifications			
Contact configuration	$3 \mathrm{NO} 3 \mathrm{mm*}$	$2 \mathrm{NO} 3 \mathrm{mm*}$	$3 \mathrm{NO} 3 \mathrm{mm*}$
Rated current/ M aximum peak current A	16/30	16/30	16/30
Rated voltage/ Maximum switching voltage V AC	250/400	250/400	250/400
Rated load in AC1 VA	4,000	4,000	4,000
Rated load in AC15 (230 VAC) VA	750	750	750
Single phase motor rating (230 VAC) kW	0.8	0.8	0.8
Breaking capacity in DC1: $30 / 110 / 220 \mathrm{~V}$ A	16/1.1/0.7	16/1.1/0.7	16/1.1/0.7
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgCdO	AgCdo	AgCdo
Coil specifications			
Nominal voltage (U_{N}) V \quad AC ($50 / 60 \mathrm{~Hz}$)	6-12-24-48-60-110-120-230-240		
V DC	6-12-24-48-60-110		
Rated power AC/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$	3/3	3/3	3/3
O perating range $\quad \begin{array}{r}\text { AC (50 Hz) } \\ \end{array}$	$(0.85 \ldots 1.1)^{\prime}$	$(0.85 \ldots 1.1) U_{N}$	$(0.85 \ldots 1.1) \mathrm{U}_{\text {N }}$
	$(0.85 \ldots . .1 .1) U_{N}$	(0.85...1.1) $\mathrm{U}_{\text {N }}$	(0.85...1.1) $\mathrm{U}_{\text {N }}$
Holding voltage \quad AC/DC	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Technical data			
Mechanical life AC/ DC cycles	10.106/30.10 ${ }^{6}$	10.106/30.10 ${ }^{6}$	10.106/30.10 ${ }^{6}$
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
0 perate/ release time (bounce included) ms	$30 /-$	$301-$	$301-$
Insulation according to EN 61810-5	$4 \mathrm{kV} / 3$	$4 \mathrm{kV} / 3$	$4 \mathrm{kV} / 3$
Insulation between coil and contacts (1.2/ $50 \mu \mathrm{~s}) \mathrm{kV}$	6	6	6
Dielectric strength between open contacts V AC	2,500	2,500	2,500
Ambientemperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+50$	$-40 \ldots+50$	$-40 \ldots+50$
Environmental protection	RT I	RT I	RT I
Approvals: (according to type)	C ABS ©	GOST (6) RINA (S)	(5) $\mathrm{CNO}_{\text {Uu }}{ }^{\text {U }}$

ORDERING INFORMATION

Example: a 62 series power relay +FASTO N 250 rear flange mount $(6.3 \times 0.8 \mathrm{~mm})$ with 2 NO contacts, coil rated at 12 VDC .

D: Special versions
$0=$ Standard
$0=$ Standard
$5=$ Top flange mount
$5=$ Top flange mount
$6=$ Rear flange mount
$8=$ Rear 35 mm rail mount
$9=$ Type $62.82 / 83$ without rear flange mount
C: Options
$0=$ N one
$0=N$ one
$2=M$ echanical indicator
$2=M$ echanical
$3=\operatorname{LED}(\mathrm{AC})$
$4=$ Lockable test button +
mechanical indicator
$5=$ Lockable test button + LED $(A C)$
$54=$ Lockable test button + IED
$54=$ Lockable test button + LED (AC)

+ mechanical indicator
$6=$ LED + diode
(DC polarity positive to pin A/A1)
$=$ Lockable test button + LED + diode
(DC polarity positive to pin A/A1)
$74=$ Lockable test button + LED + diode (DC polarity positive to pin A/A1) + mechanical indicator

All versions					
	coil version	A	B	C	D
62.22/23	AC-DC	0.4	0-3-5-6	0	0
62.32/33	AC-DC	0-4	0-3-5-6	0	0-5-6-7-8
	AC-DC	0.4	5	2-4	0-6-8
	AC	0.4	0	2-3-4-5	0-6-8
	AC	0.4	3	3	0-6-8
	AC	0.4	0	54	1
	DC	0.4	0	4-6-7	0-6-8
	DC	0.4	3	6	0-6-8
	DC	0.4	0	74	1
62.82/83	AC-DC	0.4	0-3-5-6	0	0-5-7-8-9
	AC-DC	0.4	5	2-4	0-8
	AC	0.4	0	2-3-4-5	0.8
	AC	0.4	3	3	0.8
	DC	0.4	0	4-6-7	0.8
	DC	0-4	3	6	0-8

POSSIBLE OPTIONS

0 ption $=0030$
0030
0050

$$
\begin{array}{r}
=00070 \\
0070
\end{array}
$$

CCESSORIES
060.72: Sheet of marker tags see page 70 .

SEPA RATO R FO R SELV APPLCATIO NS

LO CKAble test butto n and mechanicalflag indicator (0040)
The dual-purpose Finder test button can be used in two ways:
Case 1) The plastic pip (located directly above the test button) remains intact. In this case, when the test button is pushed, the contacts operate. W hen the test button is released the contacts return to their former state. Case 2) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to
the above function), when the test button is pushed and rotated, the contacts are latched in the operating state, and remain so until the test button is rotated back to its former position. In both cases ensure that the test button actuation is swift and decisive.

TECHNICAL DATA

IN SULATIO N according to EN $61810-5$

IN SULATIO N according to EN 61810-5	insulation rated voltage	V	400
	rated impulse withstand voltage	kV	4
	pollution degree	3	
	overvoltage category	III	

MMUNITY
CON DUCTED DISTURBAN CE IMMUNITY
BURST (according to EN $61000-4$-4) level 4 (4 kV)
THER DATA
VIBRATIO N RESISTAN CE ($10 \ldots . .55 \mathrm{~Hz}$): NO/NC \qquad
without contact current w with rated current W

RECO MMEN DED DISTAN CE between RELAYS mounted on P.C. B.

CONTACT SPECIFICATIONS

Electrical life vs AC1 load
H 62 (CO)

Breaking capacity for DC1 load.

$\mathbf{A}=$ Load applied to 1 contact.
C = Load applied to 3 contacts in series.

- When switching a resistive load (DC1) having voltage and current values un
$\geq 100 \cdot 10^{3}$ cycles.
he curve the expected electrical life is
In case of DC13 loads the connection of a diode in parallel with
he load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

H 62 (NO)

Breaking capacity for DC1 load.
A = Load applied to 1 contact.
$\mathbf{B}=$ Load applied to 2 contacts in series.
$\mathbf{C}=$ Load applied to 3 contacts in series
-W hen switching a resistive load (DC1) having voltage and
current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.

- In case of DC13 loads the connection of a diode in parallel with
the load will permit the same electrical life as for a DC1 load.
Note: the release time of load will be increase.

COIL SPECIFICATIONS

Nominal Coil O perating range				Resistance R	Rated coil consumption $\mathrm{Iat}_{\mathrm{N}}(5 \mathrm{Hzz})$
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
v		v	v	Ω	mA
6	8.006	4.8	6.6	4.6	367
12	8.012	9.6	13.2	19	183
24	8.024	19.2	26.4	74	90
48	8.048	38.4	52.8	290	47
60	8.060	48	66	450	37
110	8.110	88	121	1,600	20
120	8.120	96	132	1,940	18.6
230	8.230	184	253	7,250	10.5
240	8.240	192	264	8,500	9.2

DC VERSION DATA

Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	$\begin{gathered} \text { Rated coil } \\ \text { consumption } \\ I_{\text {at }} U_{N} \end{gathered}$
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
v		v	v	Ω	mA
6	9.006	4.8	6.6	28	214
12	9.012	9.6	13.2	110	109
24	9.024	19.2	26.4	445	54
48	9.048	38.4	52.8	1,770	27
60	9.060	48	66	2,760	21.7
110	9.110	88	121	9,420	11.7

DC (NO) VERSION DATA ($\mathbf{z} \mathbf{~ m m}$)

Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	$\begin{array}{\|c\|} \hline \text { Rated coil } \\ \text { consumption } \\ \operatorname{Iatu}_{N}(5 \mathrm{~Hz}) \\ \hline \end{array}$	Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	Rated coil consumption I at U_{N}
		$U_{\text {min }}$	$U_{\text {max }}$					$U_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
v		v	,	Ω	mA	v		V	v	Ω	
6	8.006	5.1	6.6	4	540	6	9.006	5.1	6.6	12	500
12	8.012	10.2	13.2	14	275	12	9.012	10.2	13.2	48	250
24	8.024	20.4	26.4	62	130	24	9.024	20.4	26.4	192	125
48	8.048	40.8	52.8	220	70	48	9.048	40.8	52.8	770	63
60	8.060	51	66	348	55	60	9.060	51	66	1,200	50
110	8.110	93.5	121	1,200	30	110	9.110	93.5	121	4,200	26

0 perating range (AC type) vs ambient temperature.
1 - Max coil voltage permitted

AM BIEN T TEM PERATURE (${ }^{\circ} \mathrm{C}$)
0 perating range (DC type) vs ambient temperature.
1-Max coil voltage permitted
$\mathbf{2}$ - M in pick-up voltage with coil at ambient temperature.

99.02 modules for 92.03 socket		blue
Diode** (+A1)	(6...220) V DC	99.02.3.000.00
Diode (inverted polarity)	(6...220) V DC	99.02.2.000.00
LED	(6...24) V DC/AC	99.02.0.024.59
ED	(28...60)VDC/AC	99.02.0.060.59
LED	(110...240) VDC/AC	99.02.0.230.59
EED + Diode** (+A1)	(6...24) V DC	99.02.9.024.99
LED + Diode** (+A1)	(28...60) V DC	99.02.9.060.99
LED + Diode** (+A1)	(110...220)VDC	99.02.9.220.99
LED + Diode (inverted polarity)	(6...24) V DC	99.02.9.024.79
LED + Diode (inverted polarity)	(28...60) V DC	99.02.9.060.79
LED + Diode (inverted polarity)	(110...220)VDC	99.02.9.220.79
LED + Varistor	(6...24) V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)VDC/AC	99.02.0.060.98
LED + Varistor	(110...240) VDC/AC	99.02.0.230.98
$\overline{\text { RC circuit }}$	(6...24) V DC/AC	99.02.0.024.09
RC circuit	(28...60)VDC/AC	99.02.0.060.09
RC circuit	(110...240) VDC/AC	99.02.0.230.09
No - remanence ($62 \mathrm{k} \Omega / 1 \mathrm{~W}$)	(110...240) V AC	99.02.8.230.07

** For DC supply, apply the positive to terminal A1. M odules in Black housing are available on request
G reen LED is standard. Red LED available on request.

	Relay type		62.32		
	Colour		BLUE	BLACK	
	P.C.B. socket retaining clip 092.54 supplied with socket packaging code SMA		92.13	92.13 .0	
	Retaining clip			092.54	
Approvals (according to type):				$\xrightarrow{1+\sim}{ }^{38} \sim^{1}$	
					$=5$
-RATED VALUES: 32 A - 250 V - $62.3 \times$ plug on 92.13 is 63.3 mm high (10 A max for each contact circuit)					- 0
(10 A max for each contact circuit) - DIELECTRIC STREN G TH: $\geq 2.5 \mathrm{kV}$ AC				\square -	
- AM BIEN TEM PERATURE: $(40 \ldots+70)^{\circ} \mathrm{C}$					\cdots

- AM BIEN TEM PERATURE: $(-40 \ldots+70)^{\circ} \mathrm{C}$

Relay type	$\mathbf{6 2 . 3 2}$	$\mathbf{6 2 . 3 3}$
Colour	BLUE	BLUE
Panel mount solder socket: mounted with M 3 screw retaining clip 092.54 supplied with socket packaging code SMA	92.33	92.33
Retaining clip		092.54

- RATED VALUES: 32 A - 250 V (10 A max for each contact circuit)
- DIELECTRIC STREN G TH: $\geq 2.5 \mathrm{kV}$ AC
- AM BIEN T TEM PERATURE: $(-40 \ldots+70)^{\circ} \mathrm{C}$

ACCESSORIES

Mounting adaptor for types 62.3 x and $62.8 \times(\mathrm{M} 4)$	062.10

Sheet of marker tags for 62 series relays (72 tags) 060.72
(1) finder

92 Series - Sockets and Accessories for 62 Series Relays

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.
Code options according to the last three letters:

| 9 | 2 | 0 | 3 | S M A |
| :--- | :--- | :--- | :--- | :--- | :--- |

A Standard packaging

SM M etal retaining clip
SX No retaining clip

	65.31	65.61
P.C.B. or Faston 250 versions AC or DC coils 3 mm gap between open contacts on NO version		
	$-1 N O+1 N C$ - Flange mount - Faston $250(6.3 \times 0.8 \mathrm{~mm})$	$\begin{aligned} & -1 N O+1 N C \\ & - \text { P.C.B. mounting } \end{aligned}$
Contact specifications		
Contact configuration	$1 \mathrm{NO}+1 \mathrm{NC}$	$1 \mathrm{NO}+1 \mathrm{NC}$
Rated current/ M aximum peak current	20/40	20/40
Rated voltage/ M aximum switching voltage V AC	250/400*	250/400*
Rated load in AC1 VA	5,000	5,000
Rated load in AC15 (230 VAC) VA	1,000	1,000
Single phase motor rating (230 VAC) kW	1.1	1.1
Breaking capacity in DC1:30/110/220V A	20/0.8/0.5	20/0.8/0.5
M inimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgCdo	AgCdo
Coil specifications		
Nominal voltage (U_{N}) $\quad \begin{array}{r}\text { V AC }(50 / 60 \mathrm{~Hz}) \\ \mathrm{V} \mathrm{DC}\end{array}$	6-12-24-48-60-110-120-230-240	
	6-12-24-48-60-110	
Rated power AC/ DC VA (50 Hz)/ W	$2.2 / 1.3$	$2.2 / 1.3$
0 perating range $\quad \begin{array}{r}\text { AC (50 Hz) } \\ \end{array}$	(0.8...1.1) U_{N}	(0.8...1.1) U_{N}
	$(0.85 \ldots 1.1 .1) U_{N}$	$(0.85 \ldots . .1 .1) U_{N}$
Holding voltage AC/DC	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Technical data		
Mechanical life AC/ DC cycles	$10 \cdot 10^{6 / 30} \cdot 10^{6}$	$10 \cdot 10^{6 / 30} \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$80 \cdot 10^{3}$	$80 \cdot 10^{3}$
0 perate/ release time (bounce included) ms	20/20	20/20
Insulation according to EN $61810-5$	$4 \mathrm{kV} / 3$	$4 \mathrm{kV} / 3$
Insulation between coil and contacts (1.2/50 / s) kV	4	4
Dielectric strength between open contacts V AC	1,500	1,500
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+50$	$-40 \ldots+50$
Environmental protection	RTI	RTI
Approvals: (according to type)	CE (14) GOSt (H)	

ORDERING INFORMATION

POSSIBLE OPTIONS

Option $=0005$

TECHNICAL DATA

insulation

IN SULATIO N according to EN 61810-5	insulation rated voltage	V
	rated impulse withstand voltage	kV
	pollution degree	4
	overvoltage category	3

IMMUNITY

CONDUCTED DISTURBAN CE IM MUN ITY	BURST (according to EN $61000-4-4$) level 4 (4kV)
	SURGE (according to EN $61000-4-5$) level 4 (4kV)

VIBRATIO N RESISTAN CE (10...55 Hz): $\mathrm{NO} 0 / \mathrm{NC}$ C g / g	10/4	
POW ER LOSt to the environment	$1 \mathrm{NO}+1 \mathrm{NC}$	1 No
without contact current W	1.3	1.3
with rated current W	2.1	3.1
RECOMMEN DED DISTAN CE between RELAYS mounted on P.C.B.s mm	25	

CONTACT SPECIFICATIONS

Electrical life vs AC1 load.

COIL SPECIFICATIONS

Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	$\begin{gathered} \text { Rated coil } \\ \text { consumption }^{I_{2 t}} \mathrm{Iatu}_{N}(5 \mathrm{Hzz} \end{gathered}$
		$U_{\text {min }}$	$U_{\text {max }}$		
v		v	v	Ω	mA
6	8.006	4.8	6.6	4.6	367
12	8.012	9.6	13.2	19	183
24	8.024	19.2	26.4	74	90
48	8.048	38.4	52.8	290	47
60	8.060	48	66	450	37
110	8.110	88	121	1,600	20
120	8.120	96	132	1,940	18.6
230	8.230	184	253	7,250	10.5
240	8.240	192	264	8,500	9.2

Nominal voltage U_{N}	$\begin{gathered} \text { Coil } \\ \text { code } \\ U_{\text {min }} \end{gathered}$	0 perating range$u_{\text {max }}$		Resistance	Rated coil consumption Iat U_{N}
v		v	V	Ω	mA
6	9.006	5.1	6.6	28	214
12	9.012	10.2	13.2	110	109
24	9.024	8.8	26.4	445	54
48	9.048	40.8	52.8	1,770	27.1
60	9.060	51	66	2,760	21.7
110	9.110	93.5	121	9,420	11.7

0 perating range (AC type) vs ambient temperature.
$\mathbf{1}-\mathrm{Max}$ coil voltage permitted.
$\mathbf{2}-\mathrm{M}$ in pick-up voltage with coil at ambient temperature.

Breaking capacity for DC1 load.
Load applied to 1 contact
A-1NO + 1 NC type
B-1NOtype

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is
$\geq 100 \cdot 10^{3}$ cycles.
the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

R 65 DC

operaing ang te whe
O perating range (DC type) vs ambient temperature.
1 - Max coil voltage permitted
$\mathbf{2}$ - M in pick-up voltage with coil at ambient temperature.
. On (relay permanently ON)

- LED indicator
- 35 mm rail (EN 50022) mount

19	

ORDERING INFORMATION

TECHNICAL DATA

CONTACT SPECIFICATON

N O M IN AL RATE LAM PS - incandescence (230V)	W	1,000
- compensated fluorescent (230V)	w	350
- uncompensated fluorescent (230V)	W	500
- halogens (230V)	w	1,000

InSULATION		
DIELEC TRIC STREN G TH		
- between supply and contacts	V AC	3,000
-between open contacts	VAC	

PO W ER LO ST TO THE EN VIRO N M EN T - without contact current	0.4	
- with rated current	1.8	
m AX W IRE SIZE	solid cable	stranded cable
	1×6/2×2.5	1×4/2x1.5
AW	1×10/2x14	1×12/2x16
(3) SCREW TORQUE N	0.5	

WIRING DIAGRAM

The max switching voltage between B_{1} and B_{2} terminal is
$24 \mathrm{VAC/DC}(300 \mathrm{~mA})$.

