### Amphenol<sup>®</sup> Cylindrical Connectors for Printed Circuit Board Applications

12-170-2



Proven & reliable cylindrical connector solutions for PC board attachment: MIL-DTL-38999, MIL-C-26482 and MIL-5015, with a wide range of contact arrangements and options

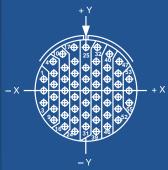


### **Amphenol Corporation**

Amphenol Aerospace 40-60 Delaware Avenue, Sidney, New York 13838-1395 Phone: 800-678-0141 or 607-563-5011 Fax: 607-563-5157 www.amphenol-aerospace.com








This catalog has been specifically designed to assist in the critical process of selecting the right cylindrical connector for a printed circuit board application.

Contact arrangements have been carefully selected to guide designers to the most commonly available and widely used insert patterns.

Pin-out location illustrations of these contact insert patterns are shown first, followed by connector shell drawings in three series:

MIL-DTL-38999, MIL-C-26482, MIL-5015.





For more information on the wide variety of PC tail contacts that are offered by Amphenol, see catalog 12-130, High Frequency Contacts, which also includes coax, twinax, triax and quadrax shielded contacts.

### Amphenol

### Amphenol<sup>®</sup> Cylindrical Connectors for Printed Circuit Board Applications

12-170-2



Proven & reliable cylindrical connector solutions for PC board attachment: MIL-DTL-38999, MIL-C-26482 and MIL-5015, with a wide range of contact arrangements and options

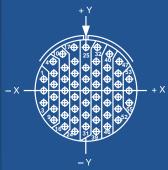


### **Amphenol Corporation**

Amphenol Aerospace 40-60 Delaware Avenue, Sidney, New York 13838-1395 Phone: 800-678-0141 or 607-563-5011 Fax: 607-563-5157 www.amphenol-aerospace.com








This catalog has been specifically designed to assist in the critical process of selecting the right cylindrical connector for a printed circuit board application.

Contact arrangements have been carefully selected to guide designers to the most commonly available and widely used insert patterns.

Pin-out location illustrations of these contact insert patterns are shown first, followed by connector shell drawings in three series:

MIL-DTL-38999, MIL-C-26482, MIL-5015.





For more information on the wide variety of PC tail contacts that are offered by Amphenol, see catalog 12-130, High Frequency Contacts, which also includes coax, twinax, triax and quadrax shielded contacts.

### Amphenol



Amphenol has earned the reputation as the leader in the military electrical connection arena. Amphenol's inter-connects meet almost any aero-space and ground vehicle design need as well as many industrial needs.

IL O T N

### Table of Contents

| Amphenol <sup>®</sup> Cylindrical Connectors<br>for Printed Circuit Board Applications | Page   |
|----------------------------------------------------------------------------------------|--------|
| Introduction                                                                           | 1      |
| Guide to Selecting a PCB Cylindrical Connector                                         | 2, 3   |
| Insert Availability                                                                    | 4      |
| Insert Arrangment Drawings                                                             | 5-24   |
| Alternate Positioning                                                                  | 25-26  |
| MIL-DTL-38999, Series I (LJT) Shell Styles                                             | 27-31  |
| MIL-DTL-38999, Series II (JT) Shell Styles                                             | 32-34  |
| MIL-DTL-38999, Series III (Tri-Start) Shell Styles                                     | 35-39  |
| Stand-off Adapter for use with MIL-DTL-38999 PCB Connectors                            | 40     |
| MIL-C-26482, Series 1 (PT) Shell Styles                                                | 41, 42 |
| MIL-5015 (MS3102) Shell Style                                                          | 43     |
| Universal Header Assemblies for use with<br>Flex print or PCB Connectors               | 44, 45 |
| Additional Products – Rectangular, for PCB Application .                               | 46-48  |
|                                                                                        |        |

Amphenol Sales Office and Distributor Listing

If more information is needed concerning the products in this publica-tion, or if you have any special application needs, please contact your nearest Amphenol sales office or Amphenol Corporation at the following address:

Amphenol Corporation Amphenol Aerospace 40-60 Delaware Ave., Sidney, NY 13838-1395 Phone: 800-678-0141 or 607-563-5011

Fax: 607-563-5157

47

See this catalog and the majority of catalogs of Amphenol Aerospace and Amphenol Industrial Interconnection Products at: www.amphenol-aerospace.com

Amphenol operates quality systems that are certified to ISO9001:2000 by third party registrars.







Amphenol has earned the reputation as the leader in the military electrical connection arena. Amphenol's inter-connects meet almost any aero-space and ground vehicle design need as well as many industrial needs.

IL O T N

### Table of Contents

| Amphenol <sup>®</sup> Cylindrical Connectors<br>for Printed Circuit Board Applications | Page   |
|----------------------------------------------------------------------------------------|--------|
| Introduction                                                                           | 1      |
| Guide to Selecting a PCB Cylindrical Connector                                         | 2, 3   |
| Insert Availability                                                                    | 4      |
| Insert Arrangment Drawings                                                             | 5-24   |
| Alternate Positioning                                                                  | 25-26  |
| MIL-DTL-38999, Series I (LJT) Shell Styles                                             | 27-31  |
| MIL-DTL-38999, Series II (JT) Shell Styles                                             | 32-34  |
| MIL-DTL-38999, Series III (Tri-Start) Shell Styles                                     | 35-39  |
| Stand-off Adapter for use with MIL-DTL-38999 PCB Connectors                            | 40     |
| MIL-C-26482, Series 1 (PT) Shell Styles                                                | 41, 42 |
| MIL-5015 (MS3102) Shell Style                                                          | 43     |
| Universal Header Assemblies for use with<br>Flex print or PCB Connectors               | 44, 45 |
| Additional Products – Rectangular, for PCB Application .                               | 46-48  |
|                                                                                        |        |