ACCESSORIES

Sheet of marker tags (40 tags) 019.40

SEIECTOR POSITION

Selector switch	Control switch (S)	O utput relay	LED	B1- B2 contact
AUTO	Closed			

ON
019.40

Relay interface modules for use with PLC systems, 6.2 mm wide
ensitive DC coil or ACIDC coil version supplied with integral coil indication and protection circuit
Intant removal of relay using plastic retaining clip
.35 mm rail (EN 50022) mounting
38.51

38.61

ons		
Contact configuration	1 co	1 co
Rated current M M aximum peak current	6/10	6/10
Rated voltage/ M aximum switching voltage V AC	250/400*	250/400*
Rated load in AC1 VA	1,500	1,500
Rated load in AC15 (230 VAC) VA	300	300
Single phase motor rating (230 VAC) kW	-	-
Breaking capacity in DC1: $30 / 110 / 220 \mathrm{~V}$ A	6/0.2/0.15	6/0.2/0.15
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	500 (12/10)	500 (12/10)
Standard contact material	AgNi	AgNi
Coil specifications		
Nominal voltage (U_{N}) V V DC/AC ($50 / 60 \mathrm{~Hz}$)	12-24-48-60-110...125-230...240	
V DC	6-12-24-48-60	
Rated power AC/ DC VA (50 Hz)/ W	see table page 81	see table page 81
O perating range $\quad \begin{array}{r}\text { AC/ } / \mathrm{DC}(50 \mathrm{~Hz}) \\ \end{array}$	see table page 81	see table page 81
	see table page 81	see table page 81
Holding voltage AC/DC	$0.6 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$	$0.6 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	$0.1 \mathrm{U}_{\mathrm{N}} / 0.05 \mathrm{U}_{\mathrm{N}}$	$0.1 \mathrm{U}_{\mathrm{N}} / 0.05 \mathrm{U}_{\mathrm{N}}$
Technical data		
Mechanical life AC/ DC cycles	-/10 10^{6}	-/10 10^{6}
Electrical life at rated load AC1 cycles	$60 \cdot 10^{3}$	$60 \cdot 10^{3}$
O perate/ release time (bounce included) ms	7/11	7/11
Insulation according to EN 61810-5	3.6 kV/3	3.6 kV/3
Insulation between coil and contacts (1.2/50 1) kV	6 (8mm)	6 (8mm)
Dielectric strength between open contacts V AC	1,000	1,000
Ambient temperature range (AC/ DC) ((DC) ${ }^{\circ} \mathrm{C}$	$-40 \ldots+55 /-40 \ldots+70$	$-40 \ldots+55 /-40 \ldots+70$
Protection category	IP20	IP20
Approvals (relay): (according to type)	(16 GOST ${ }_{\text {a }}$	(18 GOST [1] VOEs

for 400 V applications,
requirements for pollution equirements for p

ORDERING INFORMATION

ELECTROMECHANICAL RELAY (EMR)
Example: a 38 series relay interface module with 1 CO contact, with coil rated at 12 V DC

sOUD STATE RELAY (SSR)
Example: a 38 series SSR relay interface module with 2 A , with 24 V DC supply

Series

Type
$8=$ SSR relay, with screw terminal
$9=$ SSR relay, with screw less terminal
Output
Control circuit
See input specifications

SOLD STATE RELAY

other data

POW ER LOST TO THEENVIRONMENT	without contact current W	0.17			
	with rated current w	0.4			
W IRE STRIP LEN G TH	mm	10			
		38.81		38.91	
-screw torque	Nm	0.5		-	
MAX W IRE SIZE		solid cable	stranded cable	solid cable	stranded cable
	mm^{2}	1 $\times 2.5$ / 2×1.5	1 $\times 2.5$ / 2×1.5	1×2.5	1 $\times 2.5$
	AW G	1×14/2x16	1×14/2x16	1 $\times 14$	1×14

INPUT SPECIFICATION
dC VERSION DATA

Nominal voltage U_{N}	Supply code	0 perating range		Release voltage	$\begin{aligned} & \text { Control } \\ & \text { current } \\ & \text { Iat } U_{N} \end{aligned}$
		Umin	u max		
v		V	v	v	mA
24	7.024	16.8	30	10	7
60	7.060	35.6	72	20	3

(1) finder

ELECTROMECHANICAL RELAY

TECHNICAL DATA

insulation

IN SULATIO N according to EN 61810-5	insulation rated voltage	V	250
	rated impulse withstand voltage	kV	3.6
	pollution degree	3	
	overvoltage category	III	

IMMUNITY

CON DUCTED DISTURBAN CE IMMUNITY	BURST (according to EN $61000-4-4$) level 4 (4kV)
	SURGE (according to EN $61000-4-5$) level 3 (2kV)

VIBRATIO $\mathrm{RESISTANCE} \mathrm{(10...55} \mathrm{Hz):} \mathrm{NO} / \mathrm{NC}$	10/5			
POW ER LOST TO THE ENVIRONMENT without contact current W	0.2 (12V)-0.9 (240V)			
with rated current w	0.5 (12V)-1.5 (240V)			
W IRE STRIP LEN G TH mm	10			
	38.51		38.61	
〇SCREW TORQUE N m	0.5		-	
MAX W IRE SIZE	solid cable	stranded cable	solid cable	stranded cable
mm^{2}	$1 \times 2.5 / 2 \times 1.5$	1×2.5 / 2×1.5	1×2.5	1×2.5
AW G	1×14/2x16	1×14/2x16	1×14	1×14

CONTACT SPECIFICATIONS

LOAD RATED CURREN T(A)

Electrical life vs AC1 load.

Breaking capacity in DC1 load

- When switching a resistive load (DC 1) having voltage and current values under the curve the expected electrical life is connection of a diode in parallel with. - In load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

ELECTROMECHANICAL RELAY

COIL SPECIFICATIONS

C VERS						DC VERSION DATA (sensitive)				
Nominal voltage	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Rated coil consumption	Power consumption	Nominal voltage	Coil code	0 pera	ange	Rated coil consumption
u_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	$\mathrm{Iat}^{\text {U }}$	Pat U_{N}	U_{N}		$U_{\text {min }}$	$\mathrm{U}_{\text {max }}$	Iat U_{N}
V		V	V	mA	W	v		v	v	mA
12	0.012	9.8	13.2	19	0.2	6	7.006	5	7.2	48.1
24	0.024	19.2	26.4	12	0.3	12	7.012	9.8	14.4	15.2
48	0.048	38.4	52.8	9	0.4	24	7.024	18.2	28.8	9.4
60	0.060	48	66	7	0.5	48	7.048	35	57.6	6.3
110...125	0.125	88	138	5(*)	0.6(*)	60	7.060	43.5	72	5.2

[^2]1 - Max coil voltage permitted at nominal load (DC version).
2-Max coil voltage permitted at nominal load (AC/ DC version). 3 - Min pick-up voltage with coil at ambient temperature.

ACCESSORIES

20-way jumper link for 38 series

Plastic separator
Thickness 2 mm , require
Can be used for visual separation group, must be used for:

- protective separation of different voltages of neighbouring PLC interfaces according to VDE 0106-101
- protection of cut jumper link

48 Series - Relay Interface Modules 8-10-16 A

Relay interface modules for use with PLC systems, 15.8 mm wide
AC or sensitive DC coil versions available - Instant removal of relay using plastic retaining clip
Supply status indication or coil suppression module provided
module provided
Identification label

- 35 mm rail (EN 50022) mounting

48.31 48.52/61
* for 400 V applications, requirements for
pollution degree 2 are
Contact specification
$\frac{\text { Contact configuration }}{\text { Rated current/ Maximum peak current }}$ $\frac{\text { Rated current/M aximum peak current }}{\text { Rated voltage/ Maximum switching voltage V A }}$ Rated load in AC1
Rated load in AC15 (230 VAC) Single phase motor rating (230 VAC) Breaking capacity in DC1: $30 / 110 / 22$ M inimum switching load Standard contact material Coil specifications

Nominal voltage (U_{N})	12-24-110-120-230	12-24-110-120-230	12-24-110-120-230
	12-24-125	12-24-125	12-24-125
Rated power AC/ sens. DC VA (50 Hz)/ W	1.2/0.5	1.2/0.5	1.2/ 0.5
0 perating range	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$	$(0.8 . .1 .1 .1)^{N}$
	(0.73...1.5) U_{N}	(0.73...1.5) U_{N}	(0.8...1.5) U_{N}
Holding voltage $\mathrm{AC/DC}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.4 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.4 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.4 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Technical data			
Mechanical life AC/ DC cycles	$10 \cdot 106 / 20 \cdot 10^{6}$	10.10\% -	$10 \cdot 10^{6 / 20} \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$200 \cdot 10^{3}$	$150 \cdot 10^{3}$	$100 \cdot 10^{3}$
0 perate/ release time (bounce included) ms	10/10-(15/12 sens.)	10/10-(15/12 sens.)	10/ 10 -(15/12 sens.)
Insulation according to EN 61810-5	3.6 kV/3	3.6 kV/2	3.6 kV/3
Insulation between coil and contacts (1.21 $50 \mu \mathrm{ss}$) kV	6 (8mm)	6 (8mm)	6 (8mm)
Dielectric strength between open contacts V AC	1,000	1,000	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	$-40 \ldots+70$	$-40 \ldots+70$
Protection category	IP 20	IP 20	IP 20
Approvals (relay): (according to type)			

	48.62
Relay interface modules for use with PLC systems, 15.8 mm wide AC or sensitive DC coil versions available - Instant removal of relay using plastic retaining clip Supply status indication or coil suppression module provided Identification label 35 mm rail (EN 50022) mounting	
	- 2 pole, 10 A - 35 mm rail mounting
* for 400 V applications requirements for pollution degree 2 are met.	
Contact specification	
Contact configuration	2 CO
Rated current/ M aximum peak current	10/20
Rated voltage/ M aximum switching voltage V AC	250/400*
Rated load in AC1 VA	2,500
Rated load in AC15 (230 VAC) VA	500
Single phase motor rating (230 VAC) kW	0.37
Breaking capacity in DC1: 30/110/220V	10/0.3/0.12
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (5/5)
Standard contact material	AgNi
Coil specifications	
Nominal voltage (U_{N}) V AC ($50 / 60 \mathrm{~Hz}$)	-
V DC	12-24-125
Rated power AC/ sens. DC VA (50 Hzz) W	-10.5
0 perating range \quad AC (50 Hz)	-
Sens. DC	(0.8...1.5) U_{N}
Holding voltage AC/DC	- $10.8 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	- $10.2 \mathrm{U}_{\mathrm{N}}$
Technical data	
Mechanical life AC/ DC cycles	- $120 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$
O perate/ release time (bounce included) ms	10/10
Insulation according to EN 61810-5	3.6 kV/3
Insulation between coil and contacts (1.2/ $50 \mathrm{\mu s}$) kV	6 (8mm)
Dielectric strength between open contacts V AC	1,000
Ambient temperature range	$-40 \ldots+70$
Protection category	IP 20
Approvals (relay): (according to type)	

48 Series - Relay Interface Modules 8-10-16 A

ORDERING INFORMATION

TECHNICAL DATA

CONTACT SPECIFICATIONS

LOAD RATED CURREN T (A)

Electrical life vs AC1 load.

- Type 48.52 (8 A).
- Type $48.31(10 \mathrm{~A})$.

Breaking capacity for DC1 load.
1 - Type 48.61 .
2- Type 48.31
A- Load applied to 1 contact
A-Load applied to 1 contact
B-Load applied to 2 contacts in series
-W hen switching a resistive load (DC1) having voltage and
current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.

- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

Electrical life vs AC1 load.
Type 48.62 (10 A).

Breaking capacity for DC1 load.

1 - Type 48.62.
A - Load applied to 1 contact
B - Load applied to 2 contacts in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

48 Series - Relay Interface Modules 8-10-16 A

COIL SPECIFICATIONS

Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Rated coil consumption $\mathrm{Iatu}_{\mathrm{N}}(5 \mathrm{Hzz}$
		$U_{\text {min }}$	$U_{\text {max }}$	
v		v	V	mA
12	8.012	9.6	13.2	90.5
24	8.024	19.2	26.4	46
110	8.110	88	121	10.1
120	8.120	96	132	11.8
230	8.230	184	253	60.2

DC VERSION DATA (0.5 W sensitive)

Nominal voltage	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Rated coil consumption
u_{N}		$\mathrm{U}_{\text {min }}{ }^{*}$	$U_{\text {max }}$	Iat $U_{\text {N }}$
v		v	V	mA
12	7.012	8.8	21	41
24	7.024	17.5	42	22.2
125	7.125	92	218	4

$* U_{\text {min }}=0.8 U_{N}$ for 48.61 and 48.62

R 48 AC

R 48 sens. DC

perating range (sensitive DC version) vs ambient temperature.
1 - Max coil voltage permitted
$\mathbf{2}-\mathrm{M}$ in pick-up voltage with coil at ambient temperature.

- Max coil voltage permitte
$1-M$ ax coil voltage permitted.
$\mathbf{2}-\mathrm{M}$ in pick-up voltage with coil at ambient temperature.

COMBINATIONS

Code	Type of Socket	Type of Relay	Module	Retaining Clip
48.31	95.03	40.31	99.02	095.01
48.52	95.05	40.52	99.02	095.01
48.61	95.05	40.61	99.02	095.01
48.62	95.05	44.62	99.02	095.01

ACCESSORIES

-RATED VALUES: $10 \mathrm{~A}-250 \mathrm{~V} \quad$-way jumper link for 48 series

PACKAGING CODES

How to code and identify retaining clip and packaging options for relay interface module.

$\mathbf{4}$	$\mathbf{8}$	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{7}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{0}$	\mathbf{S}	\mathbf{P}	\mathbf{A}

\rightarrow SP Plastic retaining clip

ORDERING INFORMATION

TECHN ICAL DATA

insulation

IN SULATIO N according to EN $61810-5$	insulation rated voltage	V	250
	rated impulse withstand voltage	kV	3.6
	pollution degree	2	
	overvoltage category	III	

IMMUNITY
CONDUCTED DISTURBAN CE IM M UN ITY

OTHER DATA

PO W ER LO ST TO THE EN VIRO N M EN T without contact current W

W IRE STRIP LEN GTH	with rated current W

6 SCREW TO RQUE
MAX W IRE SIZE
mm
man

		solid cable			
	1×1			mm^{2}	$1 \times 6 / 2 \times 2.5$
:---	:---				
AW G	$1 \times 10 / 2 \times 14$				

	stranded cable
$1 \times 4 / 2 \times 2.5$	
$1 \times 12 / 2 \times 14$	

CO NTACT SPECIFICATIONS

Contact life vs AC1 load.

Breaking capacity for DC1 load
A Load applied to 1 contact;
$\mathbf{B}=$ Load applied to 2 contacts in series
$\mathbf{C}=$ Load applied to 3 contacts in series;
a

- When switching a resistive load (DC1) having voltage and
current values under the curve the expected electrical life is
- In case of DC13 loads the connection of a diode in parallel with he load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

COIL SPECIFICATIONS

Nominal voltage	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance	ted coil	
U_{N}		$U_{\text {min }}$	$U_{\text {max }}$	R	$\mathrm{Iatu}_{\\|}(5 \mathrm{Hzz}$	
v		v	v	Ω	mA	
12	8.012	9.6	13.2	50	97	
24	8.024	19.2	26.4	190	53	
48	8.048	38.4	52.8	770	25	
110	8.110	88	121	4,000	12.5	
120	8.120	96	132	4,700	12	
230	8.230	184	253	17,000	6	

AM BIEN T TEM PERATURE (${ }^{\circ} \mathrm{C}$)
a perating range (AC type) vs ambient temperature

- Max coil voltage permitted.
- Min pick-up voltage with coil at ambient temperature

COMBINATIONS
dC VERSION DATA

Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance	Rated coil
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	$\mathrm{Iat} \mathrm{U}_{\mathrm{N}}$
v		v	V	Ω	mA
12	9.012	9.6	13.2	140	86
24	9.024	19.2	26.4	600	40
48	9.048	38.4	52.8	2,400	20

R 58 DC

AM BIEN T TEM PERATURE (${ }^{\circ} \mathrm{C}$)

$$
\begin{aligned}
& 0 \text { perating range (DC type) vs ambient temperature. } \\
& \mathbf{1} \text {-Max coil voltace nemitted }
\end{aligned}
$$

1-M ax coil voltage permitted

2 Min pick-up voltage with coil at ambient temperature.

ACCESSORIES

PACKAGING CODES
How to code and identify retaining clip and packaging options for relay interface module.

5	8	3	4	9	0	2	4	0	0	5	0	\mathbf{S}	\mathbf{P}	\mathbf{A}

\rightarrow SP Plastic retaining clip

80 Series - Modular Timers 16 A

	80.01	80.11	80.21
- Mono-function and multifunction versions available - Rotary selector - 17.5 mm wide - Six time scales from 0.1 s to 20 h - 35 mm rail (EN 50022) mount - High input/ output insulation			
8 \square	- M ulti-voltage - M ulti-function	- M ono-voltage - M ono-function	- M ono-voltage - M ono-function
	Al: 0 N delay DI: ON pulse SW: Symmetrical recycler: 0 N start BE: Signal 0 FF delay CE: Signal ON and OFF delay DE: Signal ON pulse	Al: 0 N delay	DI: 0 N pulse
		wiring diagram (without signal START)	wiring diagram (without signal START)
Contact specifications			
Contact configuration	1 co	1 co	1 co
Rated current/ M aximum peak current	16/30	16/30	16/30
Rated voltage/ M aximum switching voltage V AC	250/400	250/400	250/400
Rated load in AC1 VA	4000	4000	4000
Rated load in AC15 (230 VAC) VA	750	750	750
Single phase motor rating (230 VAC) kW	0.55	0.55	0.55
Breaking capacity in DC1: $30 / 110 / 220 \mathrm{~V}$ A	16/0.3/0.12	16/0.3/0.12	16/0.3/0.12
M inimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	500 (10/5)	500 (10/5)	500 (10/5)
Standard contact material	AgCdO	AgCdO	AgCdo
Supply specifications			
Nominal voltage V $\quad \mathrm{VAC}(50 / 60 \mathrm{~Hz})$	12... 240	24-230...240	24-230...240
V DC	12... 240 (non polarized)	24	24
Rated power AC/DC VA (50Hz)/ W	<1.8/ <1.4	<1.8/ < 0.6	$<1.81<0.6$
0 perating range $\quad \mathrm{AC}$	$10.2 . .265 \mathrm{~V}$	$(0.85 \ldots 1.1))_{N}$	$(0.85 \ldots 1.1))_{N}$
DC	10.2... 265 V	$(0.85 \ldots 1.1)^{\prime}$	(0.85 ..1.1) $)_{\text {N }}$
Technical data			
Specified time range	(0.1...2) s, (1...20) s, (0.1...2) min, (1...20) min, (0.11...2) h, (1...20) h		
Repeatability	± 1	± 1	± 1
Recovery time ms	≤ 50	≤ 50	≤ 50
M inimum control impulse ms	50	-	-
Setting accuracy-full range	± 5	± 5	± 5
Electrical life at rated load in AC1 cycles	100.103	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$	$-10 \ldots+50$	$-10 \ldots+50$
Protection category	\|P 20	\|P20	\|P 20
Approvals: (according to type)	(E		

ORDERING INFORMATION

Example: a 80 series, modular timers, $1 \mathrm{CO}, 16 \mathrm{~A}$, supply rated at $12 \ldots 240 \mathrm{VAC} / \mathrm{DC}$.

TECHNICAL DATA

EMC SPECIFICATIONS

TYPE OF TEST		REFERENCE STANDARD	
ELECTRO STATIC DISCHARGE	- contact discharge	EN 61000-4.2	4 kV
	- air discharge	EN 61000-4.2	8 kV
RADIO FREQ UEN CY ELECTRO M AG N ETIC FIELD ($80 \div 1000 \mathrm{MHz}$)		EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
FAST TRAN SIEN TS (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals		EN 61000.4.4	4 kV
SURG ES ($1.2 / 50 \mu \mathrm{~s}$) on Supply terminals	- common mode	EN 61000-4.5	4 kV
	- differential mode	EN 61000-4.5	4 kV
on start terminal (B1)	- common mode	EN 61000.4.5	4 kV
	- differential mode	EN 61000-4.5	4 kV
RADIO FREQ UEN CY COMMON MODE ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals		EN 61000-4.6	10 V
RAdiated and Con ducted emissio		EN 55022	class B

RADIATED AN D CON DUCTED EM ISSIO N			EN 55022	class B
Insulation				
DIELECTRIC STREN GTH				
	- between input and output circuit	VAC	4,000	
	- between open contacts	VAC	1,000	
INSULATIO N ($1.2 / 50 \mu$ S	input and output	kV		

OTHER DATA

CURREN T ABSO RPTIO N on signal control (B1)		$<1 \mathrm{~mA}$	
Pow er lost to the environment			
	- without contact current W	1.3	
	- with rated current W	3.2	
MAX W IRE SIZE		solid cable	stranded cable
	mm^{2}	1×6/2x4	$1 \times 4 / 2 \times 2.5$
	AW G	1×10/ 2×12	1×12 / 2×14
(7t) SCREW TORQUE	Nm	0.8	

FUNCTIONS

	LED	Supply voltage	NO output contact	Contacts		
	Red			Open	Closed	
$\begin{aligned} & \mathbf{U}=\text { Supply voltage } \\ & \mathbf{S}=\text { Signal switch } \\ & -\mathbf{-}=0 \text { utput } \\ & \text { contact } \end{aligned}$		0 FF	0 pen	15-18	15-16	
		ON	0 pen	15-18	15-16	
	凹ツ\\|	ON	O pen (Timing in Progress)	15-18	15-16	
		ON	Closed	15-16	15-18	

W ith signal Start = Start via contact into control terminal (B1

w ith signal STA RT

(BE) Signal OFF delay
Power is permenenty applied to the timer.
The output contacts transfer immediately on closure of the Signal Switch (S). O pening the Signal Switch initiates the preset delay,

CES Signal ON and OFF delay.
power is permenently applied to the timer.
Closing the Signal Switch (S) initiates the preset delay, after which time the output contacts transfer. O pening the Signal switch initiates the same preset delay, after which time the output contacts reset.
$80.01 \mathrm{u}\lrcorner \mathrm{L}$ (DE) Signal ON pulse.
s L
$-\perp$ On momentary or maintained closure of Signal Switch (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.

Seven functions (4 with supply start and
3 with signal start)
six time scales, from 0.1 s to 10 h
35 mm rail (EN 50022) mount

Contact specifications

Contact configuration
1 Rated current/M aximum peak current

| Rated voltage/ M aximum switching voltage V AC | $16 / 30$ |
| ---: | ---: | ---: |
| R | $250 / 400$ |

Rated load in AC1	VA	4,000
Pated load in AC15 230 VAC$)$	VA	750

$\frac{\text { Rated load in AC15 (230 VAC) }}{\text { Single phase motor rating (230 VAC) }} \mathrm{VA}$ | Single phase motor rating (230 VAC) kW |
| :--- |
| Breaking capacity in DC1: $30 / 110 / 220 \mathrm{~V}$ | | Minimum switching load |
| :--- |
| Standard contact material | Supply specifications Nominal voltage

- V AC(50) 6
$16 / 0.3 / 0.1$
$500(10$

	VAC $(50 / 60 \mathrm{~Hz})$	$12 \ldots 230$
	VDC	$12 \ldots 230($ non polarized $)$
Rated power $\mathrm{AC} / \mathrm{DC}$	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$	$<21<2$
O perating range	AC	$10.8 \ldots 250$
	DC	$10.8 \ldots 250$
Technical data		

Specified time range		(0,1...1) , (1...10)s,(10...60)s,(1..10)min,(10...60)min,(1..10)h
Repeatability	\%	± 1
Recovery time	ms	≤ 50
M inimum control impulse	ms	50
Setting accuracy-full range	\%	± 5
Electrical life at rated load in AC1	cycles	$100 \cdot 10^{3}$
A mbient temperature range	${ }^{\circ} \mathrm{C}$	-10... +50
Protection category		IP 20
Approvals: (according to type)		(E

(V) finder

ORDERING INFORMATION

TECHNICAL DATA

TYPE OF TEST	ReFERENCE STANDARD	
ELECTRO STATIC DISCHARGE - contact discharge	EN 61000-4-2	4 kV
- air discharge	EN 61000-4-2	8 kV
RADIO FREQ UEN CY ELECTRO M AG N ETIC FIELD ($80 \div 1000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
FAST TRAN SIEN TS (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals	EN 61000-4.4	4 kV
SURG ES ($1.2 / 50 \mu$ s) on Supply terminals -common mode	EN 61000-4-5	4 kV
-differential mode	EN 61000-4-5	4 kV (81.01)
RADIO -FREQ UENCY COMMON MODE ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals	EN 61000-4-6	10 V
RADIATED AN D CONDUCTED Emissio	EN 55022	class B

CURREN T ABSO RPTIO N on signal control		$<1 \mathrm{~mA}(\mathrm{~S}-\mathrm{X})$		$<1 \mathrm{~mA}(\mathrm{R}-\mathrm{X})$	
POW ER LOST TO THE ENVIRONMENT					
- without contact current	w	1.3			
- with rated current W		3.2			
		LOWER TERMINAL		UPPER TERMINAL	
M AX W IRE SIZE		solid cable	stranded cable	solid cable	stranded cable
	mm^{2}	1x6/2x4	1x4 / 2 2.5	$1 \times 4 / 2 \times 2.5$	1 $\times 2.5$ / 2×2.5
	AW G	1×10 / 2x12	1×12 / 2 $\times 14$	1×12/2x14	1×14/2x14
(2) SCREW TORQ UE	Nm	0.8		0.8	

TIME SCALES

(0.1...1) s	(1...10) s	(10...60) s	(1...10) min	(10...60) min	(1...10) h
1	1	1 -	1		
2		2	2		2
3					
${ }_{5}^{4}-$			4	${ }_{5}^{4} \square^{-}$	${ }_{5}^{4}-$
6					

FUNCTIONS

				Sup	NO outp	Contacts	
		G reen	Red	voltage		0 pen	Closed
	$\mathbf{U}=$ Supply voltag			OFF	O pen	15-18	15-16
				ON	0 pen	15.	15
	R = RESET			ON	Closed	15-16	15-18
	W ithout signal Start= Start via contact in supply line (A1). W ith signal Start = Start via contact into control terminal ($(-\mathrm{X})$.						
Wiring diagram W ithout signal STA RT ** Reset facility is optional				(AI) ON delay. Apply power to timer. O utput contacts transfer after preset time has elapsed. Reset occurs when power is removed. (DI) ON pulse. Apply power to timer. O utput contacts transfer immediately. A fter the preset time has elapsed, contacts reset. (SW) Symmetrical recycler: ON start. A pply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is 1:1 (time on = time off). (SP) Symmetrical recycler: OFF start. Apply power to timer. O utput contacts transfer after time T has elapsed and cycle between OFF and ON for as long as power is applied. The ratio is $1: 1$ (time on $=$ time off).			
With signal STA RT * Terminals R, X \& S must not be directly connected to the timer supply voltage, but they should be considered to be a supply voltage potential for the purposes of insulation. ** Reset facility is optional	(BE) Signal OFF delay. Power is permenently applied to the timer. The output contacts transfer immediately on closure of the Signal Switch (S). O pening the Signal Switch initiates the preset delay, after which time the output contacts reset. (DE) Signal ON pulse. Power is permenently applied to the timer. On momentary or maintained closure of Signal Switch (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset. (EE) Signal OFF pulse. Power is permenently applied to the timer. On opening of the Signal Switch (S) the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.						
RESET Function (R) In each and every function and time scale, the timer is immediately released when the reset switch is depressed.	On depressing the Signal Reset Switch the timer is immediately released. Releasing the Signal Reset Switch reactivates the function. Example: ON delay function. Depressing the Signal Reset Switch terminates the interval time. To re-start, it is necessary to depress the Signal Switch again. Example: ON pulse function.						

	82.41	82.82
- M ono or multi-function timers - O ne module (17.5 mm) wide - Five functions - Six time scales, from 0.05 s to 10 h - 35 mm rail (EN 50022) mount		
	- M ono-function - Multi-voltage - 35 mm rail mounting	- Mono-function - Multi-voltage - 35 mm rail mounting
\qquad	BE: Signal O FF delay	SD: Star- Delta
	 wiring diagram (with signal START)	 wiring diagram (without signal STA RT)
Contact specifications		
Contact configuration	1 CO	2 No
Rated current/ M aximum peak current A	5/20	5/20
Rated voltage/ M aximum switching voltage V AC	250/400	250/400
Rated load in AC1 VA	1,250	1,250
Rated load in AC15 (230 VAC) VA	250	250
Single phase motor rating (230 VAC) kW	0.125	0.125
Breaking capacity in DC 1: $30 / 110 / 220 \mathrm{~V}$ A	5/0.3/0.12	5/0.3/0.12
M inimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (10/5)	300 (10/5)
Standard contact material	AgCdO	AgCdO
Supply specifications		
Nominal voltage $\quad \operatorname{VaC}(50 / 60 \mathrm{~Hz})$	24... 240	24... 240
V DC	24...48	24...48
Rated power AC/DC VA (50Hz)/ W	5/0.5	5/0.5
0 perating range $\quad A C$	$(0.85 \ldots 1.1) U_{N}$	$(0.85 \ldots 1.1) U_{N}$
DC	$(0.85 \ldots 1.2) \mathrm{U}_{N}$	$(0.85 \ldots 1.2) U_{N}$
Technical data		
Specified time range		$(0.15 \ldots . .3) \mathrm{s},(0.5 \ldots .10) \mathrm{s},(0.05 . . .1) \mathrm{min},(0.5 \ldots 10) \mathrm{min}$
Repeatability \%	± 1	± 1
Recovery time ms	≤ 100	≤ 100
M inimum control impulse ms	250	250
Setting accuracy-full range \%	± 5	± 5
Electrical life at rated load in AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Ambient temperature range ${ }^{\circ} \mathrm{C}$	-20... +50	-20... +50
Protection category	PP 20	\|P 20
Approvals: (according to type)	CE (GL) c(LT) GOST	

ORDERING INFORMATION

Example: a 82 series, multifunction modular timer, 24 to 48 VDC and 24 to $240 \mathrm{VAC}(50 / 60) \mathrm{Hz}$ supply voltage.
$\qquad \mathbf{8}$

Series

Type
$0=$ Multifunction (AI, DI, BE, SW)
$1=0 \mathrm{~N}$ delay (AI)
O $=O N$ pulse (DI)
$3=$ Symmetrical recycler: ON start (SW)
$4=$ Signal
$4=$ Signal 0 FF delay (BE)
$8=$ Star-delta (SD)

Supply voltage
$240=\left\{\begin{array}{l}24 . .48 \mathrm{~V} D C\end{array}\right.$
$240=\left\{\begin{array}{l}24 \ldots 240 \mathrm{VAC} \\ 24\end{array}\right.$
Supply version
$0=\mathrm{AC}(50 / 60 \mathrm{~Hz}) / \mathrm{DC}$
No. of poles
$1=1$ pole for types $0,1,2,3,4$
$2=2$ pole for star - delta

TECHNICAL DATA

EMC SPECIFICATONS

TYPE OF TEST	REFERENCE STANDARD	
	EN 61000-4-2	8 kV
	EN 61000-4-2	8 kV
RADIO FREQ UEN CY ELECTRO M AG N ETIC FIELD ($80 \div 1000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
FAST TRAN SIEN TS (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals	EN 61000-4-4	6 kV
SURG ES ($1.2 / 50 \mu \mathrm{~s}$) on Supply terminals	EN 61000-4-5	4 kV
	EN 61000-4-5	-
RADIO FREQ UEN CY COMMON MODE ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals	EN 61000-4-6	10 V
radiated and conducted emission	EN 55022	class B

RADIATED AND CON DUCTED EMISSIO N
eN 55022

\section*{OTHER DATA
 | CURREN T ABSO RPTIO N on signal control (B1) | 1 mA |
| :--- | :--- |
| POW ER | |
 po wer lo St to the en vironment}

- without contact current
-with rated current

-with rated current	w	6	
MAX W IRE SIZE		solid cable	stranded cable
	mm^{2}	$1 \times 4 / 2 \times 2.5$	1 $\times 4$ / 2×1.5
	AW G	1 $\times 12$ / 2×14	1×12 / 2x16
(4.3) SCREW TORQUE	N m	1	

TIME SCALES

N O TE: time scales and functions must be set before energising the timer

FUNCTIONS

2, 3 or 4 CO contact available Six time scales, from 0.1 s to 10 h Sockets: see 94 series

Contact specification

Contact configuration
Rated current/ M aximum peak current Rated voltage/ Maximum switching voltage V AC
Rated load in AC15 (230 VAC)
Rated load in AC15 (230 VAC)
Single phase motor rating (230 VAC) Single phase motor rating (230 VAC) $\quad \mathrm{kW}$ Breaking capacity in DC1: $\quad 30 / 110 / 220 \mathrm{~V}$ A M inimum switching load Supply specifications
Nominal voltage $\quad \mathrm{VAC}(50 / 60 \mathrm{~Hz})$

Technical data

Specified time range Repeatability Recovery time Minimum control impulse Setting accuracy-full range Electrical life at rated load in AC Ambient temperature range Protection category Approvals: (according to type)

- Plug-in timer relay

2, 3 or 4 CO contact available
Six time scales, from 0.1 s to 10 h
Sockets: see 94 series

wiring diagram
wiring diagram

Contact specificatio

Rated current/ M aximum peak current Rated voltage/ Maximum switching voltage V
Rated load in AC1
Rated load in AC15 (230 VAC)
Single phase motor rating (230 VAC)

Single phase motor rating (230 VAC) | Breaking capacity in DC1: | $30 / 110 / 220 \mathrm{VA}$ |
| :--- | ---: |
| M inimum switching load | $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$ | Standard contact material Supply specifications

Supply specifi

Nominal voltage V	V AC(50/60Hz)	230... 240	230... 240
	V AC/DC	12-24-48-110...125 (non polarized)	12-24-48-110...125 (non polarized)
Rated power AC/ DC	VA (50 Hz)/ W	$2 / 2$	$2 / 2$
0 perating range	AC	$(0.85 \ldots 1.1 .1) \mathrm{U}_{N}$	$(0.85 \ldots 1.1)^{\prime}$
	DC	(0.85...1.1) U_{N}	(0.85 ...1.1) U_{N}
Technical data			
Specified time range		(0.1...1) s, (1...10) s, (10...60) s,) min, (10...60) min, (1...10) h
Repeatability	\%	± 2	± 2
Recovery time	ms	≤ 20	≤ 20
M inimum control impulse	ms	-	-
Setting accuracy-full range	\%	± 5	± 5
Electrical life at rated load in AC1	1 cycles	$150 \cdot 10^{3}$	$200 \cdot 10^{3}$
A mbient temperature range	${ }^{\circ} \mathrm{C}$	-20... +60	$-20 . .+60$
Protection category		PP 40	\|P 40
Approvals: (according to type)			

(1) finder	85 Series - Miniature Plug-in Timers 5-10 A	
	85.53	85.54
Plug-in timer relay 2,3 or 4 CO contact available - Six time scales, from 0.1 s to 10 h Sockets: see 94 series		
	- 3 Pole, 10A - AC/ DC supply non polarized - Plug-in for use with 94 series sockets	- 4 Pole, 5 A - AC/ DC supply non polarized - Plug-in for use with 94 series sockets
	SW: Symmetrical recycler: O N start SP: Symmetrical recycler: 0 FF start wiring diagram	SW: Symmetrical recycler: O N start SP: Symmetrical recycler: 0 FF start
Contact specifications		
Contact configuration	3 co	4 CO
Rated current/ M aximum peak current A	10/20	5/20
Rated voltage/ M aximum switching voltage V AC	250/400	250/250
Rated load in AC1 VA	2,500	1,250
Rated load in AC15 (230 VAC) VA	500	250
Single phase motor rating (230 VAC) kW	0.37	0.125
Breaking capacity in DC1: $\quad 30 / 110 / 220 \mathrm{~V} \mathrm{~A}$	10/0.25/0.1	5/0.25/0.1
M inimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (5/5)	300 (5/5)
Standard contact material	AgNi	AgNi
Supply specifications		
Nominal voltage $\quad \frac{\mathrm{VAC}(50 / 60 \mathrm{~Hz})}{\mathrm{VAC/DC}}$	230... 240	230... 240
	12-24-48-110...125 (non polarized)	12-24-48-110 .. 125 (non polarized)
Rated power AC/ DC VA (50Hz)/ W	$2 / 2$	$2 / 2$
O perating range $\quad \frac{A C}{}$	$(0.85 \ldots 1.1) \mathrm{U}_{N}$	$(0.85 \ldots 1.1) U_{N}$
	(0.85...1.1) U_{N}	$(0.85 \ldots 1.1) U_{N}$
Technical data		
Specified time range	(0.1...1)s, (1..10)s, (10..60) s, (1...10) min, (10...60) min, (1...10) h	
Repeatability \%	± 2	± 2
Recovery time ms	≤ 20	≤ 20
M inimum control impulse ms	-	-
Setting accuracy-full range \%	± 5	± 5
Electrical life at rated load in AC1 cycles	$200 \cdot 10^{3}$	$150 \cdot 10^{3}$
Ambient temperature range ${ }^{\circ} \mathrm{C}$	-20... +60	-20... +60
Protection category	PP 40	PP 40
Approvals: (according to type)		

ORDERING INFORMATION

TECHNICAL DATA

EMC SPECIFICATIONS

TYPE OF TEST	ReFERENCE STANDARD	
ELECTRO STATIC DISCHARGE - contact discharge	EN 61000-4-2	n.a
- air discharge	EN 61000-4-2	8 kV
RADIO FREQ UEN CY ELECTRO M AG N ETIC FIELD ($80 \div 1000 \mathrm{MHz}$)	EN 61000-4-3	$15 \mathrm{~V} / \mathrm{m}$
FAST TRAN SIEN TS (burst) ($5.50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals	EN 61000-4-4	4 kV
	EN 61000-4-5	4 kV
	EN 61000-4-5	2 kV
	EN 61000-4-6	10 V
PO W ER-REQ UEN CY (50 Hz)	EN 61000-4-8	$30 \mathrm{~A} / \mathrm{m}$
RADIATED AN D CONDUCTED EMISSIO N	EN 55022	class B

OTHER DATA

POW ER LOST TO THE EN VIRON		2 pole	3 pole	4 pole
- without contact current	w	1.6	1.6	1.6
- with rated current	w	3.7	4.7	3.3

TMME SCALES

NOTE: time scales and functions must be set before energising the timer.