Amphenol Sales Office and Distributor Listing

If more information is needed concerning the products in this publica-tion, or if you have any special application needs, please contact your nearest Amphenol sales office or Amphenol Corporation at the following address:

Amphenol Corporation Amphenol Aerospace 40-60 Delaware Ave., Sidney, NY 13838-1395 Phone: 800-678-0141 or 607-563-5011

Fax: 607-563-5157

47

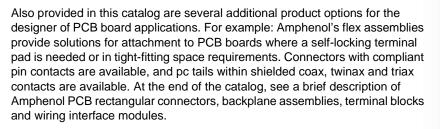
See this catalog and the majority of catalogs of Amphenol Aerospace and Amphenol Industrial Interconnection Products at: www.amphenol-aerospace.com

Amphenol operates quality systems that are certified to ISO9001:2000 by third party registrars.





### Amphenol <sup>®</sup>Cylindrical Connectors for Printed Circuit Board Applications


Amphenol provides three popular connector series with PC tail contacts. The following key points give a quick overview of these series. For more detail, there are series catalogs available as listed below<sup>\*</sup>. Go to **www.amphenol-aerospace.com** to view and download these catalogs. There is a guide to selecting a cylindrical connector with printed circuit board contacts on the following page to assist you further.

#### MIL-DTL-38999 CONNECTORS, METAL & COMPOSITE

- Lightweight, compact, high density and high reliability cylindrical
- Operating voltage to 900 VAC (RMS) at sea level
- Environmentally resistant
- Solder or crimp rear release contacts in mating plug
- Series I (LJT) Bayonet coupling
- Scoop-proof (recessed pins) offers maximum contact protection
- Series II (JT) Bayonet coupling • For applications requiring maximum weight/space savings and reliability
- Series III (Tri-Start) Threaded, quick coupling in one complete turn
- Designed for general duty as well as severe environmental applications
- Superior EMI shielding with grounding fingers and metal-to-metal mating
- Filter/Transient protection versions available
- Scoop-proof contact protection
- Stainless steel firewall versions, and composite versions

#### MIL-C-26482 CONNECTORS

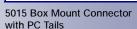
- Medium size, widely used cylindrical
- Operating voltage to 1,000 VAC (RMS) at sea level
- Series 1 (PT) Bayonet coupling most commonly used in PCB applications
- Environmentally resistant
- Solder or crimp front and rear release contacts in mating plug Black/green zinc alloy plating (cadmium-free) available
- **MIL-5015 CONNECTORS**
- Medium-heavy weight, time-tested cylindrical
- Operating voltage to 1,500 VAC (RMS) at sea level
- Environmentally resistant or general duty
- Threaded coupling
- Solder or crimp rear insertion contacts in mating plug
- Black/green zinc alloy plating (cadmium-free) available



1

Go to www.amphenol-aerospace for catalogs online.




Special 38999 Connector with Stand-off Shell and PC Tails



38999 Series III Connector with a Special Configuration Composite Shell and PC



26482 Series 1 Jam Nut Connector with PC Tails





Flex Termination with MIL-C-26482 Special Connector

\* Request Catalog 12-090 for MIL-DTL-38999 Series I, II Request Catalog 12-092 for MIL-DTL-38999 Series III Request Catalog 12-070 for MIL-C-26482, Series 1, 2 Request Catalog 12-071 for Matrix MIL-C-26482 Series 2 Request Catalog 12-020 for MIL-5015

Note: MIL-DTL-38999 supersedes MIL-C-38999.





### Amphenol<sup>®</sup> Cylindrical Connectors for Printed Circuit Board Applications

Amphenol provides three popular connector series with PC tail contacts. The following key points give a quick overview of these series. For more detail, there are series catalogs available as listed below\*. Go to **www.amphenol-aerospace.com** to view and download these catalogs. There is a guide to selecting a cylindrical connector with printed circuit board contacts on the following page to assist you further.

#### MIL-DTL-38999 CONNECTORS, METAL & COMPOSITE

- Lightweight, compact, high density and high reliability cylindrical
- Operating voltage to 900 VAC (RMS) at sea level
- Environmentally resistant
- Solder or crimp rear release contacts in mating plug
- Series I (LJT) Bayonet coupling
- Scoop-proof (recessed pins) offers maximum contact protection
- Series II (JT) Bayonet coupling
  For applications requiring maximum weight/space savings and reliability
- Series III (Tri-Start) Threaded, quick coupling in one complete turn
- Designed for general duty as well as severe environmental applications
- Superior EMI shielding with grounding fingers and metal-to-metal mating
- Filter/Transient protection versions available
- Scoop-proof contact protection
- Stainless steel firewall versions, and composite versions

#### MIL-C-26482 CONNECTORS

- Medium size, widely used cylindrical
- Operating voltage to 1,000 VAC (RMS) at sea level
- Series 1 (PT) Bayonet coupling most commonly used in PCB applications
- Environmentally resistant
- Solder or crimp front and rear release contacts in mating plug Black/green zinc alloy plating (cadmium-free) available

#### **MIL-5015 CONNECTORS**

- Medium-heavy weight, time-tested cylindrical
- Operating voltage to 1,500 VAC (RMS) at sea level
- Environmentally resistant or general duty
- Threaded coupling
- Solder or crimp rear insertion contacts in mating plug
- Black/green zinc alloy plating (cadmium-free) available

Also provided in this catalog are several additional product options for the designer of PCB board applications. For example: Amphenol's flex assemblies provide solutions for attachment to PCB boards where a self-locking terminal pad is needed or in tight-fitting space requirements. Connectors with compliant pin contacts are available, and pc tails within shielded coax, twinax and triax contacts are available. At the end of the catalog, see a brief description of Amphenol PCB rectangular connectors, backplane assemblies, terminal blocks and wiring interface modules.

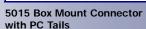
Go to www.amphenol-aerospace for catalogs online.



38999 Series III Box Mount Connector with PC Tails



38999 Series III Connector with a Special Configuration Composite Shell and PC Tails




Special 38999 Connector

with Stand-off Shell and

PC Tails

26482 Series 1 Jam Nut Connector with PC Tails





Flex Termination with MIL-C-26482 Special Connector

\* Request Catalog 12-090 for MIL-DTL-38999 Series I, II Request Catalog 12-092 for MIL-DTL-38999 Series III Request Catalog 12-070 for MIL-C-26482, Series 1, 2 Request Catalog 12-071 for Matrix MIL-C-26482 Series 2 Request Catalog 12-020 for MIL-5015

Note: MIL-DTL-38999 supersedes MIL-C-38999.

1

### Guide to Selecting a PCB Cylindrical Connector

The connector selection process is one of the most important engineering decisions to be made in any electronic application. Amphenol has created this catalog specifically to provide the necessary information to select, layout and design both the appropriate Amphenol® cylindrical connector with PCB contacts and the connector footprint (contact locations) on the printed circuit board. The guide that follows is for application of cylindrical connectors on rigid printed circuit boards and also applies if a flex print assembly or other optional is being used.

Engineers working on those PCB or flex print applications requiring rectangular connectors are encouraged to refer to page 46-48 and ask for Amphenol Rectangular Product catalogs.

### How To Select a Cylindrical Connector for a PCB Application

The data provided in this catalog is based on three cylindrical connector series: MIL-DTL-38999 Series I, II and III, MIL-C-26482 Series 1, and MIL-C-5015. See page 1 for electrical and environmental features and differences of these three series. The "hot" side of the application determines the choice of pin or socket genders of the contacts.

#### How to Measure the PCB Tail Length

The tail length of the PCB is the portion of the contact that extends beyond the rear of the shell. This length will vary in relationship to the mounting flange,

depending on the series of connector selected. Standard lengths are shown on the connector shell style drawings in this

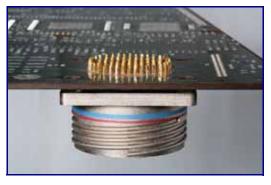
catalog. These shell style drawing pages also provide how to order part numbering for standard PCB cylindrical connectors.

When computing the desired tail length, it is important to take into consideration the following factors:

- The connector series and shell style.
- The mounting style of the receptacle; jam nut (D hole) or panel mount (four holes). This can affect the overall length of the tail.
- The extension of the tail beyond the opposite side of the board or the flex.
- The space required to adequately clean flux from between the board or flex and the rear of the connector shell. Connectors that are mounted flush against the board may trap soldering flux which could lead to corrosion of the solder joints.

### Would Alignment Discs, Headers or Special Stand-off Shells be Beneficial?

Any mechanical methods needed to stabilize the board or flex to the connector and/or the panel. The PCB tails shown in this catalog are of one diameter. Stepped tails or PCB tails with an increased diameter on a designated portion may be required for certain applications. Alignment discs are available which provide ease of alignment of pins to boards, protection during


of alignment of pins to boards, protection during shipment and optimized electrical circuit separation. Header assemblies (see pages 44 & 45) are available which provide time and cost saving potentials. Standoffs may be required for certain applications. Amphenol has developed a new stand-off adapter (see page 40) which may eliminate the need for special stand-off shell designs. Connectors with clinch nuts can be provided. Please call Amphenol to discuss any optional designs or any special requirements.



Special Design with Longer PC Tails in a 38999 Composite Shell Connector. Also shows an Alignment Disc.









Stand-off Adapter on a Jam Nut Receptacle.



Universal Header Assemblies are available for Flex Print/PC Board Mounting. Beneficial especially when electrical testing of the connector requires it to be removed and reattached.

### Guide to Selecting a PCB Cylindrical Connector, cont.

#### What Determines the Diameter of the PCB Tail?

The outside diameter of the PCB tail is determined by the inside diameter of the plated through-hole on the board or flex print. The standard or most popular diameters are shown in the chart on the next page and are called out in the connector illustrations in this catalog.

#### Standard diameters of PCB tails

| Connector Series | Size 16 Contact | Size 20 Contact | Size 22D Contact |
|------------------|-----------------|-----------------|------------------|
| MIL-DTL-38999    | .062 ±.001      | .019 ±.001      | .019 ±.001       |
| MIL-C-26482      | .030 ±.001      | .030 ±.001      | Not available    |
| MIL-5015         | .030 ±.001      | Not available   | Not available    |

For availability of other contact diameters, consult Amphenol, Sidney NY.

#### Should PCB Tails be Gold Plated or Pre-tinned?

The standard PCB tails for MIL-DTL-38999 and MIL-C-26482 receptacles have gold plating, .00050 inches over nickel. PCB tails for MIL-C-5015 receptacles are plated with silver, .00010 inches over copper. Amphenol can substitute a pre-tinned version of these tails to facilitate the termination process. This pre-tinning is a 60/40 lead-tin alloy. Call Amphenol for further information on pre-tinning and any other plating of contacts not covered in this catalog.