FUNCTIONS

	G reen	Red	Supply voltage	NO output contact
$\begin{aligned} & \mathbf{U}=\text { Supply voltage } \\ & \mathbf{C}=0 \text { utput contact } \end{aligned}$	\square	\square	0 FF	0 pen
		\square	ON	0 pen
			ON	Closed

Wiring diagram

Types: 85.32, 85.33, 85.34

Types: 85.52, 85.53, 85.54

u \nearrow (SP) Symmetrical recycler: OFF start.
为 cycle between $O \mathrm{FF}$ and ON for as long as power is applied. The ratio is $1: 1$ (time on = time off).
(1) finder

94 Series - Sockets and Accessories for 85 Series Timers

Timer type	85.
Colour	BL
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount	94.02

$\mathbf{8 5 . 3 2 , 8 5 . 5 2}$	$\mathbf{8 5 . 3 3 , 8 5 . 5 3}$	$\mathbf{8 5 . 3 4 , 8 5 . 5 4}$		
BLUE	BLACK	BLUE	BLACK	BUE

 6-way jumper link for $94.02,94.03$ and 94.04 socket

Approvals
(according to type): Identification tag 094.064 .00 .4

C \in © $C)_{\text {Us }}^{\circ}$

RATED VALUES: $10 \mathrm{~A}-250 \mathrm{~V}$
RATED VALUES: $10 \mathrm{~A}-250 \mathrm{~V}$

- DIELEC TRIC STREN GTH: $\geq 2 \mathrm{kV}$ AC
PRO TECTIO N CATEG O RY: IP 20
AM BIEN T TEM PERATURE: $(-40 \ldots+70)^{\circ} \mathrm{C}$ (2) TO RQUE: 0.5 Nm W IRE STRIP LEN G TH: 8 mm MAX W IRE SIZE:
solid wire stranded wire $\mathrm{mm}^{2} 1 \times 6 / 2 \times 2.51 \times 4 / 2 \times 2.5$ AWG $1 \times 10 / 2 \times 141 \times 12 / 2 \times 14$

Timer type	85.32, 85.52	
Colour	BLUE	BLACK
Screw terminal socket: panel or 35 mm rail (EN 50022) mount	94.82	94.82 .0
Retaining clip (supplied with timer)		094.81

Multi-function timer modules
Timer module for 90 series sockets LED indicator

Time scale: from 15 ms to 10 h
ulliffunction
Plug-in for use with 90.72 and 90.73 sockets
 SW: Symmetical recycler: ON start SP: Symmetrical recycler: OFF start

wiring diagram
(without signal STA RT)

Contact specifications

Contact configuration

Rated current/ M aximum peak current | A |
| ---: |
| $V A C$ |

Rated voltage/ Maximum switching voltage V AC Rated load in AC1

Rated load in AC15 (230 VAC) VA 6 Single phase motor rating (230 VAC) KW | Breaking capacity in DC1: | $30 / 110 / 220 \mathrm{~V} \mathrm{~A}$ |
| :--- | ---: |
| Minimum switching load | $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$ | Standard contact material Supply specifications

Nominal voltage VAC (50/60Hz)

Nominal voltage	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
	VDC
Rated current absorption $\mathrm{AC} / \mathrm{DC}$	mA

	VDC
Rated current absorption AC/ DC	mA
0 perating range	AC
	DC

Technical data
Specified time range
:---
Minimum control impulse

Ambient temperature range
Protection category
$\frac{\text { Protection category }}{\text { Approvals: (according to type) }}$
see 60 series relays

ORDERING INFORMATION

Series
Type
$1=M$ onofunction (A)
$2=M$ onofunction (DI)
$6=M$ ultifunction (Al, DI, SW, SP, BE, DE, EE, FE)
No. of poles
$24=12 \ldots 24 \mathrm{~V}$ AC / DC ($86.10 / 20$ only)
$100=12 \ldots 90 \mathrm{~V} \mathrm{AC} / \mathrm{DC}(86.60$ only)
$250=\left\{\begin{array}{l}110 \ldots 220 \mathrm{~V} \mathrm{DC} \\ 110 \ldots 240 \mathrm{VAC}\end{array}(86.60\right.$ only $)$
Supply version
$=A C(50 / 60 \mathrm{~Hz}) / \mathrm{D}$

COMBINATIONS

Number of poles	Relay type	Socket type	Timer module
1	40.31	95.03	$86.10 / 86.20$
1	40.61	95.05	$86.10 / 86.20$
2	$40.52 / 44.52 / 44.62$	95.05	$86.10 / 86.20$
2	55.32	94.02	$86.10 / 86.20$
2	62.32	92.03	$86.10 / 86.20$
3	55.33	94.03	$86.10 / 86.20$
3	62.33	92.03	$86.10 / 86.20$
4	55.34	94.04	$86.10 / 86.20$
2	60.12	90.72	86.60
3	60.13	90.73	806

TECHNICAL DATA

EMC SPECIFICATIONS

TYPE OF TEST	REFERENCE STANDARD	86.10/20	86.60
ELEC TRO STATIC DISCHARGE	EN 61000-4-2	n.a.	4 kV
	EN 61000-4-2	8 kV	8 kV
RADIO FREQ UEN CY ELECTRO M AG N ETIC FIELD ($80 \div 1000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$	$10 \mathrm{~V} / \mathrm{m}$
FAST TRAN SIEN TS (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals	EN 61000-4.4	2 kV	2 kV
SURG ES ($1.2 / 50 \mu \mathrm{~s}$) on Supply terminals	EN 61000-4-5	2 kV	2 kV
	EN 61000-4-5	-	1 kV
RADIO -FREQ UENCY COMMON MODE ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals	EN 61000-4-6	10 V	10 V
RADIATED AN D CON DUCTED EMISSIO N	EN 55022	class B	class B
OTHER DATA	86.10, 86.20	86.60	
CURREN TABSO RPTIO N on signal control (B1) PO W ER LO ST IN THE EN VIRONMENT	-	1	
	0.2	0.1 (12 V) -	3 V)
	see $40,44,55,62$ series relays	see 60 serie	

TIME SCALES

N O TE: time scales and functions must be set before energising the timer.

FUNCTIONS

				Supply	NO output
		$\mathrm{Green}(86.60$ only)	Yellow	voltage	
	$\begin{aligned} & \mathbf{U}=\text { Supply Voltage } \\ & \mathbf{S}=\text { Signal switch } \\ & \mathbf{C}=0 \text { utput Contact } \end{aligned}$	\square	\square	OFF	0 pen
			\square	ON	0 pen
			\square	ON	Closed
	W ithout signal Start= Start via contact in supply line (A1). W ith signal Start = Start via contact into control terminal (B1).				
$\left.\left.\int_{A 1}^{4+(-)}\right\|_{A 2} ^{u}\right\|_{0} ^{N /(+1)}$					
	(DI) ON pulse. A pply power to timer. O utput contacts transfer immediately. A fter the preset time has elapsed, contacts reset.				

Type 86.60

321

	Relay type	40.31		40.51/52/61, 44.52/62	
	Colour	BLUE	BLACK	BLUE	BLACK
	Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 095.01 supplied with socket packaging code SPA	95.03	95.03.0	95.05	95.05.0
95.05	Retaining and release clip	095.01	095.01.0	095.01	095.01.0
Approvals (according to type):	8-way jumper link for 95.03 and 95.05 sockets	095.18	095.18.0	095.18	095.18.0
	Identification tag	095.00 .4			
	Timer modules	86.10, 86.20			

rated values: 10 A - 250 V
IN SULATIO $: \geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
PROTECTION CATEG ORY: IP 20
AM BIEN T TEM PERATURE: $(-40 \ldots+70)^{\circ} \mathrm{C}$
(f) TO RQ UE: 0.5 Nm

W IRE STRIP LEN G TH: 8 mm
MAX W IRE SIZE:
solid wire stranded wire
$\mathrm{mm}^{2} 1 \times 6 / 2 \times 2.51 \times 4 / 2 \times 2.5$
aw G $1 \times 10 / 2 \times 141 \times 12 / 2 \times 14$

Approvals
(according to type):

Relay type	55.32		55.33		55.32, 55.34	
Colour	BLUE	BLACK	blue	BLACK	blue	BLACK
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 094.71 supplied with socket packaging code SPA	94.02	94.02.0	94.03	94.03 .0	94.04	94.04.0
Retaining clip	094.71					
6-way jumper link for $94.02,94.03$ and 94.04 sockets	094.06	094.06.0	094.06	094.06.0	094.06	094.06.0
Identification tag	094.00 .4					
Timer modules	86.10, 86.20					

RATED VALUES: $10 \mathrm{~A}-250 \mathrm{~V}$
DIELECTRIC STREN GTH: $\geq 2 \mathrm{kV}$ AC
PRO TECTIO N CATEG O RY: IP 20
AM BIEN T TEM PERATURE: $(-40+70)^{\circ} \mathrm{C}$
(4) TO RQUE: 0.5 Nm

MAX W IRE SIZE: mm²-AW G

solid wire stranded wire $\mathrm{mm}^{2} 1 \times 6 / 2 \times 2.51 \times 4 / 2 \times 2.5$ | mm^{2} | $1 \times 6 / 2 \times 2.5$ | $1 \times 4 / 2 \times 2.5$ |
| :--- | :--- | :--- | :--- | :--- |
| AWG | $1 \times 10 / 2 \times 14$ | $1 \times 12 / 2 \times 14$ |

 retaining clip 094.71 supplied with socket packaging code SPA 6-way jumper link for $94.02,94.03$ and 94.04 sockets
94.06 094.06.0 $094.06 \quad 094.06$

[^3]

\qquad | $\mathbf{6 0 . 1 2}$ | $\mathbf{6 0 . 1 3}$ |
| :--- | :--- |
| BLE | |

\qquad | BLUE | BLACK | $\mathbf{6 0 . 1 3}$ |
| :--- | :--- | :--- | | Clamp terminal socket: panel or 35 mm rail (EN 50022) mount | 90.72 | 90.72 .0 | 90.73 | 90.73 .0 |
| :--- | :--- | :--- | :--- | :--- |
| Retaining clip | 090.33 | | | |
| Timer modules | 86.60 | 86.60 | | | Approvals 86 (according to type):

- Double ground terminal (A2).
- DIELECTRIC STREN GTH: $\geq 2 \mathrm{kV}$ AC
- PRO TECTIO N CATEG ORY: IP 20
- AM BIEN T TEM PERATURE: $(-40 \ldots+70)^{\circ} \mathrm{C}$
- 3 TO RQ UE: 0.8 Nm
-W IRE STRIP LEN GTH: 7 mm
- MAX W IRE SIZE:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 4$	$1 \times 6 / 2 \times 4$
AWG	$1 \times 10 / 2 \times 12$	$1 \times 10 / 2 \times 12$

	87.01		87.02
- 22.5 mm wide - M ono-function and multi-function versions a vailable - Time scales from 0.05 s to 60 h - "1 delayed contact +1 instantaneous contact" and remote potentiometer version available (type 87.02) - True O FF delay version (type 87.61/62) - LED indicator - 35 mm rail (EN 50022) mount			
- 35 mm rail (EN 50022) mount	- M ulti-function - 1 pole - 35 mm rail mounting		- M ulti-function - Timing can be regulated using ext. Potentiometer - 2 timed contacts or 1 timed +1 instantaneous contact -35 mm rail mounting
	AI: 0 N delay DI: ON pulse GI: Fixed pulse delayed SW: Symmetrical recycler: ON start	BE: Signal O FF delay CE: Signal ON and 0 FF Delay DE: Signal ON pulse EE: Signal O FF pulse	Al: ON delay BE: Signal 0 FF delay D: ON pulse CE: Signal ON and G: Fixed SW: Symedse delayed OFF Delay ON startal recycler: EE: Signal ON pulse EE: Signal OFF pulse
		wiring diagram (with signal START)	
Contact specifications			
Contact configuration	1 CO		2 CO
Rated current/ M aximum peak current A	8/30		8/30
Rated voltage/ Maximum switching voltage V AC	250/400		250/400
Rated load in AC1 VA	2,000		2,000
Rated load in AC15 (230 VAC) VA	400		400
Single phase motor rating (230 VAC) kW	0.185		0.185
Breaking capacity in DC1: $30 / 110 / 220 \mathrm{~V}$ A	8/0.5/0.2		8/0.5/0.2
M inimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (10/5)		300 (10/5)
Standard contact material	AgCdO		AgCdo
Supply specifications			
Nominal voltage	24... 240		24... 240
	24...48		24...48
Rated power AC/DC VA (50Hz)/ W	5/0.5		5/0.5
0 perating range $\quad \mathrm{AC}$	$(0.85 \ldots 1.1) U_{N}$		$(0.85 \ldots 1.1) U_{N}$
DC	(0.85 ..1.2) U_{N}		(0.85 ..1 1.2) U_{N}
Technical data			
Specified time range	See page 123		See page 123
Repeatability \%	± 2		± 2
Recovery time ms	50		50
M inimum control impulse ms	50		50
Setting accuracy-full range	± 5		± 5
Electrical life at rated load in AC1 cycles	100.103		$100 \cdot 10^{3}$
Ambient temperature range ${ }^{\circ} \mathrm{C}$	-20... +60		-20... +60
Protection category	\|P 20		IP 20
Approvals: (according to type)	C ϵ GOSt		(61) $C^{(L 1)}$

(7) finder	87 Series - Modular Timers 5-8 A	
- 22.5 mm wide - M ono-function and multi-function versions available - Time scales from 0.05 s to 60 h - " 1 delayed contact +1 instantaneous contact" and remote potentiometer version available (type 87.02) - True O FF delay version (type 87.61/62) - LED indicator - 35 mm rail (EN 50022) mount	87.11	87.21
	- M ono-function - 35 mm rail mounting	- M ono-function -35 mm rail mounting
	AI: 0 N delay wiring diagram (without signal START)	Dl: ON puse wiring diagram (without signal STA RT)
Contact specifications		
Contact configuration	1 co	1 co
Rated current/ M aximum peak current A	8/30	8/30
Rated voltage/ Maximum switching voltage V AC	250/400	250/400
Rated load in AC1 VA	2,000	2,000
Rated load in AC15 (230 VAC) VA	400	400
Single phase motor rating (230 VAC) kW	0.185	0.185
Breaking capacity in DC1: $30 / 110 / 220 \mathrm{~V} \mathrm{~A}$	8/0.5/0.2	8/0.5/0.2
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (10/5)	300 (10/5)
Standard contact material	AgCdO	AgCdO
Supply specifications		
Nominal voltage $\quad \begin{array}{r}\text { VAC }(50 / 60 \mathrm{~Hz}) \\ \end{array}$	24... 240	24... 240
	24...48	24...48
Rated power AC/DC VA (50Hz)/ W	5/0.5	5/0.5
0 perating range $\quad A C$ 	$(0.85 \ldots 1.1) U_{N}$	$(0.85 \ldots 1.1) U_{N}$
	(0.85...1.2) U_{N}	(0.85 ...1.2) U_{N}
Technical data		
Specified time range	See page 123	See page 123
Repeatability \%	± 0.2	± 0.2
Recovery time ms	50	50
Minimum control impulse ms	-	-
Seting accuracy-full range \%	± 5	± 5
Electrical life at rated load in $\mathrm{AC1}$ cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Ambient temperature range ${ }^{\circ} \mathrm{C}$	-20... +60	$-20 \ldots+60$IP 20
Protection category	PP 20	
Approvals: (according to type)	C ϵ	(11) ©(LL)

Time scales from 0.055 to 60 h
" 1 delayed contact +1 instantaneous contact" and remote potentiometer version available (type 87.02)
True O FF delay version (type 87.61/62) - LED indicator

- 35 mm rail (EN 50022) mount

87.61

87.61	87.62
$\begin{aligned} & \text { Ead } \\ & \frac{4}{7}=- \\ & -8 \\ & -4 \end{aligned}$	
- 1 pole - Mono-function -35 mm rail mounting	- 2 pole - M ono-function - 35 mm rail mounting
BI: True 0 FF delay wiring diagram (without signal START)	BI: True 0 FF delay wiring diagram (without signal STA RT)
1 co	2 CO
5/10	5/10
250/400	250/400
1,250	1,250
250	250
0.125	0.125
5/0.5/0.2	5/0.5/0.2
300 (10/5)	300 (10/5)
AgCdO	AgCdO
24...240	24...240
24... 240	24...240
1.5/1.5	1.5/1.5
$(0.85 \ldots 1.1) U_{N}$	$(0.85 \ldots 1.1) U_{N}$
(0.85 ..1.2) U_{N}	$(0.85 \ldots 1.2) \mathrm{U}_{\mathrm{N}}$
See page 123	See page 123
± 1	± 1
50	50
$300 \mathrm{~ms} \mathrm{(A1-A2)}$	300 ms (A1-A2)
± 5	± 5
100.103	100.103
-20... +60	-20... +60
\|P 20	\|P 20
Ce GOSt c(ll)	