### Would Flex Assemblies be Necessary or Beneficial for the Application?

Flex print can radically simplify the assembly of a connector to a system, as well as eliminate wiring errors. Amphenol offers connector flex assemblies through ACT, Advanced Circuit Technologies division. Features and benefits of using flex technology include:

- Available for MIL-DTL-38999 (including filter EMI/EMP types), MIL-5015 and MIL-C-26482 cylindrical connectors
- Sculptures<sup>®</sup> Flexible Circuits with built-in terminations
- Eliminates failures associated with crimped or solder-on contacts
- Geometrically fit tight space requirements and create a self-locking terminal pad

#### Should Other PC Tail Contact Types be Considered?

Press-Fit Connectors with compliant pins are available which engage the plated through-holes in the board without the need for soldering. This optional contact style offers the following benefits:

- Improved board processing time
- Excellent temperature performance
- Ideal for low-lead applications

For more information on Press-Fit connectors with compliant pins refer to Amphenol data sheet #188.

Special Quadrax contacts have been designed with PC tails. Coax, twinax and triax contacts can also have PC tails. Refer to Amphenol catalog 12-130. Go online at www.amphenol-aerospace.com or consult Amphenol Aerospace for further information.



Flex Termination for Attachment to PC Boards



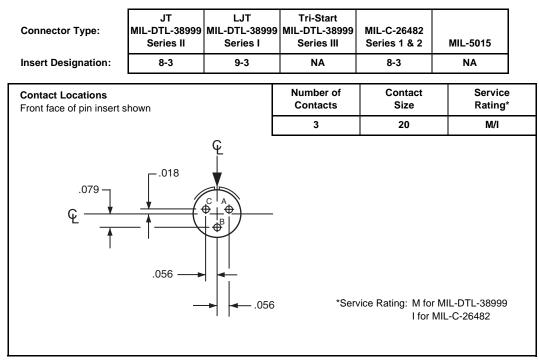
Compliant Pin Contacts in a Bayonet 38999 Catalog



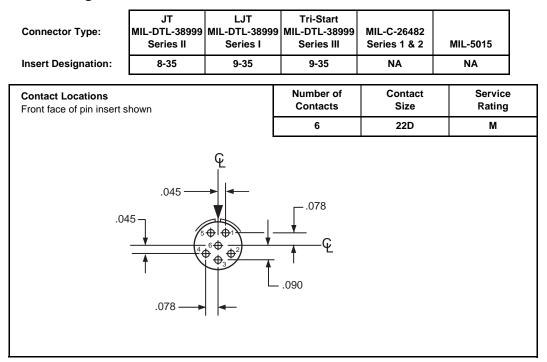
Quadrax PC Tail Contacts Combined with Standard PC Tail Contacts



Quadrax Contacts with PC Tails in a 38999 Connector with Special Stand-off Shell

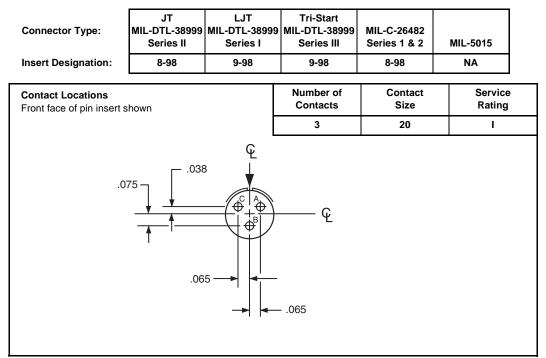

## Cylindrical Connectors with PCB contacts insert availability

The following table lists the most commonly used insert arrangements for printed circuit board application of MIL-DTL-38999, MIL-C-26482 and MIL-C-5015 cylindrical connectors. This represents the most readily available patterns within these series. See illustrations of these selected patterns on the following pages. If you require other arrangements than what are shown here, consult Amphenol for further availability.


|                 | MIL-DTL-38999   | )                       |             |          |                   |                   | Co  | ontact Si | ze* |
|-----------------|-----------------|-------------------------|-------------|----------|-------------------|-------------------|-----|-----------|-----|
| JT<br>Series II | LJT<br>Series I | Tri-Start<br>Series III | MIL-C-26482 | MIL-5015 | Service<br>Rating | Total<br>Contacts | 22D | 20        | 16  |
| 8-3             | 9-3             |                         | 8-3         |          | M/I               | 3                 |     | 3         |     |
| 8-35            | 9-35            | 9-35                    |             |          | М                 | 6                 | 6   |           |     |
| 8-98            | 9-98            | 9-98                    | 8-98        |          | I                 | 3                 |     | 3         |     |
|                 |                 |                         |             | 10SL-3   | Α                 | 3                 |     |           | 3   |
| 10-5            | 11-5            | 11-5                    | 10-5        |          | I                 | 5                 |     | 5         |     |
|                 | 11-6            |                         | 10-6        |          | I                 | 6                 |     | 6         |     |
| 10-35           | 11-35           | 11-35                   |             |          | М                 | 13                | 13  |           |     |
| 12-3            | 13-3            |                         | 12-3        |          | II                | 3                 |     |           | 3   |
|                 |                 |                         | 12-10       |          | I                 | 10                |     | 10        |     |
| 12-35           | 13-35           | 13-35                   |             |          | М                 | 22                | 22  |           |     |
|                 |                 |                         |             | 14S-6    | Inst.             | 6                 |     |           | 6   |
| 14-18           | 15-18           | 15-18                   | 14-18       |          | I                 | 18                |     | 18        |     |
| 14-19           | 15-19           | 15-19                   | 14-19       |          | I                 | 19                |     | 19        |     |
| 14-35           | 15-35           | 15-35                   |             |          | М                 | 37                | 37  |           |     |
|                 |                 |                         |             | 16S-1    | Α                 | 7                 |     |           | 7   |
| 16-26           | 17-26           | 17-26                   | 16-26       |          | I                 | 26                |     | 26        |     |
| 16-35           | 17-35           | 17-35                   |             |          | М                 | 55                | 55  |           |     |
|                 |                 |                         |             | 18-1     | A/Inst.           | 10                |     |           | 10  |
| 18-11           | 19-11           | 19-11                   | 18-11       |          | II                | 11                |     |           | 11  |
| 18-32           | 19-32           | 19-32                   | 18-32       |          | I                 | 32                |     | 32        |     |
| 18-35           | 19-35           | 19-35                   |             |          | М                 | 66                | 66  |           |     |
|                 |                 |                         |             | 20-11    | Inst.             | 13                |     |           | 13  |
| 20-27           | 21-27           |                         | 20-27       |          | I                 | 27                |     | 27        |     |
| 20-35           | 21-35           | 21-35                   |             |          | м                 | 79                | 79  |           |     |
| 20-41           | 21-41           | 21-41                   | 20-41       |          | I                 | 41                |     | 41        |     |
|                 |                 |                         |             | 22-14    | Α                 | 19                |     |           | 19  |
| 22-35           | 23-35           | 23-35                   |             |          | М                 | 100               | 100 |           |     |
| 22-55           | 23-55           | 23-55                   | 22-55       |          | I                 | 55                |     | 55        |     |
|                 |                 |                         |             | 24-5     | Α                 | 16                |     |           | 16  |
|                 |                 |                         |             | 24-28    | Inst.             | 24                |     |           | 24  |
| 24-31           |                 |                         | 24-31       |          | I                 | 31                |     |           | 31  |
| 24-35           | 25-35           | 25-35                   |             |          | м                 | 128               | 128 |           |     |
| 24-61           | 25-61           | 25-61                   | 24-61       |          | I                 | 61                |     | 61        |     |
|                 |                 | 1                       |             | 28-15    | Α                 | 35                |     |           | 35  |

\* For information on size 12 PC tail contacts consult Amphenol Aerospace.

#### Insert Arrangement #8-3 / 9-3

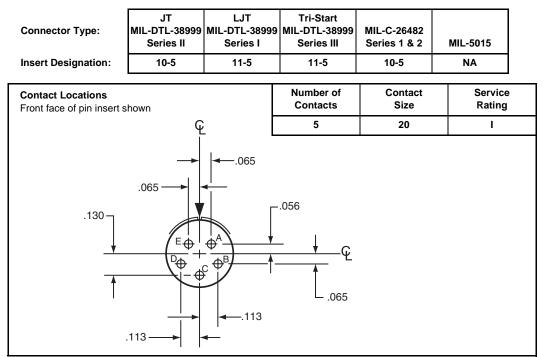



### Insert Arrangement #8-35 /9-35

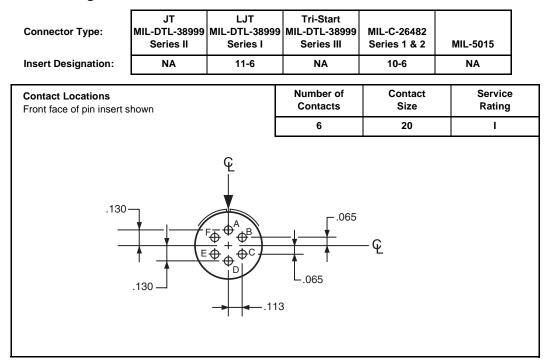


All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for PCB applications. For availability of other arrangements, consult Amphenol Corp., Sidney, NY.

### Insert Arrangement #8-98 / 9-98

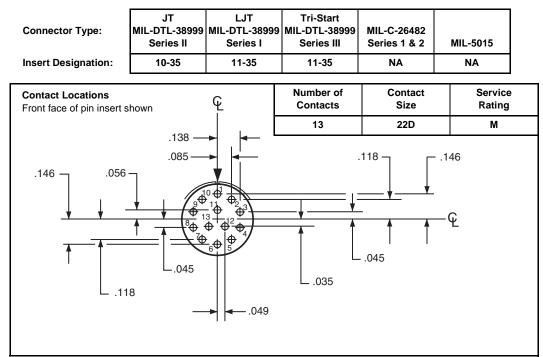



### Insert Arrangement #10SL-3


| Connector Type:                                 | JT<br>MIL-DTL-38999<br>Series II | LJT<br>MIL-DTL-38999<br>Series I | Tri-Start<br>MIL-DTL-38999<br>Series III | MIL-C-26482<br>Series 1 & 2 | MIL-5015          |
|-------------------------------------------------|----------------------------------|----------------------------------|------------------------------------------|-----------------------------|-------------------|
| Insert Designation:                             | NA                               | NA                               | NA                                       | NA                          | 10SL-3            |
| Contact Locations<br>Front face of pin insert s | shown                            |                                  | Number of<br>Contacts                    | Contact<br>Size             | Service<br>Rating |
|                                                 |                                  | و<br>ل                           | 3                                        | 16                          | Α                 |
|                                                 | .053                             |                                  | ዊ<br>ነ                                   |                             |                   |

All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for PCB applications. For availability of other arrangements, consult Amphenol Corp., Sidney, NY.