Contact specifications

Contact configuration Rated voltage/ Maximum switching voltag Rated load in AC1 Rated load in AC15 (230 VAC) Single phase motor rating (230 VAC)

M inimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (10/5)	300 (10/5)
Standard contact material	AgCdO	AgCdO
Supply specifications		
N ominal voltage	24... 240	24... 240
	24...240	24...240
Rated power AC/DC VA (50Hz)/ W	1.5/1.5	1.5/1.5
0 perating range	$(0.85 \ldots 1.17) U_{N}$	$(0.85 \ldots 1.1) U_{N}$
	(0.85 ...1.2) U_{N}	(0.85 ..1.2) U_{N}
Technical data		
Specified time range	See page 123	See page 123
Repeatability \%	± 1	± 1
Recovery time ms	50	50
M inimum control impulse ms	$300 \mathrm{~ms} \mathrm{(A1-A2)}$	300 ms (A1-A2)
Setting accuracy-full range \%	± 5	± 5
Electrical life at rated load in AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+60$	-20... +60
Protection category	PP 20	\|P 20
Approvals: (according to type)		

22.5 mm wide

- Monofunction and multi-function version
available Mono-functio
available
Time scales from 0.05 s to 60 h
Time scales from 0.05 s to 60 h . and remote potentiometer version available (type 87.02) True O FF dela LED indicator
35 mm rail (EN 50022) mount

87.91

87.82							87.9

Contact specifications

Rated current M aximum peak current

 Rated voltage/ Maximum switching voltage V Rated load in AC1Rated load in AC1 15 (230 VAC)
Rated load in AC15 (230 VAC)
Single phase motor rating (230 VAC)
Single phase motor rating (230 VAC)
Breaking capacity in $D C 1: \quad 30 / 110 / 220 \mathrm{VA}$ Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{m})$ Standard contact material Supply specifications

Standard contact material		AgCdo			AgCdo	
Supply specifications						
Nominal voltage	V AC($50 / 60 \mathrm{~Hz}$)	24... 240			24... 240	
	V DC	24...48			24...48	
Rated power AC/ DC	VA (50 Hz)/ W	5/0.5			5/0.5	
0 perating range	AC	(0.85...1.1) U_{N}			$(0.85 \ldots 1.1)^{\prime} \mathrm{U}$	
	DC	(0.85...1.2) U_{N}			$(0.85 \ldots 1.2) \mathrm{U}_{\mathrm{N}}$	
Technical data						
Specified time range		See page 123			See page 123	
Repeatability	\%	± 0.2			± 0.2	
Recovery time	ms	50			50	
M inimum control impulse	ms	-			50	
Setting accuracy-full range	\%	± 5			± 5	
Electrical life at rated load in AC1	1 cycles	$100 \cdot 10^{3}$			$100 \cdot 10^{3}$	
A mbient temperature range	${ }^{\circ} \mathrm{C}$	-20... +60			-20... +60	
Protection category		\|P 20			IP 20	
Approvals: (according to type)		C	GOST	(c)	c(4)	

ORDERING INFORMATION

TECHNICAL DATA

TYPE OF TEST	REFERENCE STANDARD	
ELECTRO STATIC DISCHARGE	EN 61000-4-2	8 kV
	EN 61000-4-2	8 kV
RADIO FREQ UEN CY ELECTRO M AG N ETIC FIELD ($80 \div 1000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
FAST TRAN SIEN TS (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals	EN 61000-4.4	6 kV
	EN 61000-4-5	4 kV
	EN 61000-4-5	-
	EN 61000-4-6	10 V
RADIO FREQ UEN CY COMM M N MO DE $0.15 \div 80 \mathrm{MHz}$) O S Suply terminals RADIATED AN D CO N DUCTED EM ISSIO N	EN 55022	class B

other data

TIME SCALES No TE: time scales and functions must be set before energising the timer.

Type	Function Code	Function	s	5	5	min	min	min	h	h	h	h
			0.05	0.15	0.5	0.05	0.15	0.5	0.05	0.15	0.5	3
			1	3	10	1	3	10	1	3	10	60
$\begin{array}{r} 87.01 / \\ 87.02 \end{array}$	A 1	ON delay	-	-	-	-	-	-	-	-	-	-
	BE	Signal O FF delay	-	-	-	-	-	-	-	-	-	-
	CE	Signal ON and OFF delay	-	-	-	-	-	-	-	-	-	-
	DI	ON pulse	-	-	-	-	-	-	-	-	-	-
	DE	Signal ON pulse	-	-	-	-	-	-	-	-	-	-
	EE	Signal O FF pulse	-	-	-	-	-	-	-	-	-	-
	GI	Fixed pulse (0,5) delayed	-	-	-	-	-	-	-	-	-	-
	sw	Symmetrical recycler: ON start	-	-	-	-	-	-	-	-	-	-
87.11	AI	ON delay	-	-	-	-	-	-	-	-	-	-
87.21	DI	ON pulse	-	-	-	-	-	-	-	-	-	-
87.31	sw	Symmetrical recycler: ON start			-							
87.41	BE	Signal 0 FF delay	-	-	-	-	-	-	-	-	-	-
$\begin{aligned} & 87.61 / \\ & 87.62 \\ & \hline \end{aligned}$	BI	True 0 FF delay (power 0 FF)		$\begin{gathered} 0.15 \\ 2.5 \\ \hline \end{gathered}$	-	$\begin{aligned} & 0.07 \\ & 1.3 \end{aligned}$		-				
87.82	SD	Star - delta ($\mathrm{T}_{\mathrm{U}}=\sim 60 \mathrm{~ms}$)				-						
87.91	U	A symmetrical recycler (0 N starting)	-	-	-	-	-	-	-	-	-	-
	LE	Signal asymmetrical recycler (0 N starting)	-	-	-	-	-	-	-	-	-	-
	PI	A symmetrical recycler (0 FF starting)	-	-	-	-	-	-	-	-	-	-
	PE	Signal a symmetrical recycler (0 FF starting)	-	-	-	-	-	-	-	-	-	-

FUNCTIONS

	$\begin{aligned} & \text { LED** } \\ & \text { Green } \end{aligned}$	Timing	NO output contact	Timed		Contacts DIP switch	Instantaneo	
				0 pen	Closed		0 pen	Closed
$\mathbf{U}=$ Supply Voltage		N one	O pen	$\begin{aligned} & 15-18 \\ & 25-28^{*} \end{aligned}$	$\begin{aligned} & 15-16 \\ & 25-26^{*} \end{aligned}$	$\begin{aligned} & \text { Up } \\ & \text { E } \end{aligned}$	21－24＊	21－22＊
$\mathbf{S}=$ Signal switch	山】】】	In progress	0 pen	$\begin{aligned} & 15-18 \\ & 25-28^{*} \end{aligned}$	$\begin{aligned} & 15-16 \\ & 25-26^{*} \end{aligned}$		21－22＊	21－24＊
c＝0uthut ${ }^{\text {antact }}$		In progress	Closed	$\begin{aligned} & 15-16 \\ & 25-26^{*} \end{aligned}$	$\begin{aligned} & 15-18-18 \\ & 25-28^{*} \end{aligned}$	\square	21－22＊	21－24＊
C Oupuconat		None	Closed	$\begin{aligned} & 15-16 \\ & 25-26 \\ & 25 \end{aligned}$	$\begin{aligned} & 15-18 \\ & 25-28^{*} \end{aligned}$	Down	21－22＊	21－24＊

＊25－26－28 only for type 87.02 with 2 timed contacts．21－22－24 only for type 87.02 with 1 instantaneous contact +1 timed positioning the front DIP switch．＊＊The LED on types 87.61 and 87.62 is illuminated when supply voltage is supplied to timer．
Without signal Start＝Start via contact in supply line（A1）．With signal Start＝Start via contact into control terminal（B1）．

FUNCTIONS

Monofunction

ORDERING INFORMATION

TECHNICAL DATA

TYPE OF TEST	REFERENCE STANDARD	
ELEC TRO STATIC DISCHARGE - contact discharge	EN 61000-4-2	4 kV
- air discharge	EN 61000-4-2	8 kV
RADIO FREQ UEN CY ELECTRO M AG N ETIC FIELD ($80 \div 1000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
FAST TRAN SIEN TS (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals	EN 61000-4-4	$2 \mathrm{kV} / 5 \mathrm{kV}$
SURG ES ($1.2 / 50 \mu$ s) on Supply terminals - common mode	EN 61000-4-5	2 kV
- differential mode	EN 61000-4-5	1 kV
RADIO FREQ UEN CY COMMON MODE ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals	EN 61000-4-6	3 V

TMME SCALES
END SCALE

	\mathbf{s}	$\mathbf{m i n}$	\mathbf{h}	$\mathbf{x 1 0 ~ h}$
$\mathbf{0 . 5}$	0.5 s	0.5 min	0.5 h	5 h
$\mathbf{1}$	1 s	1 min	1 h	10 h
$\mathbf{5}$	5 s	5 min	5 h	50 h
$\mathbf{1 0}$	10 s	10 min	10 h	100 h

TIME SCALES AND FUNCTIONS SELECTION

		$\mathbf{8 8 . 0 2}$	$\mathbf{8 8 . 1 2}$
E	Function selector	$\mathrm{AE}, \mathrm{AI}, \mathrm{BE}, \mathrm{DE}, \mathrm{HI}, \mathrm{SW}$	$\mathrm{Al} a, \mathrm{Alb}, \mathrm{DI} \mathrm{a}, \mathrm{DI} \mathrm{b}$
\mathbf{D}	Time scale selector	$0.5,1,5,10$	$0.5,1,5,10$
H	Unit of time selector	s, min, $\mathrm{h}, 10 \mathrm{~h}$	s, min, $\mathrm{h}, 10 \mathrm{~h}$

FUNCTIONS

$\begin{aligned} & \text { U = Supply Voltage } \\ & \text { S = Signal switch } \\ & \text { C = O utput Contact } \end{aligned}$	W ithout signal Start= Start via contact in supply line (A1).
	Type 88.02
Wiring diagram without signal START	(AI) ON delay. A pply power to timer. O utput contacts transfer after preset time has elapsed. Reset occurs when power is removed. (SW) Symmetrical recycler: ON start. Apply power to timer. O utput contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is $1: 1$ (time on $=$ time off).
with signal STA RT	(AE) ON delay. W hen power is applied, the timer will function as an ON delay except when the Signal Switch (S) is closed which will force the output and the timing process into the reset condition. (BE) Signal OFF delay. Power is permenently applied to the timer. The output contacts transfer immediately on closure of the Signal Switch (S). O pening the Signal Switch initiates the preset delay, after which time the output contacts reset. (DE) Signal ON pulse. Power is permenently applied to the timer. On momentary or maintained closure of Signal Switch (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.
without signal STA RT	(HI) ON pulse. Apply power to timer. O utput contacts transfer immediately After preset time has elasped, contacts reset. N.B. Ensure a fixed connection between Terminals 2 and 7.
$4+\underbrace{}_{\mathrm{U} \simeq}$	

Type 88.12

	(Al a) ON Delay (2 timed contacts). Apply power to timer. Contacts (C_{1} and C_{2}) transfer after preset time has elasped. Reset occurs when power is removed.
	(Al b) ON Delay (1 timed contact + 1 instantaneous contact). A pply power to timer. O utput contact $\left(C_{1}\right)$ transfers immediately. Contact $\left(\mathrm{C}_{2}\right)$ transfers after the preset time has elasped. Reset occurs when power is removed.
	(DI a) ON pulse (2 timed contacts). Apply power to timer. O utput contacts (C_{1} and C_{2}) transfer immediately. After preset time has elasped, the contacts reset.
	(DI b) ON pulse (1 timed contact + 1 instantaneous contact). Apply powert to timer. O utput contacts $\left(C_{1}\right.$ and $\left.C_{2}\right)$ transfer immediately. After preset time has elasped, the contact $\left(C_{2}\right)$ resets. Contact $\left(C_{1}\right)$ resets when power is removed.

	Timer type	88.12		88.02	
	Colour	BLUE	BLACK	BLUE	BLACK
	Sockets 8-11 pin backwired with solder terminals	-	90.12.4	-	90.13.4
					5
Approvals (according to type):					$\underline{v_{0}}$
C			31	31	
RATED VALUES: 10 - DIELECTRIC STREN	$\begin{aligned} & \text { A }-250 \mathrm{~V} \\ & \text { TH: } \geq 2 \mathrm{kV} \mathrm{AC} \end{aligned}$		90.12 .4	90.13.4	

- A range of light dependent relays with

1 or 2 NO contacts

- Pole or flange mounting
- Double break (phase + neutral) type available
- Double break (phase + neuta)
(type 10.32)
- Sensitivity adjustment from 1 to 50 lux
- Sensitivity adjustment from 1 to 50 lux

(1) finder

ORDERING INFORMATION

No. of poles Supply version
$8=A C(50 / 60 \mathrm{~Hz})$

No. of poles
$1=$ Single phase switch $1 \mathrm{NO}, 12 \mathrm{~A}$
$2=$ Double phase switch $2 \mathrm{NO}, 16 \mathrm{~A}$

TECHNICAL DATA

INSULATION	10.32			10.41	
DIELEC TRIC STREN G TH - between open contacts	VAC	1,000		1,000	
OTHER DATA	10.32			10.41	
CABLE G RIP	\varnothing mm	(8.9...13)		(8.9...13)	
PRESET THRESHO D	1 x	5 switch ON / 20 switch O FF		3 switch ON / 8 switch O FF	
MAX W IRE SIZE		solid cable	stranded cable	solid cable	stranded cable
	mm^{2}	1x6/2x4	1×6/2x2.5	$1 \times 6 / 2 \times 4$	1×6/2x2.5
	AW G	1×10/2x12	1×10/2x14	1 $\times 10$ / 2×12	1×10/2x14
(42) SCREW TO RQ UE	N m	1.2		1.2	

WIRING DIAGRAMS

11. Series - Modular light Dependent Relays 16 A

	11.01	1.7
Selector with 3 positions: - high range (threshold setting $20 \ldots 1000 \mathrm{~lx}$) low range (threshold setting 1...301x) continuous light (particularly interesting for the Test at the first installation).		
- Type 11.71: with 1 CO contact and with $12 \ldots 24 \mathrm{VAC} / \mathrm{DC}$ voltage supply. - SELV separation between contact and supply circuit. - Supplied with separate sensitive photocell. - LED indication. - 35 mm rail (EN 50022) mount.	- 1 pole - 35 mm rail mount - "zero hysteresis"	- 1 pole - 35 mm rail mount - low voltage version available
- 35 mm rail (EN 50022) mount.		
	$\begin{array}{\|c\|} 54.6 \\ \hline \end{array}$	$\begin{array}{\|c} 54.6 \\ \hline 43.5 \\ \hline \end{array}$
Contact specifications		
Contact configuration	1 CO	1 CO
Rated current/ M ax. peak current	$16 / 30$ (100 A -5 ms)	$16 / 30$ (100 A -5 ms)
Rated voltage/ Max. switching voltage V AC	250/400	250/400
Rated load in AC1	4,000	4,000
Rated load in AC15 (230 VAC) VA	750	750
Nominal lamp rating: incandescence (230V) W	2,000 (NO contact)	2,000 (O contact)
compensated fluorescent (230V) W	550 (N 0 contact)	550 (N O contact)
uncompensated fluorescent (230V) W	1,000 (N 0 contact)	1,000 (N contact)
halogens (230V) W	2,000 (NO contact)	2,000 (NO contact)
M inimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgSnO_{2}	AgSnO_{2}
Supply specifications		
Nominal voltage $\quad \frac{\mathrm{VDC} / \mathrm{AC}(50 / 60 \mathrm{~Hz})}{\mathrm{VAC}(50 / 60 \mathrm{~Hz})}$	-	12... 24
	230	110...125 230... 240
Rated power AC/ DC VA (50Hz)/ W	21 -	1.3/0.8
0 perating range $\quad \begin{array}{r}\text { DC/AC }(50 \mathrm{~Hz}) \\ \hline \text { AC }(50 \mathrm{~Hz})\end{array}$	-	(9.6...33.6) V
	(0.8...1.1) U_{N}	(88...137)V (184...264)V
Technical data		
Electrical life at rated load in AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Threshold setting	1... 30 (low range)	$1 . . .100$ (switching ON)
	20...1,000 (high range)	2... 150 (switching 0 FF)
Delay time: switching 0 N / O FF	15/25	15/25
A mbient temperature range	$-20 . . .+50$	$-20 . . .+60$
Protection category: light dependent relay/ photocell	IP $20 /$ IP 54	IP $20 /$ IP 54
Approvals: (according to type)	(\in GOSt (10)	

ORDERING INFORMATION

WIRING DIAGRAMS

35.8 mm wide
35 mm rail (EN

35 mm rail (EN 50022) mount

- Internal battery for the set up without supply (type $12.21 / 22$) - Impulse function (1...59s) (type 12.21/22)

Contact specification

Contact configuration
Rated current/ Max. peak
Rated current/ Max. peak current Rated voltage/ Max. switching voltage Rated load in AC1
g voltage
Rated load in AC15 (230 VAC)

Nominal lamp rating: incandescence (230V) W M inimum switching load	Standard contact material
Supply specifications	Supply specificat 12 Rated power AC/ DC

0 perating range

12.01		12.21

Technical data

Electrical life at rated load in AC1
Type of time switch $\xrightarrow{\text { Programs }}$ Minimum interval setting
Accuracy
Ambient temperature range Protection category Approvals: (according to type)

ORDERING INFORMATION

No. of poles
$1=1 \mathrm{CO}, 16 \mathrm{~A}$
$1=1 \mathrm{Co}, 16 \mathrm{~A}$
$2=2 \mathrm{Co}, 16 \mathrm{~A}$