### Insert Arrangement #10-5 / 11-5

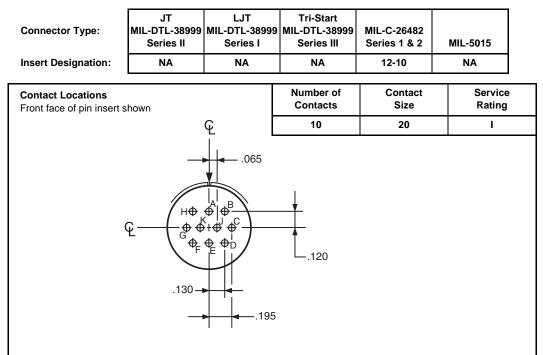



### Insert Arrangement #10-6 / 11-6

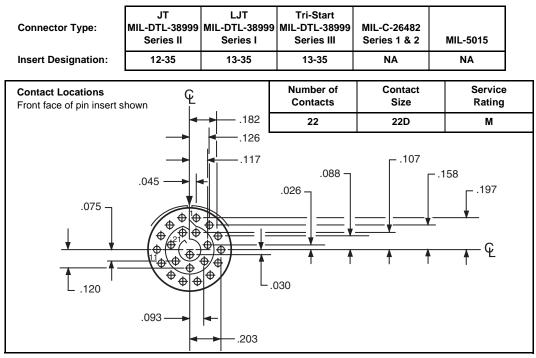


All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for PCB applications. For availability of other arrangements, consult Amphenol Corp., Sidney, NY.

### Insert Arrangement #10-35 / 11-35

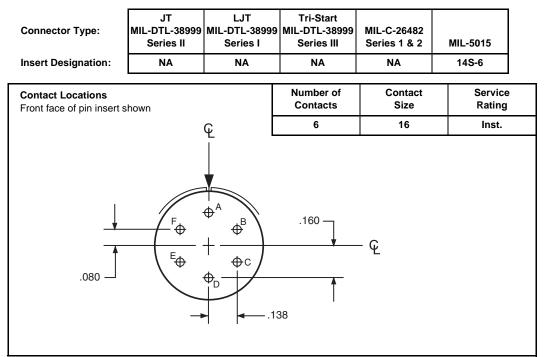



### Insert Arrangement #12-3 / 13-3


| Connector Type:                                 | JT<br>MIL-DTL-38999<br>Series II | LJT<br>MIL-DTL-38999<br>Series I | Tri-Start<br>MIL-DTL-38999<br>Series III | MIL-C-26482<br>Series 1 & 2 | MIL-5015          |
|-------------------------------------------------|----------------------------------|----------------------------------|------------------------------------------|-----------------------------|-------------------|
| Insert Designation:                             | 12-3                             | 13-3                             | NA                                       | 12-3                        | NA                |
| Contact Locations<br>Front face of pin insert s | hown                             |                                  | Number of<br>Contacts                    | Contact<br>Size             | Service<br>Rating |
|                                                 |                                  |                                  | 3                                        | 16                          | II                |
| .058 -                                          |                                  |                                  | ዊ                                        |                             |                   |

All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for PCB applications. For availability of other arrangements, consult Amphenol Corp., Sidney, NY.

#### Insert Arrangement #12-10

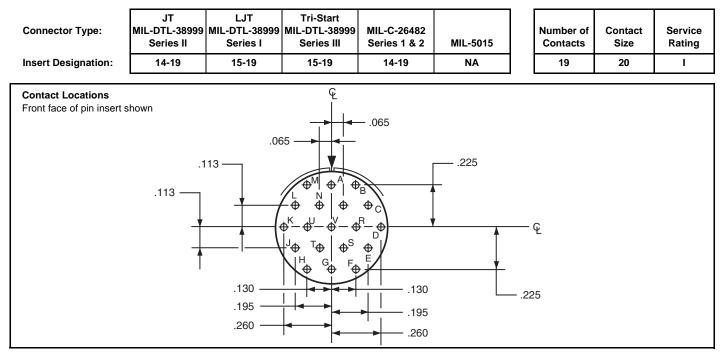



#### Insert Arrangement #12-35 / 13-35



All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for PCB applications. For availability of other arrangements, consult Amphenol Corp., Sidney, NY.

### Insert Arrangement #14S-6




### Insert Arrangement #14-18 / 15-18

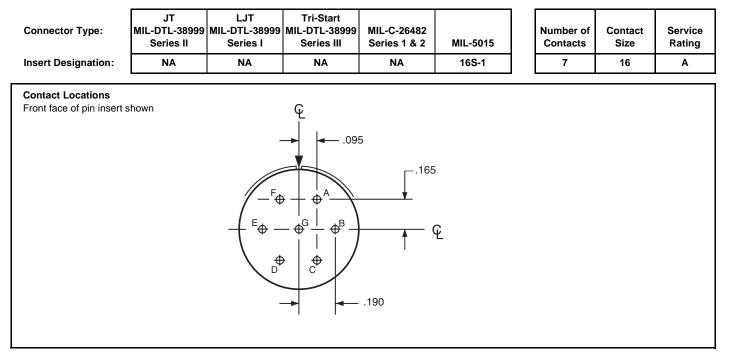
| Connector Type:                                 | Series II            | LJT<br>MIL-DTL-38999<br>Series I | Series III            | MIL-C-26482<br>Series 1 & 2 | MIL-5015          |
|-------------------------------------------------|----------------------|----------------------------------|-----------------------|-----------------------------|-------------------|
| Insert Designation:                             | 14-18                | 15-18                            | 15-18                 | 14-18                       | NA                |
| Contact Locations<br>Front face of pin insert s | shown                | Ģ                                | Number of<br>Contacts | Contact<br>Size             | Service<br>Rating |
|                                                 |                      |                                  | 18                    | 20                          | I                 |
| ତ୍ -                                            | .065<br>.130<br>.195 |                                  |                       | .225                        |                   |

All dimensions for reference only. For alternate rotations see pages 25 & 26 Note: Shown in this catalog are the most common insert patterns for PCB applications. For availability of other arrangements, consult Amphenol Corp., Sidney, NY.