TECHNICAL DATA

INSULATON	12.01		12.21/12.22	
DIELEC TRIC STREN G TH - betw een open contacts	1,000		1,000	
OTHER DATA	12.01		12.21/12.22	
PO W ER BACK.UP	70 hafter 80 h uninterrupted supply		6 years after the first operation	
PO W ER LOST IN THE EN VIRONMENT - without contact current W	1.5		2	
- with rated current w	2.5		3 (1 c0)	4(2CO)
max W IRE SIZE	solid cable	stranded cable	solid cable	stranded cable
mm^{2}	1×6/2x4	1×6/2x2.5	$1 \times 6 / 2 \times 4$	1×6/2x2.5
AW G	$1 \times 10 / 2 \times 12$	1×10/2x14	1×10/2x12	1×10/2x14
(3)3 SCREW TORQUE Nm	1.2		1.2	

WIRING DIAGRAMS

(1) finder	1.3 Series - Eectronic Step Reta	
	13.01	13.71
- Electronic step relays - Control circuit can be used continuously - Longer mechanical and electrical life, and much quieter than electromechanical step relays - Suitable for SELV applications (according to IEC 364), type 13.01 - 35 mm rail (EN 50022) or flange mount		
	- Low voltage supply $12-24 \mathrm{~V}$ -Step or monostable relay - 35 mm rail mount	- 1 No - Panel mount - Screw terminals
Contact specifications		
Contact configuration	1 No	1 No
Rated current/ M ax. peak current A	$16 / 30$ (100 A -5 ms)	10/20 (100 A - 5 ms)
Rated voltage/ Max. switching voltage V AC	250/400	2301 -
Rated load in AC1 VA	4,000	2,300
Rated load in AC15 (230 VAC) VA	750	450
Nominal lamp rating: incandescence (230V) W	2,000	1,000
compensated fluorescent (230V) W	750	350
uncompensated fluorescent (230V) W	1,000	500
halogens (230V) W	2,000	1,000
M inimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgSnO_{2}	AgSnO_{2}
Supply specifications		
Nominal voltage $\quad \begin{aligned} & \text { V AC }(50 / 60 \mathrm{~Hz}) \\ & \end{aligned}$	12-24-110 ..125-230 ...240	230
	12-24	-
Rated power AC/DC V AC (50 Hz)/ W	2.5/2.5	1.51-
O perating range $\quad \begin{array}{r}\text { aC (} 50 \mathrm{~Hz}) \\ \end{array}$	(0.8...1.1) U_{N}	$(0.85 \ldots 1.15) U_{N}$
	(0.9...1.1) U_{N}	-
Technical data		
Electrical life at rated load in AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Maximum impuls duration	continuous	continuous
Dielectric strenght between: open contacts V AC	1,000	1,000
supply contacts V AC	4,000	-
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-10 \ldots+60$	$-10 \ldots+60$
Protection category	IP 20	IP 20
Approvals: (according to type)	(E	C \in (1D) NF

ORDERING INFORMATION

TECHNICAL DATA

WIRING DIAGRAMS

ORDERING INFORMATION

insulation	14.01			14.71	
DIELEC TRIC STREN G TH \quad-between open contacts	$\vee A C$	1,000		1,000	
Other data		14.01		14.71	
PO W ER LOSTIN THE ENVIRONMENT					
- without contact current	w	1.3		1	
- with rated current	W	3.3		3.3	
MAX W IRE SIZE		solid cable	stranded cable	solid cable	stranded cable
	mm^{2}	1×6/2x4	1 $\times 4$ / 2×2.5	1×6/2x4	1×4/2×2.5
	AW G	1×10/2x12	1×12/2x14	1×10/2x12	1×12 / 2×14
(4)3 SCREW TO RQUE		0.8		0.8	

WIRING DIAGRAMS

FUNCTIONS

1. W hen the DIP switch is changed from one position to another, the new function comes into effect immediately. It is not therefore necessary to operate the push button again.
. The "ght constantly 0 N " function can also be attained when the dip switch is set to the "staircase timer" setting. To do this, either keep the push-button pressed for the desired time or install a standard one-way switch in parallel to the push-button.

	20.21	20.22, 24, 26, 28	20.23
- O ne module (17.4 mm) wide - Test button with mechanical indicators - 6 functions available - AC and DC coils - Identification label - Possible to connect illuminated push buttons - 35 mm rail (EN 50022) mount			
	- Single phase switch 1 NO - 35 mm rail mount	- Double phase switch - 35 mm rail mount	$\begin{aligned} & \text { - Double phase switch } \\ & 1 \mathrm{NC}+1 \mathrm{NO} \\ & -35 \mathrm{~mm} \text { rail mount } \end{aligned}$
Contact specifications			
Number of contacts	1 No	2 No	$1 \mathrm{NC}+1 \mathrm{NO}$
Rated current/ Max. peak current A	16/30	16/30	16/30
Rated voltage/ Max. switching voltage V AC	250/400	250/400	250/400
Rated load in AC1 VA	4,000	4,000	4,000
Rated load in AC15 (230 VAC) VA	750	750	750
Nominal lamp rating: incandescence (230V) W	2,000	2,000	2,000
compensated fluorescent (230V) W	750	750	750
uncompensated fluorescent (230V) W	1,000	1,000	1,000
halogens (230V) W	2,000	2,000	2,000
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgNi	AgNi	AgNi
Coil specifications			
Nominal voltage $\quad \begin{array}{r}\text { V AC }(50 / 60 \mathrm{~Hz}) \\ \end{array}$	8-12-24-48-110-120-230-240		
	12-24-48-110	12-24-48-110	12-24-48-110
Rated power AC/DC VA (50Hz)/ W	5.5/5	5.5/5	5.5/5
O perating range $\begin{array}{r}\text { AC } \\ \\ \hline\end{array}$	$(0.85 \ldots 1.1) \mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz}) /(0.9 \ldots 1.1) \mathrm{U}_{\mathrm{N}}(60 \mathrm{~Hz})$		
	(0.9...1.1) U_{N}	(0.9...1.1) $U_{\text {N }}$	$\left.{ }_{(0.9} . .1 .1 .1\right)^{\prime}$
Technical data			
Mechanical life cycles	$300 \cdot 10^{3}$	$300 \cdot 10^{3}$	$300 \cdot 10^{3}$
Electrical life at rated load in AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Maximum impulse duration	1 h (according to EN 60669)	1 h (according to EN 60669)	1 h (according to EN 60669)
Insulation between coil and contacts (1.2/50 s$) \mathrm{kV}$	4	4	4
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+40$	$-40 \ldots+40$	$-40 \ldots+40$
Protection category	1 P 20	PP 20	IP 20
Approvals: (according to type)	(ϵ Gost (1) RINA NF ${ }^{\text {c/ }}{ }^{\circ}{ }_{\text {US }}$		

ORDERING INFORMATION

Example: a 20 series 35 mm rail (EN 50022) mount relay with double phase switch, $2 \mathrm{NO}-16 \mathrm{~A}$ contacts, coil rated at 12 V DC and with AgSnO_{2} contacts.

$$
\begin{array}{lllll|lll|l|l|l|l}
2 & 0 . & 2 & 2 . & 9.0 & 1 & 2 . & 4 & 0 & 0 & 0
\end{array}
$$

Series
Type
$2=35 \mathrm{~mm}$ rail (EN 50022) mount
No. of poles
$1=$ Single phase switch 1 NO
$2=$ Double phase switch 2 NO
$3=$ Double phase switch 1 NC +1 NO
$4=4$ sequence double phase switch 2 NO
$8=3$ sequence double phase switch 2 NO
$8=4$ sequence double phase switch 2 NO

TECHNICAL DATA

insulation

DIELEC TRIC STREN G TH - between supply and contacts V AC		3,500			
- between open contacts	VAC	2,000			
- between adjacent contacts	VAC	2,000			
OTHER DATA		20.21		20.22, 20.23, 20.24, 20.26, 20.28	
POW ER LOST TO THE ENVIRONMENT					
-with rated current	w	1.3		2.6	
		COIL CLAMPS		CONTACT CLAMPS	
M AX W IRE SIZE		solid cable	stranded cable	solid cable	stranded cable
	mm^{2}	1×4/2x2.5	1×2.5 / 2×2.5	1x6/2x4	1 $\times 4$ / 2×2.5
	AW G	1×12/2x14	1 $\times 14$ / 2×14	1×10/2x12	1×12/2x14
(23) SCREW TO RQUE	N m	0.8		0.8	

If the coil is operated for a prolonged period of time, adaquate ventilation of the relays must be provided, for example leaving a gap of about 9 mm between pairs of relays.

COIL SPECIFICATIONS

$\begin{aligned} & \hline N \text { ominal } \\ & \text { voltage } U_{N} \end{aligned}$	Coil code	0 perating range		Resistance	Consumption
		$U_{\text {min }}$	$U_{\text {max }}$	R	${ }^{\text {ata }}$ (50 Hz)
v		\checkmark	V	Ω	mA
8	8.008	6.8	8.8	4	800
12	8.012	10.2	13.2	7.5	550
24	8.024	20.4	26.4	27	275
48	8.048	40.8	52.8	106	150
110	8.110	93.5	121	590	64
120	8.120	102	132	680	54
230	8.230	195.5	253	2,500	28
240	8.240	204	264	2,700	27.5

$20 \quad 240 \quad 8.240$

ACCESSORIES

MODULE FOR ILUMINATED PUSH-BUTTONS

Type 026.00

Sealed version, 7.5 cm insulated and flexible terminals.

Example of wiring diagram of type $\mathbf{0 2 6 . 0 0}$
This module is necessary if using up to a maximum of 15
illuminated pushbuttons (1.5 mA max, 230 VAC) in the switching input circuit. It must be be connected in parallel to the coil of the relay (see diagram).

ACCESSORIES

(17) finder

22 Series - Modular Monostable Relays 20 A

- O ne module (17.4 mm) wide - Test button - Identification label - AC and DC coils - 35 mm rail (EN 50022) mount		
	- Single phase switch 1 N 0 -35 mm rail mount	- Double phase switch 2 N 0 - 35 mm rail mount
Contact specifications		
Contact configuration	1 No	2 No
Rated current/ Max. peak current A	20/30	20/30
Rated voltage/ Max. switching voltage V AC	250/400	250/400
Rated load in AC1 VA	5,000	5,000
Rated load in AC15 (230 VAC) VA	1,000	1,000
Single phase motor rating (230 VAC) kW	-	-
Breaking capacity: $30 / 110 / 220 \mathrm{~V}$ A	20/0.3/0.12	20/0.3/0.12
M inimum switching load mW (V/mA)	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgNi	AgNi
Coil specifications		
Nominal voltage V \quad V ($50 / 60 \mathrm{~Hz}$)	8-12-24-48-110-120-230-240	
V DC	12-24-48-110	12-24-48-110
Rated power AC/DC VA (5 OHz)/ W	2.3/1.25	2.3/1.25
0 perating range \quad AC (50Hz)	$(0.85 \ldots 1.1) U_{N}$	$(0.85 . .1 .1) U_{N}$
DC	$(0.9 \ldots 1.1)^{\prime} U_{N}$	(0.9...1.1) $U_{\text {N }}$
Technical data		
Mechanical life cycles	$500 \cdot 10^{3}$	$500 \cdot 10^{3}$
Electrical life at rated load in AC1 cycles	$50 \cdot 10^{3}$	$50 \cdot 10^{3}$
M aximum impulse duration	continuous	continuous
Insulation between coil and contacts (1.2/ $50 \mu \mathrm{ss}$) kV	4	4
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+40$	$-40 \ldots+40$
Protection category	PP 20	IP 20
Approvals: (according to type)	C ϵ	

	22.23	22.24
- O ne module (17.4 mm) wide - Test button - Identification label - AC and DC coils - 35 mm rail (EN 50022) mount		
	$\begin{aligned} & \text { - Double phase switch } \\ & 1 \mathrm{NO}+1 \mathrm{NC} \\ & -35 \mathrm{~mm} \text { rail mount } \end{aligned}$	- Double phase switch 2 NC - 35 mm rail mount
Contact specifications		
Contact configuration	$1 \mathrm{NO}+1 \mathrm{NC}$	2 NC
Rated current/ Max. peak current A	20/30	20/30
Rated voltage/ Max. switching voltage V AC	250/400	250/400
Rated load in AC1 VA	5,000	5,000
Rated load in AC15 (230 VAC) VA	1,000	1,000
Single phase motor rating (230 VAC) kW	-	-
Breaking capacity: $30 / 110 / 220 \mathrm{~V}$	20/0.3/0.12	20/0.3/0.12
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgNi	AgNi
Coil specifications		
Nominal voltage $\quad \begin{array}{r}\text { V AC }(50 / 60 \mathrm{~Hz}) \\ \end{array}$	8-12-24-48-110-120-230-240	
	12-24-48-110	12-24-48-110
Rated power AC/DC VA (50Hz)/ W	2.3/1.25	2.3/1.25
O perating range $\quad \mathrm{AC}(50 \mathrm{~Hz})$	$(0.85 . .1 .1) U_{N}$	$(0.85 \ldots 1.1 .1) \mathrm{U}_{\mathrm{N}}$
	(0.9...1.1) $U_{\text {N }}$	$(0.9 \ldots 1.1 .1)^{\text {N }}$
Technical data		
Mechanical life cycles	$500 \cdot 10^{3}$	$500 \cdot 10^{3}$
Electrical life at rated load in AC1 cycles	$50 \cdot 10^{3}$	$50 \cdot 10^{3}$
Maximum impulse duration	continuous	continuous
Insulation between coil and contacts (1.2/ $50 \mu \mathrm{~s}$) kV	4	4
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+40$	$-40 \ldots+40$
Protection category	\|P 20	\|P 20
Approvals: (according to type)	(ϵ	

ORDERING INFORMATION

TECHNICAL DATA

CONTACT SPECIFICATONS

| NOMIN AL RATE LAM PS | |
| ---: | ---: | ---: |
| -incandescence (230V)
 -compensated fluorescent (230V) W
 W | 1,000 |

DIELEC TRIC STREN G TH - between supply and contacts V AC		3,500			
- between open contacts	VAC	2,000			
- between adjacent contacts	VAC	2,000			
OTHER DATA		22.21		22.22, 22.23, 22.24	
PO W ER LO ST TO THE EN VIRO N M EN T - without contact current		1.2		1.2	
- with rated current	w	3.2		5.2	
MAX W IRE SIZE		COIL CLAMPS		CONTACT CLAMPS	
		solid cable	stranded cable	solid cable	stranded cable
	mm^{2}	1×4 / 2×2.5	1×2.5 / 2×2.5	1×6 / 2×6	$1 \times 6 / 2 \times 4$
	AW G	1×12 / 2×14	1×14/2x14	1×10/2x10	1×10/2x12
(4)7 SCREW TORQ UE	Nm	0.8		0.8	

If the coil is operated for a prolonged period of time, adaquate ventilation of the relays must be provided, for example leaving a gap of about 9 mm between pairs of relays.
COIL SPECIFICATIONS

Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance R	$\begin{aligned} & \text { Consumption } \\ & \mathrm{Iat}_{\mathrm{N}}(5 \mathrm{Hzz}) \end{aligned}$
		$U_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
v		v	v	Ω	mA
8	8.008	6.8	8.8	6.5	360
12	8.012	10.2	13.2	13.5	245
24	8.024	20.4	26.4	41	135
48	8.048	40.8	52.8	186	68
110	8.110	93.5	121	970	26
120	8.120	102	132	1,380	24
230	8.230	195.5	253	4,200	12.5
240	8.240	204	264	4,400	12

dC VERSION DATA

| Nominal | Coil | O perating range | Resistance | Consumption |
| :--- | :--- | :--- | :--- | :--- | Nominal

voltage $\quad \begin{gathered}\text { Coil } \\ \text { code }\end{gathered}$

22 ACCESSORIES

ORDERING INFORMATION

Coil version
$8=\mathrm{AC}(50 \mathrm{~Hz})$
$1=$ Single phase switch 1 NO
$2=$ Double phase switch 2 NO
$3=$ Double phase switch $1 \mathrm{NO}+1 \mathrm{NC}$
$4=4$ sequence double phase switch 2 NO
$6=3$ sequence double phase switch 2 NO
$8=4$ sequence double phase switch $2 \mathrm{~N} \bigcirc$

TECHN ICAL DATA

insulation

COIL SPECIFICATIONS

Nominal	Coil	0 perating range		Resistance	Consumption
u_{N}		$U_{\text {min }}$	$U_{\text {max }}$	R	I atu $_{\text {N (}}^{\text {(}}$ Hz
v		v	V		mA
12	8.012	9.6	13.2	17	370
24	8.024	19.2	26.4	70	180
48	8.048	38.4	52.8	290	90
110	8.110	88	121	1,500	40
230	8.230	184	253	6,250	20

TYPE	Number	SEQUENCES			
		1	2		4
26.01	2	1^{1}	4		
26.02	2	$1^{1} l^{1}$	44		
26.03	2	114	$4{ }^{1}$		
26.04	4	$\left.\left.\right\|^{\prime}\right\|^{\prime}$	44	14	$4{ }^{\prime}$
26.06	3	$1^{1} 1^{1}$	11^{14}	44	
26.08	4	$\left.\left.\right\|^{\prime}\right\|^{\prime}$	$4{ }^{\prime}$	$1^{1} 1$	14

ACCESSORIES

12-24 V DC CONTROL APPUCATIONS

Type: 026.9.012
NOMINALVOLTAGE: 12 V DC
MAX TEM PERATURE: $+40^{\circ} \mathrm{C}$
O PERATING RANGE: (0.9... 1.1) UN
Type: 026.9.024
NOMINALVOLTAGE: 24 V DC
O PERATIN G RAN GE: $(0.9 . . .1 .1)$

MODULE FOR ILUMINATED PUSH-BUTTONS

Type 026.00
Sealed version, 7.5 cm insulated and flexible terminals.

Example of wiring for 24 V DC control application.

Example of wiring diagram of type $\mathbf{0 2 6 . 0 0}$
This module is necessary if using up to a maximum of 15 luminated pushbuttons (1.5 mA max, 230 V AC) in the switthing input circuit. It must be connected in parallel to the coil of the relay (see diagram).

- Screw terminal connections
- AC coil
- Panel mount
27.01
27.05/06

- Single phase switch 1 NO - Double phase switch 2 NO

Contact specifications

N umber of contacts

Rated current/ Max. peak current Rated voltage/ Max. switching voltage Rated load in AC1 $\frac{\text { Rated load in AC1 }}{\text { Rated load in AC15 (230 VAC) }}$ | Rated load in AC15 (230 VAC) | VA |
| :--- | ---: |
| Nominal lamp rating: incandescence (230V) | W |

compensated fluorescent (230V) W
uncompensated fluorescent (230V) W halogens (230V) W

halogens (230V) W	800	800
M inimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgNi	AgNi
Coil specifications		
Nominal voltage	230	230
	-	-
Rated power AC/DC VA (50Hz)/ W	$4 /-$	4/-
0 perating range	(0.8...1.1) U_{N}	(0.8...1.1) U_{N}
	-	-
Technical data		
Mechanical life cycles	$300 \cdot 10^{3}$	$300 \cdot 10^{3}$
Electrical life at rated load in AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
M aximum impulse duration	1 h (according to EN 60669)	1 h (according to EN 60669)
Insulation between coil and contacts (1.2/50 $/$ s) kV	4	4
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+40$	$-40 \ldots+40$
Protection category	PP 20	\|P 20
Approvals: (according to type)	C ϵ	(1)

ORDERING INFORMATION

TECHNICAL DATA

insulation

$\begin{array}{c}\text { DIELEC TRIC STREN G TH } \\ \text { - between open contacts }\end{array}$	V AC	2,000

COIL SPECIFICATIONS

Nominal	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	0 perating range		Resistance	Consumption
U_{N}		$U_{\text {min }}$	$U_{\text {max }}$	R	$\mathrm{I}_{\text {atu\| }}^{\text {\| }}$ (50Hz)
V		v	v		mA
230	8.230	184	253	6500	17.5

Type	Number	Sequences			
	of steps	1	2	3	4
27.01	2	$)^{1}$	4		
27.05	4	$\nu^{1}{ }^{\prime}$			44
27.06	3	ν^{\prime}	\square^{1}	44	

ACCESSORIES

MODULE FOR ILUMINATED PUSH-BUTTONS

Type 027.00
This module is necessary if using up to a maximum of 15 illuminated push-buttons $(1 \mathrm{~mA}$ max, 230 VAC) in the switching
input circuit.
It must be pluged directly into the relay.

27 series relay with 027.00 module.

REFEREN CE STANDARDS AND VALUES

Unless expressly indicated otherwise, the product following European and International Standards:
EN 61810-1, EN 61810-5 IEC 61810-7, EN 60255-23 for allor-nothing (elementary) relays
EN 61812-1 for timers
EN 60669-1, EN $6060669-2-2$ for electromechanical step relays
EN 60065 for light-dependent relays $60669-2-3$ for electronic step relays and staircase switches
ther standards used
VDE 0106 as basic standard
EN 60335 (VDE 0700) for domestic appliances, prescribing 8 mm creepage and clearance between coil and contacts
EN 50178 (VDE 0160) for industrial appliances, prescribing 5.5 mm clearance and $6.4 . . .8 \mathrm{~mm}$ creepage between coil and contacts
According to EN $61810-1$, all technical data is specified under standard conditions of $23^{\circ} \mathrm{C}$ ambient temperature, 96 kPa pressure, 50% humidity, clean air and 50 Hz frequency. The tolerance for coil resistance, nominal absorption and rated power values is $\pm 10 \%$.

WORKING CONDITIONS

Unless expressly indicated otherwise, all relays are suitable for 100% Duty Cycle and all the AC coil relays are suitable for 50 and 60 Hz frequency.
Environmental conditions causing condensation or ice formation in the relay are not permitted
Environmental conditions (varistor for AC , diode for DC) is recommended in parallel with the coil for nominal voltages $\geq 110 \mathrm{~V}$ for the relays of 40, 41, 44 series.
, ren relay coils are controlled via a proximity switch, or via cables having length > 10 m , the use of a "residual current bypass" module in parallel with the coil is recommended.

GUIDELNES FOR AUTOMATIC FLOW SOLDER PROCESSES

In general, an automatic flow solder process consists of the following stages:
RELAY MOUNTNG - Ensure that the relay terminals are straight and enter the PC board perpendicular to the PC board. For each relay, the catalogue illustrates the necessary PC board pattern (copper side view)

FLUX APPUCATION - This is a particularly delicate process. If the relay is not sealed, flux may penetrate the relay due to capillary forces
hanging its performance and functionality
W hether using foam or spray fluxing methods, ensure that flux is applied sparingly and evenly and does not flood through to the component side of the PC board.
By following the above precautions, and assuming the use of alcohol or water based fluxes, it is possible to satisfactorily use relays with protection category RT II.
PREHEATNG - Set the preheat time and heat to just achieve the effective evaporation of the flux, taking care not to exceed a component side temperature of $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$.

SOLDERING - Set the height of the molten solder wave such that the PC board is not flooded with solder
Ensure the solder temperature and time are kept to $250^{\circ} \mathrm{C}\left(482^{\circ} \mathrm{F}\right)$ and 3 seconds maximum
CLEANING - The use of modern "no-clean" flux avoids the necessity of washing the PC board. In special cases where the PC board must be washed the use of wash-tight relays (option 0001 - RT III) is strongly recommended. Even so, avoid washing the relay itself, particularly with aggressive solvents or in cycles using low temperature water, as this may cause thermal shock to the PC board components.

GENERAL TECHNICAL IN FORMATION

TERMINOLOGY \& DEFINITIONS

All the following terms indicated in the catalogue are commonly used in technical language. However, occasionally, National European or All the following terms indicated in the catalogue are commonly used in technical language. However, occasionally, National European or
International Standards may prescribe the use of different terms, in which case this will be mentioned in the appropriate descriptions that follow.

CONTACT SPECIFICATIONS

Symbol	Configuration	EU	D	GB	USA
1	Make contact (N ormally O pen)	No	S	A	SPSTTN 0 DPST-NO nPST-N 0
4	Break contact (N ormally Closed)	NC	0	B	SPSTN C DPSTTNC nPSTN C
4^{1}	Changeover	co	w	C	SPDT DPDT nPDT

$n=$ number of poles $(3,4, \ldots)$
TERMINAL MARKING
The European Standard EN 50005 recommends the following numbering for the marking of relay terminals:

- 1 for common contact terminals (e.g. 11, 21,31...)
- 2 for NC contact terminals (e.g. 12, 22, 32...)

A1 and A2 for coil terminals
For delayed contacts of timers the numbering will be:
-.5 for common contact terminals (e.g. 15, 25,...)
. .6 for N C contact terminals (e.g. $16,26, \ldots$)
-.8 for NO contact terminals (e.g. 18, 28, \ldots)
IEC 67 and American standards prescribe

- progressive numbering for terminals $(1,2,3, \ldots .13,14, .$.
- sometimes A and B for coil terminals.

RATED CURRENT - The limiting continuous current, is the highest current that a contact can continuously carry within the prescribed temperature limits. It also coincides with the limiting cycling capacity, i.e. the maximum current that a contact is capable of making and breaking under specified conditions.

MAXIMUM PEAK CURRENT - The highest value of inrush current (≤ 0.5 seconds) that a contact can make and cycle (duty cycle ≤ 0.1) without undergoing any permanent degradation of its characteristics due to generated heat. It also coincides with the limiting making capacity MAXIMUM BLOCKING VOLTAGE (Solid State Relay) - The maximum level of output voltage at which the outputcircuit will not be destroyed.

RATED VOLTAGE - The line-to-neutral voltage (derived from nominal voltages of contact loads) used for insulation co-ordination
MAXIMUM SWITCHING VOLTAGE-The highest voltage level (including tolerances) that the contacts are able to switch according to rated voltage
RATED LOAD IN AC1 - The maximum AC resistive switching power (in VA) that a contact can make, carry and break repeatedly, according to utilisation category AC1, EN 60947-4-1 (see Table 1). It is the product of rated current and rated voltage. It is used as the reference load for electrical life tests.
RATED LOAD IN AC15 - The maximum AC inductive switching power (in VA) that a contact can make, carry and break repeatedly, according to utilisation category AC15, EN 60947-5-1 (see Table 1)

SINGLE PHASE MOTOR RATNG - The nominal value of motor power that a relay can switch according to EN 60947-1, UL 508 and CSA 22.2 n. 14 * The figures are given in kW ; the horsepower rating can be calculated by multiplying that value by 1.34 (ie. $0.37 \mathrm{~kW}=0.5 \mathrm{HP}$) If reversing motor direction, always allow an intermediate break $>300 \mathrm{~ms}$, otherwise an excessive inrush peak current (caused from change of polarity of motor capacitor) may occur, causing contact weld ing.
RATED LAMPS LOAD - Maximum incandescent and fluorescent lamp ratings for 230 VAC supply voltage. Fluorescent lamps compensated to $\cos \varphi \geq 0.9$.
BREAKING CAPACITY IN DC1 - The maximum value of $D C$ resistive current that contacts can switch, depending on the value of the load voltage (see table 1).
MINIMUM SWITCHING LOAD - The minimum values of power, voltage and current that a contact can reliably switch. For example, if minimum values are $300 \mathrm{~mW}, 5 \mathrm{~V} / 5 \mathrm{~mA}$:
with 5 V the current must be at least 60 mA ;
with 24 V the current must be at least 12.5 mA

- with 5 mA the voltage must be at least 60 V .
i For gold contact variants, loads no less than $50 \mathrm{~mW}, 5 \mathrm{~V} / 2 \mathrm{~mA}$ are suggested

ELECTRICAL UFE TEST - An AC resistive load test (AC1 category) conducted with relay coil (both AC and DC) supplied at rated voltage. Load pplied between all movable and $N O$ contacts but without any load on the NC contacts, and vice-versa. These load life values are valid for relays with standard contact materia

All-or-nothing
Step relays:
coil 900 cycles/ h - contact 900 cycles/h ($2 \mathrm{~s} 0 \mathrm{~N}-2 \mathrm{~s} 0 \mathrm{FF}$)
coil 900 cycles/ h - contact 450 cycles/ h ($4 \mathrm{~s} 0 \mathrm{~N}-4 \mathrm{~s} 0 \mathrm{FF}$)

LOAD REDUCTION FACTOR VERSUS $\cos \varphi$ - For AC inductive loads (such as solenoids, contactors coils, etc.) the reduction factor corresponding to $\cos \varphi$ shall be multiplied by the rated current in order to define the maximum allowed current It is not valid for electric motors or fluorescent lamps.

$\cos \varphi{ }^{0}$
ABLE 1 - Utilisation categories according to EN60947-4-1 and EN 60947-5-1

Load Category	Supply type	Application
AC 1	AC single-phase AC three-phase	Resistive or slighty Inductive AC loads.
AC 3	AC threephase	Starting and stopping of Squirrel-cage motors. Reversing direction of rotation only after stopping motor.
AC 4	AC threephase	Starting, Stopping and Reversing direction of rotation of Squirrel cage motors. Jogging (Inching). Regenerative braking (Pugging).
DC 1	DC	Resistive loads or slighty inductive DC loads.*
AC 14	AC single-phase	Control of small electromagnetic loads (<72 VA), power contactors, magnetic solenoid valves, and electromagnets.
AC 15	AC single-phase	Control of small electromagnetic loads (>72 VA), power contactors, magnetic solenoid valves, and electromagnets.
DC 13	DC	Control of electromagnetic loads, power contactors, magnetic solenoid valves, and electromagnets
* The switching voltage at the same current can be doubled by wiring 2 contacts in series.		

CONTACT RESISTANCE - Measured, according to contact category (Table 2), at the external terminals of the relay. It is a statistical value, not reproducible. It hasn't any effect on relay reliability on most application. The typical value, measured with 24 V 100 mA , is $50 \mathrm{~m} \Omega$.

ABLE 2 - Contact categories according to EN60255-23

he effectiveness with which a relay contact can make an electrical circuit depends on several factors, such as the material used for the contact, its' exposure to environmental pollution and its' design etc.. Therefore, for reliable operation, it is necessary to specify a contact A pplication Category that will define a particular relay's switching capability in terms of maximum and minimum limits for contact voltage and current. The appropriate Application Category will also define the voltage and current levels used to measure the contact resistance. All Finder relays are category 3 , with he exception of 30 series, which is category 2 .

Application category	Voltage (V)	Current (A)	Contact Resistance Measurement (IEC 61810-7)	
0	$U<0,03$	$1<0.01$	$>30 \mathrm{mV}$	10 mA
1	$0,03<U<60$	$0,01<1<0,1$	100 mV	10 mA
2	$5<U<250$	$0,1<1<1$	24 V	100 mA
$\mathbf{3}$	$\mathbf{5}<\mathbf{U}<\mathbf{6 0 0}$	$\mathbf{0 , 1}<\mathbf{1}<\mathbf{1 0 0}$	$\mathbf{2 4} \mathbf{~ V}$	$\mathbf{1 0 0 0} \mathbf{~ m A}$

Material	Property	Typical application*
$\mathrm{AgNi}+\mathrm{Au}$ (Silver Nickel G old plated)	Silver-nickel base with a galvanic hard gold plating of $5 \mu \mathrm{~m}$ typical thickness G old is not attacked by industrial atmospheres - W ith small loads, contact resistance is lower and more consistent compared to other materials. NOTE: $5 \mu \mathrm{~m}$ hard gold plating is completely different from $0.2 \mu \mathrm{~m}$ gold flashing, which allows only protection in storing, but no better performance in use.	W ide range applications: - Small load range (where gold plating erodes very litte) from $50 \mathrm{~mW}(5 \mathrm{~V} 2 \mathrm{~mA})$ up to $1.5 \mathrm{~W} / 24 \mathrm{~V}$ (resistive load). - Middle load range where gold plating erodes after several operations and the property of basic AgNi becomes dominant. NOTE: for switching lower loads, typically $1 \mathrm{~mW}(0.1 \mathrm{~V} 1 \mathrm{~mA})$, (for example in measuring instruments), it is recommended to connect 2 contacts in parallel.
AgNi (Silver Nickel)	- Standard contact material for most relay applications. - High wear resistance - M edium resistance to welding	- Resistive and slightly inductive loads - Rated current up to 12 A - Inrush current up to 25 A
$\overline{\mathrm{AgCdO}}$ (Silver Cadmium 0 xide)	- High wear resistance with higher AC loads - Good resistance to welding	- Inductive and motor loads - Rated current up to 30 A - Inrush current up to 50 A
AgSnO_{2} (Silver Tin 0 xide)	- Excellent resistance to welding - Low material transfer in DC loads	- Lamp and capacitive loads - Very high Inrush current (up to 120 A) loads

* It is necessary to refer to the maximum current values specified in the catalogue for each relay.

GENERAL TECHNICAL INFORMATION

COIL (or INPUT or SUPPLY) SPECIFICATIONS
NOMINAL VOLTAGE - The nominal value of coil (or input or supply) voltage for which the relay has been designed, and for which operation is intended. The operating and use characteristics are referred to the rated voltage.

RATED POWER - The DC power value (W) or the apparent AC power value (VA with closed armature) which is absorbed by the coil at $23^{\circ} \mathrm{C}$ and at rated voltage. It is a short-ime value (not steady-state).
OPERATING RANGE - The range of input voltage, in nominal voltage applications, in which the relay works in the whole range of ambient temperatures, according to operating class:

$$
\text { -class 2: } 0.85 \ldots 1.1 U_{N}
$$

In application where the coil voltage doesn't meet the tolerances of nominal voltage, the diagrams " R " shows the relation of maximum coil voltage permitted and pick-up voltage (without preenergisation) versus ambient temperature.
energization voltage

NON-OPERATE VOLTAGE-The value of input voltage at which the relay will not operate (not specified in the catalogue).
MINIMUM PICK-UP VOLTAGE (Operate voltage) - The lowest value of applied voltage at which the relay will operate
MAXIMUM VOLTAGE - The highest applied voltage that the relay can continuously withstand, dependent on ambient temperature (see "R" diagrams).
HOLING VOLTAGE (Non-release voltage) - The lowest value of coil voltage at which the relay (which has previously been energised with a voltage within the operating range) will not drop-out.

MUST DROP-OUT VOLTAGE (Release voltage) - The value of coil voltage at which the relay (which had previously been energised with voltage within the operating range) will definitely drop-0ut
RESISTANCE - The average value of the coil resistance under the standard prescribed condition of $23^{\circ} \mathrm{C}$ ambient
RATED COIL CONSUMPTION - The average value of coil current, when energised at nominal voltage.
CONTROL CURRENT (Solid State Relays) - The nominal value of curent consumption of the input circuit, when supplied at nominal voltage. THERMAL TESTS - C alculation of the coil temperature rise (ΔT) is made by measuring the coil resistance in a controlled temperature oven (not ventilated) until a stable value is reached (no less than 0.5 K variation in 10 minutes).
That is: $\Delta T=\left(R_{2}-R_{1}\right) / R_{1} \times\left(234.5+t_{1}\right)-\left(t_{2}-t_{1}\right)$

$$
\text { where: } \begin{aligned}
& \mathrm{R}_{1}=\text { initial resistance } \\
& \mathrm{R}_{2} \text { final resistance } \\
& \mathrm{t}_{1}=\text { initial temperature } \\
& \mathrm{t}_{2}=\text { final temperature }
\end{aligned}
$$

INSULATION DATA

INSULATION COORDINATION (according to EN 61810-5 and IEC 60664-1
In accordance with to EN $61810-5$, the Insulation characteristics achieved by the relay can be described by just two characteristic parameters - the d the Degree of Pollution.
To ensure the correct Insulation Coordination between the relay and the application, the equipment designer (relay user) should establish the Rate Impulse Withstand Voltage appropriate to his application, and the Pollution level for the micro environment in which the relay is situated. He should
then match (or coordinate) these two figures with the corresponding values given in the appropriate relay data

To establish the appropriate Pollution degree and Rated impulse withstand voltage refer either to an appropriate Product Standard (which may be mandatory for the particular type of equipment), or consider the tables below. Select the Rated impulse withstand voltage from a knowledge of the $\mathbf{5 6}{ }^{\text {N ominal Voltage of the Supply and a knowledge of the } 0 \text { ver Voltage Category (as described in IEC 60664-1 }}$

Nominal voltage of the supply system (mains) according to IEC 600038		Voltage line-to-neutral (derived from nominal voltages AC or DC,	Rated impulse withstand voltage				
v		v	V				
			0 vervoltage category				
Three-phase	Single-phase		1	\\|	III	IV	
	120 to 240	150	800	1500	2500	4000	
230/400*		250*	1200*	2200*	3600*	5500*	
230/400 277/480		300	1500	2500	4000	6000	
* For existing products the interpolated values apply							

Pollution degree Immediate surroundings conditions
1 No pollution or only dry, non-conductive pollution occurs.

| The pollution has no influence. |
| :--- | :--- |
| $\mathbf{2}$ Only non-conductive pollution occurs, except that occasionally a temporary conductivity caused by condensation is to be |

2 expected.
4
alution occurs or dry non-conductive pollution occurs which becomes conductive due to condensation which to bexpected

Dependent on the product standard, pollution degree 2 and 3 are commonly prescribed for equipment For example, EN 50178 (electronic or use in power installations) prescribes, under normal circumstances, contamination level 2 .
Examples of specification of Rated Impulse Voltage and the Degree of Pollution:
$\mathbf{4} \mathbf{~ k V} / \mathbf{3}$ (This relay is designed to withstand a rated impulse voltage of 4 kV and pollution degree 3).
$\mathbf{4 - 2 , 5} \mathbf{~ k V} / \mathbf{3}$ (This relay is designed to withstand rated impulse voltages of 4 kV and 2.5 kV and pollution degree 3).
If only one rated impulse voltage is given, the value refers to all electrical circuits against each other and against the accessible surfaces. If two values are indicated for the rated impulse voltage, the first value refers to the contacts against each other and against the accessible surfaces as well s other electrical circuits. The second value refers to the coil against accessible surfaces and other electrical circuits

DIELECTRIC STRENGTH - It can be described in terms of an alternating voltage or in terms of a surge ($1.2 / 50 \mu \mathrm{~s}$ impulse) voltage. The correspondence between the alternating voltage and surge voltage is listed in IEC 60664-1 A nnex A, Table A.1.
for all Finder relays a 100% test is carried out with a 50 Hz , alternating vol
nd between open contacts. The leakage current must be less than 3 mA .
type tests are carried out with both alternating voltage and with impulse voltage.
DIEIECTRIC STRENGTH BETWEEN OPEN CONTACTS - It far exceeds the maximum switching voltage. Typical contact gaps of $0.3 \sim 0.5 \mathrm{~mm}$ result in ultimate dielectric strength values of typically $1300 \sim 1550 \mathrm{~V}(1.2 / 50 \mathrm{us}$ impulse), but always refer to the relay specification
(TSULATION GROUP - The latest way of Specifying insulation properties according to the Insulation Coordination replaces the insulation group classification, such as C 250 according to the older VDE 0110 standard.
SAFE SEPARATION / DOUBLE INSULATION - Isolation Co-ordination as described earlier ensures the isolation of hazardous voltages from ther circuits to a safe engineering level. But importantly, not on the basis that there is any intentional direct personal access to the isolated circuits , where failure of insulation would present a particularly high risk. (Telecoms and medical applications are good examples).