### Insert Arrangement #14-19 / 15-19

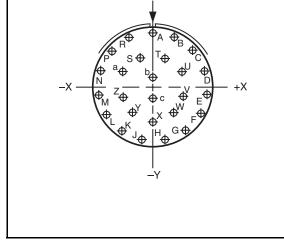


### Insert Arrangement #14-35 / 15-35


| Connector Type:           | JT<br>MIL-DTL-38999<br>Series II                                  | LJT<br>MIL-DTL-38999<br>Series I | Tri-Start<br>MIL-DTL-38999<br>Series III | MIL-C-26482<br>Series 1 & 2 | MIL-5015 | Number of<br>Contacts | Contact<br>Size | Service<br>Rating |
|---------------------------|-------------------------------------------------------------------|----------------------------------|------------------------------------------|-----------------------------|----------|-----------------------|-----------------|-------------------|
| Insert Designation:       | 14-35                                                             | 15-35                            | 15-35                                    | NA                          | NA       | 37                    | 22D             | М                 |
| Contact Locations         |                                                                   |                                  | Con                                      | tact Hole Location          | ons      | Conta                 | ct Hole Locat   | ions              |
| Front face of pin insert  | shown                                                             |                                  | Contact                                  | Locat                       | ion      | Contact               | Loca            | tion              |
| r tont lace of pin insert | SHOWIT                                                            |                                  | Number                                   | X Axis                      | Y Axis   | Number                | X Axis          | Y Axis            |
|                           |                                                                   |                                  | 1                                        | +.045                       | +.262    | 21                    | +.170           | +.040             |
|                           | Ň                                                                 |                                  | 2                                        | +.123                       | +.217    | 22                    | +.170           | 050               |
|                           | + Y                                                               |                                  | 3                                        | +.211                       | +.160    | 23                    | +.123           | 127               |
|                           | •                                                                 |                                  | 4                                        | +.254                       | +.080    | 24                    | +.045           | 172               |
|                           |                                                                   |                                  | 5                                        | +.266                       | 010      | 25                    | 045             | 172               |
| // ·                      | $\Phi = \Phi = \Phi$                                              |                                  | 6                                        | +.247                       | 098      | 26                    | 123             | 127               |
| /⊕                        | ᡬ᠊ᢩᡩᢩ\ᠿ᠘᠅                                                         |                                  | 7                                        | +.200                       | 175      | 27                    | 170             | 050               |
| (⊕ (⊕                     | $(\Phi)^{\oplus}$                                                 |                                  | 8                                        | +.130                       | 232      | 28                    | 170             | +.040             |
| -X <del>10 [</del>        | <u>(A) A) A  *   A</u>                                            | + + X                            | 9                                        | +.045                       | 262      | 29                    | 123             | +.119             |
| ĺ⊕ (⊕                     |                                                                   | /                                | 10                                       | 045                         | 262      | 30                    | 045             | +.172             |
|                           |                                                                   |                                  | 11                                       | 130                         | 232      | 31                    | +.045           | +.074             |
| V11                       | $\begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $ |                                  | 12                                       | 200                         | 175      | 32                    | +.090           | 004               |
|                           |                                                                   |                                  | 13                                       | 247                         | 098      | 33                    | +.045           | 082               |
|                           |                                                                   |                                  | 14                                       | 266                         | 010      | 34                    | 045             | 082               |
|                           | - Y                                                               |                                  | 15                                       | 254                         | +.080    | 35                    | 090             | 004               |
|                           |                                                                   |                                  | 16                                       | 211                         | +.160    | 36                    | 045             | +.074             |
|                           |                                                                   |                                  | 17                                       | 123                         | +.217    | 37                    | .000            | 004               |
|                           |                                                                   |                                  | 18                                       | 045                         | +.262    |                       |                 |                   |
|                           |                                                                   |                                  | 19                                       | +.045                       | +.172    |                       |                 |                   |
|                           |                                                                   |                                  | 20                                       | +.123                       | +.119    |                       |                 |                   |

All dimensions for reference only. For alternate rotations see pages 25 & 26.

Note: Shown in this catalog are the most common insert patterns for


PCB applications. For availability of other arrangements, consult Amphenol

### Insert Arrangement #16S-1



### Insert Arrangement #16-26 / 17-26

| Connector Type:                                 | JT<br>MIL-DTL-38999<br>Series II | LJT<br>MIL-DTL-38999<br>Series I | Tri-Start<br>MIL-DTL-38999<br>Series III | MIL-C-26482<br>Series 1 & 2 | MIL-5015               | Number of<br>Contacts  | Contact<br>Size         | Service<br>Rating       |
|-------------------------------------------------|----------------------------------|----------------------------------|------------------------------------------|-----------------------------|------------------------|------------------------|-------------------------|-------------------------|
| Insert Designation:                             | NA                               | 17-26                            | 17-26                                    | 16-26                       | NA                     | 26                     | 20                      | I                       |
|                                                 |                                  |                                  |                                          |                             |                        |                        |                         |                         |
|                                                 |                                  |                                  |                                          |                             |                        |                        |                         |                         |
| Contact Locations                               |                                  |                                  | Con                                      | tact Hole Locati            | ons                    | Conta                  | ct Hole Locat           | ions                    |
| Contact Locations                               | bown                             |                                  | Con<br>Contact                           | tact Hole Locati<br>Locat   |                        | Conta<br>Contact       | ct Hole Locat<br>Loca   |                         |
| Contact Locations<br>Front face of pin insert s | hown                             |                                  |                                          |                             |                        |                        |                         |                         |
|                                                 | hown                             |                                  | Contact                                  | Locat                       | tion                   | Contact                | Loca                    | tion                    |
|                                                 |                                  |                                  | Contact<br>Number                        | Locat<br>X Axis             | tion<br>Y Axis         | Contact<br>Number      | Loca<br>X Axis          | tion<br>Y Axis          |
|                                                 | shown<br>+Y<br>I                 |                                  | Contact<br>Number<br>A                   | Locat<br>X Axis<br>.000     | ion<br>Y Axis<br>+.321 | Contact<br>Number<br>R | Loca<br>X Axis<br>–.131 | tion<br>Y Axis<br>+.293 |