For high risk / high integrity applications there is a need for a very special and higher level of physical isolation and integrity between circuits, and is is provided by safe separation and double insulation. The regulations for safe separation establish the conditions which must be met for ELV (protected extra low voltage) or SELV (safety extra low voltage) circuits.

Consider the common case, where the mains voltage of 230 V and a low voltage circuit both appear within a relay; all the following requirements for the relay, including its connections and wiring, must in consequentce be met.

The low voltage and the 230 V must be separated by double or reinforced insulation. This means that between the two electrical circuits must be guaranteed a dielectric strength an appropriate tracking distance
relay must be protected against any possibility of bridging caused, for instance, by a lose metal part This is achieved separation of circuits into isolated chambers within the relay.
For relays mounted on printed circuit also be physically separated from each other. This normally is achieved using separate cable channels,
to other voltages must be achieved. boards the appropriate distance between the tracks connected to low voltage and the tracks connected
A though this appears quite complex, with the SELV insulation options offered on some Finder relays, the user only needs to address the two last points. And with the coil and contact connections on opposite sides of the relays and sockets, the separation of connections into different cable channels is greaty facilitated

GENERAL TECHNICAL IN FORMATION

GEN ERAL TECHNICAL DATA
CYCLE - 0 perate and subsequent release of a relay. O ver a cycle the coil is energised and deenergised and the contact will progress from the point CYCLE-O perate and subsequent release of a relay. Over a cycle the coin is energised and e ene circuit.
at which it makes a circuit, through to breaking the circuit, to the point at which it re-makes the

PERIOD - The time covering one cycle.
DUTY FACTOR (DF) - During cyclic operation, DF is the ratio between the energised time and one period. For continuous duty, $D F=1$
MECHANICAL UFE - This test is performed by energising the coils of several relays at 8 cycles per second without any load applied to the contacts. It establishes the ultimate durability of the relay where electrical wear of the contacts is not an issue. The maximum Electrical Life may therefore approach the Mechanical Life where the electrical loading of the contacts is very small.

ELECTRICAL LFE - See in CO N TACT SPECIFIC ATIO NS.
OPERATE TME-The maximum operate time of contacts with the coil energised at rated voltage. In the catalogue, it includes the bounce time (see following pattern).

REIEASE TME - The maximum release time of contacts. In the catalogue, it includes the bounce time (see following pattern). It will increase if protection modules are connected in parallel to the coil.

T1 : NC contact opening time at coil energization
t2 : NO contact closing time (including conctact bounce) at coil energization (operate time)
t 3 : NO contact opening time at coil deenergization
4 : N C contact closing time (including contact bounce) at coil deenergization (release time)
INSULATON COORDINATON according to EN 61810-5 - See in IN SULATIO N DATA.
dielectric strengit between open contacts - See in in sulatio n data.
AMBIENT TEMPERATURE RANGE - The range of temperatures of the immediate area where the relay is located, and for which operation of the relay is guaranteed (under prescribed conditions).
ENVIRONMENTAL PROTECTON according to IEC 61810-7 - The relay technology categories describe the degree of sealing of the relay case:

Relay technology category	Condition
RT $0 \quad$ Unenclosed relay	Relay not provided with a protective case.
RTI \quad Dust protected relay	Relay provided with a case which protects its mechanism from dust.
RT II \quad Flux proof relay	Relay capable of being automatically soldered without allowing the migration of solder fluxes beyond the intended areas.
RT III \quad W ash tight relay	Relay capable of being automatically soldered and subsequently undergoing a washing process to re move flux residues without allowing the ingress of flux or washing solvents.
RTIV \quad Sealed relay	Relay provided with a case which has no venting to the outside atmosphere
RTV Hermetically sealed relay	Sealed relay having an enhanced level of sealing.

PROTECTION CATEGORY OF ENCLOSURES - according to EN 60529. The first digit is related to the protection against ingress of solid foreign objects into the relay, and also against access to hazardous parts. The second digit relates to the protection against ingress of water. The IP grade is related to normal use, in relay sockets or PC boards. For sockets, IP20 means that the socket is "finger-safe" (VDEO106).
Examples:
P00 $=$ N ot protected
IP $20=$ Protected against solid foreign objects of $12.5 \mathrm{~mm} \varnothing$ and greater. N ot protected against wate
IP $40=$ Protected against solid foreign objects of $1 \mathrm{~mm} \varnothing$ and greater. N ot protected against water.
IP $50=$ Protected against powder (ingress of dust is not totally prevented, but dust shall not penetrate in a quantity to interfere with satisfactory IP $67=$ operation of the relay). N ot protected aga protected agst water.

VIBRATION RESISTANCE-The maximum acceleration value (measured in $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$) for frequencies in the range 10.55 Hz which can be applied to the relay in any of the 3 axis, without the opening for more than $10 \mu \mathrm{~S}$ of the $N \mathrm{O}$ contact (if the coil is energised) or NC contact (if the coil is not energised). In the energised state, the resistance is usually higher than in nonenergised state.
POWER LOST TO THE ENVIRONMENT - The value of the power lost from the relay in working conditions (without contact load or at full load) and may be used in the thermal design of panels.
MOUNTING POSITION - If not expressly indicated, any mounting position of the relay is permitted.
recommended distance between relays mounted on Pc.Boards - This is the minimum mounting distance suggested when several relays are mounted on the same PC board. Care shall a lso be taken that other components mounted on the PC board do not heat the relays.

TORQUE-The maximum value of torque that can be used for tightening terminal screws, according to EN 60999 , is 0.4 Nm for M 2,5 screws, 0.5 Nm for M3 screws, 0.8 Nm for M 3, 5 screws, 1.2 Nm for M4 screws.
The test torque is indicated in the catalogue.. N ormally a 20% increase of this value is acceptable.
(3T) Both slothead and cross-head screwdrivers can be used.
MAX WIRE SIZE - Maximum crosssection of cables (solid or stranded wire, without ferrules) that can be connected to each terminal. For use with errules, the wire cross-section has to be reduced (e.g. from 4 to $2.5 \mathrm{~mm}^{2}$, from 2.5 to $1.5 \mathrm{~mm}^{2}$, from 1.5 to $1 \mathrm{~mm}^{2}$).
For any terminals, a minimum cross-section of $0.2 \mathrm{~mm}^{2}$ is allowed.
According to EN $60204-1$, it is permitted to introduce 2 or more wires into the same terminal. All Finder products are designed in such a way that each terminal can accept 2 or more wires.

SPECIFIED TIME RANGE - Range in which it is possible to set timing using the time scales.
REPEATABILTY - The difference between the upper and lower limits of a range of values taken from several time measurements of a specified time relay under identical stated conditions. Usually repeatability is indicated as a percentage of the mean value of all measured values.
RECOVERY TME-The time necessary to start the relay again with the defined accuracy after the input energising quantity has been removed
MINIMUM CONTROL IMPULSE - The shortest duration of a control impulse to fulfil and complete the time function.
SETING ACCURACY - The difference between the measured value of the specified time and the reference value set on the scale
THRESHOL SETING - For light-dependent relays this is the illumination level (measured in Lux) at which the relay will switch on or off. Pre-set levels and the corresponding range of threshold that can be set using the regulator are indicated in the catalogue.

DELAY TME - For light-dependent relays this is the delay between the change of state in the electronic circuit sensitive to light variation (usually indicated by change of state of an LED) and the switching of the output relay contact.

CABLE GRIP - Specifies the range of the external diameter of cables that can be reliably gripped.
TYPE - For time switches, this is the type of program (weekly or daily).
PROGRAMS - For time switches, this is the number of different types of programs that can be stored.
MINIMUM INTERVAL SETING - For time switches, this it is the minimum time interval that can be programmed.
BACK-UP POWER - The time when the switch won'tloose neither the programs nor the time.
MAXIMUM IMPULEE DURATION - For step relays and staircase switches, this is the maximum command pulse duration permitted
MAX NO. OF ILUMINATED PUSH-BUTTONS - For step relays and staircase switches, this is the maximum number of illuminated push-buttons having current absorption $<1 \mathrm{~mA} @ 230 \mathrm{VAC}$) that can be connected without causing problems. If the push-button consumption is higher than 1

GENERAL TECHNICAL IN FORMATION

EMC (ElectroMagnetic Compatibility) SPECIFICATIONS

TYPE OF TEST	REFERENCE STANDARD
ELEC TRO STATIC DISCHARGE	EN 61000-4-2
RADIO FREQ UEN CY ELECTRO M AG N ETIC FIELD ($80 \div 1000 \mathrm{MHz}$)	EN 61000-4-3
FAST TRAN SIEN TS (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$)	EN 61000-4-4
SURGES (1.2/50 μ)	EN 61000-4-5
RADIO FREQ UEN CY COMMON M ODE DISTURBAN CES ($0.15 \div 80 \mathrm{MHz}$)	EN 61000-4-6
POW ER-FREQ UEN CY M AGN ETIC FIEL (50 Hz)	EN 61000-4-8
RADIATED AND CONDUCTED EMISSIO N	EN 55011/55014/55022

In panel installations, the most frequent and, particularly, more dangerous type of electrical disturbances are the following:

1. Burst (fast transients). These are packets of $\mathbf{5 / 5 0 n s}$ pulses, having high peak voltage level but low energy since individual pulses are very short - 5 ns rise time ($5 \times 10^{9.9}$ seconds) and 50 ns fall time. They simulate the disturbances that can spread along the cables as a consequence of commutation transients from relays, contactors or motors. Usually they are not destructive, but they can affect the correct working of electronic devices.

2. Surge (voltage pulses). These are single $\mathbf{1 . 2 / 5 0 \mu s}$ pulses, with energy much higher than bursts since the duration is considerably longer $-1.2 \mu \mathrm{~s}$ rise time (1.2×10^{6} seconds) and $50 \mu \mathrm{~s}$ fall time. For this reason they are very often destructive. The Surge test typically simulates asturbances caused by ine propagaion of a mospheric electrical storm discharges along electrical ines, Dut ofen he sw

The test levels \mathbf{V} (peak values of the single pulses) are prescribed in appropriate product standards:

EN 61812-1 for electronic timers:

EN 60669-2-1 for electronic relays and switches
EN 50082-2 (generic standard for immunity in the industrial environment) for other electronic products for industrial application
EN 50082-1 (generic standard for immunity in the domestic environment) for other electronic products for domestic application;
Finder electronic products are in accordance with European EMC Directives $\mathbf{8 9} / \mathbf{3 3 6}$ / EEC and $\mathbf{9 3 / 6 8 / E E C}$ and indeed, have immunity capabilities often higher than the levels prescribed in the above mentioned standards. Nevertheless, it is not impossible that some working environments may impose levels of disturbances far in excess of the guaranteed levels, such that the product could be immediately destroyed!
It is therefore necessary to consider Finder products as not being indestructible under all circumstances. The user should pay attention to the disturbances in electrical systems and reduce as much as possible these disturbances. For example, employ arc suppression circuits on the contacts of switches, relays or contactors which otherwise might produce over-voltages when opening electrical circuits (particularly highly inductive or DC loads). Attention should also be paid to the placement of components and cables in such a way as to limit disturbances and their propagation.

EMC rules - Require that it is the equipment designer who must ensure that the emissions from panels or equipment does no exceed the limits stated in EN 50081-1 (generic standard for emission in the domestic environment) or 50081-2 (generic standard for emission in the industria environment or any product specific harmonised EMC standard.

99 Series - Coil indication and suppression modules

Voltage-current characteristic when
switching an ohmic load (fig. 1).

Voltage-current characteristic when
switching a relay coil fig. 2). switching a relay coil (fig. 2).

When switching a resistive load, the current follows To counteract this potentially damaging effect, then switching a resistive load, the curree.
the phase of the voltage directly (Fig 1).
relays coils can be suppressed with a Diode, When switching relay coils the current and voltage $\begin{aligned} & \text { Varistor (voltage dependent resistor) or a RC } \\ & \text { (resistor/ capacitor) }\end{aligned}$ When switching relay coils the current and voltage
waveforms are different due to the inductive (capacitor) module - dependent on the
operating voltage. (See below for descriptions of
 mechanism is as follows. $O n$ energisating the coil, the build up of the $\begin{aligned} & W \text { hilst the above description is based on the } \\ & \text { working of a } D C \text { coil, the reverse polarity voltage }\end{aligned}$ On energisating the coil, the build up of the working of a DC coil, the reverse polarity voltage
magnetic fiedd gives rise to counter electromotive
forces on deenergisation applies similarly to AC

 coil current causes a sudden collapse of the nominal coil current - dependent on coil size. If
magnetic field, which in turn induces a high nottage coils are fed via a a transformer (and particularly if
co magnetic field, which in turn induces a high voltage coils are fed via a transtormer (and particularity
of reverse polarity a cross the coil. This reverse
several are energised at the same time) then this polarity voltage peak can reach a value typically 15 times higher than the supply voltage, and as a
consequence can disturb or destroy electronic
consequ
devices.

Diagrams		Functions
99.01.9.xxx. 99 only 99.80.9.xxx. 99 only		GREEN LED +DIODE MODULE (STANDARD POLARITY) Recovery diode modules + LED are used for DC only. The reverse voltage peaks of the coil are short circuited by the recovery diode (positive to terminal A1). The release time increases by an approximate factor of 3 . If an increase of the release time is undesirable use a Varistor or RC module. The LED indicator lights up when the coil is energized.
99.01.9.xxx. 79 only		GREEN LED +DIODE MODULE (INVERTED POLARITY) Recovery diode modules + LED are used for DC only. The reverse voltage peaks of the coil are short circuited by the recovery diode (positive to terminal A2). The release time increases by an approximate factor of 3 . If an increase of the release time is undesirable use a Varistor or RC module. The LED indicator lights up when the coil is energized.
		GREEN LED + VARISTOR LED modules + Varistor are used for both AC and DC coils. The reverse voltage peaks of the relay coil are limited by the Varistor to approximately 2.5 times the nominal voltage of the supply. W hen using DC coils it is essential that positive is connected to terminal A1. The relay release time increases insignificantly.
		GREEN LED LED modules are used for $A C$ and $D C$. The LED indicator lights up when the coil is energized. W hen using DC it is essential that positive is connected to terminal A1.
		DIODE MODULE (STANDARD POLARITY) Recovery diode modules are used for DC only. The reverse voltage peaks of the coil are short circuited by the recovery diode (positive to terminal A1). The release time increases by an approximate factor of 3 . If an increase of the release time is undesirable use a Varistor or RC module.
99.01.2.000.00 only		DIODE MODULE (INVERTED POLARITY) Recovery diode modules are used for DC only. The reverse voltage peaks of the coil are short circuited by the recovery diode (positive to terminal A2). The release time increases by an approximate factor of 3 . If an increase of the release time is undesirable use a Varistor or RC module.
		RC MODULE RC circuit modules are used for AC and DC coils. The reverse voltage peaks of the coil are limited by the RC module to approximately 2.5 times the nominal voltage of the supply. The relay release time increases insignificantly.
		RESIDUAL CURRENT BYPASS MODULE Bypass modules are advisable if 110 or 230 v AC relays show any tendency to fail to release. Failure to release can be caused by residual currents from AC proximity switches or inductive coupling caused through long parallel lying AC control lines.

ənбоן甲еว ع00て－乙00て
 ‘səןрроW әэецәұи৷ ‘sıəسII ‘sКеןәу

Son ind

 TISvag－o9zoss60 dヨ OINOLN OLNVS ：OצはIVシ STE＇ગel！s опеוం eny

 ＊＇s＇n－8isoc $\forall 0$＇poong

 VIONTV O809t－ 9805×09－ 0 d

 uабелsuogens

Э尹Hsquil
 －

SOS6 8898 Z／0で $+\times$ ．

Nis

6LO6Sع6＇tuo／ $6 \varepsilon+\times$ xe

（OL）ヨsヨul＊OャOOL－
 $\forall d S$ yannt

шоэ＇ұәиләри！＇：м м м งэри！（1）

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for finder manufacturer:
Other Similar products are found below :

[^0]: Operating range (AC type) vs ambient temperature.

[^1]: ${ }^{* *}$ For DC supply, apply the positive to terminal A1. M odules in Black housing are available on request.

[^2]: o perating range Vs ambient temperature

[^3]:

 图圈 Coll