| Con     | tact Hole Loca | tions  |     |       |
|---------|----------------|--------|-----|-------|
| Contact | Loc            | ation  | 1 1 | Conta |
| Number  | X Axis         | Y Axis |     | Numb  |
| А       | .000           | +.321  | 1 I | R     |
| В       | +.131          | +.293  |     | S     |
| С       | +.239          | +.214  |     | Т     |
| D       | +.305          | +.099  | 1 1 | U     |
| E       | +.319          | 034    | 1 1 | v     |
| F       | +.278          | 161    |     | W     |
| G       | +.189          | 260    |     | Х     |
| Н       | +.067          | 314    | 1 1 | Y     |
| J       | 067            | 314    |     | Z     |
| к       | 189            | 260    |     | а     |
| L       | 278            | 161    |     | b     |
| М       | 319            | 034    |     | C     |
| N       | 305            | +.099  |     |       |
| Р       | 239            | +.214  |     |       |
|         |                |        | -   |       |
|         |                |        |     |       |
|         |                |        |     |       |
|         |                |        |     |       |

+.094

-.036

-.151

-.203

-.151

-.036

+.094

+.065

-.065

+.175

+.178 +.119

.000

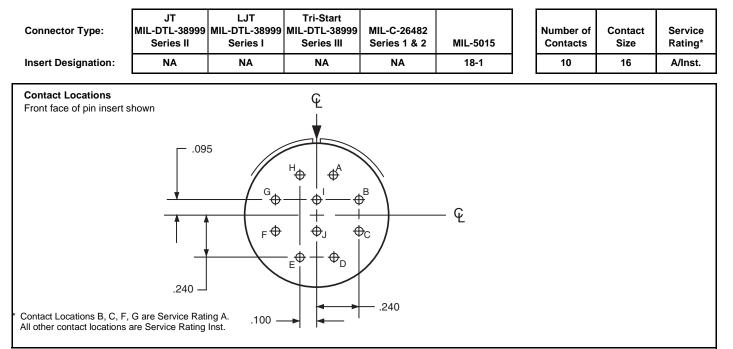
-.119

-.178

-.175

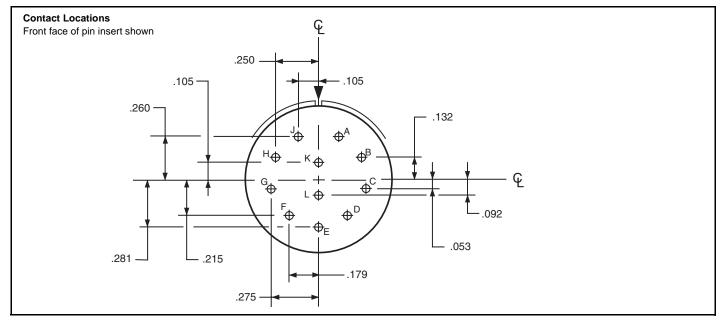
.000

.000


| All dimensions for reference only. For alternate rotations see pages 25 & 26. |    |
|-------------------------------------------------------------------------------|----|
| Note: Shown in this catalog are the most common insert patterns for           | 12 |
| PCB applications. For availability of other arrangements, consult             | 12 |
| Amphanal Corp. Sidney NV                                                      |    |

### Insert Arrangement #16-35 / 17-35

| Connector Type:               | JT<br>MIL-DTL-38999<br>Series II | LJT<br>MIL-DTL-38999<br>Series I | Tri-Start<br>MIL-DTL-38999<br>Series III | MIL-C-26482<br>Series 1 & 2 | MIL-5015 | Number<br>Contact |                  | Service<br>Rating |
|-------------------------------|----------------------------------|----------------------------------|------------------------------------------|-----------------------------|----------|-------------------|------------------|-------------------|
| Insert Designation:           | 16-35                            | 17-35                            | 17-35                                    | NA                          | NA       | 55                | 22D              | м                 |
| Contact Locations             |                                  |                                  | Con                                      | tact Hole Locati            | ons      | Co                | ntact Hole Locat | ions              |
| Front face of pin insert s    | hown                             |                                  | Contact                                  | Locat                       | tion     | Contact           | Loca             | ation             |
|                               |                                  |                                  | Number                                   | X Axis                      | Y Axis   | Number            | X Axis           | Y Axis            |
|                               |                                  |                                  | 1                                        | 312                         | +.086    | 32                | +.089            | +.316             |
|                               |                                  |                                  | 2                                        | 312                         | 004      | 33                | +.078            | +.221             |
|                               | + Y                              |                                  | 3                                        | 312                         | 094      | 34                | +.078            | +.131             |
|                               |                                  |                                  | 4                                        | 242                         | +.221    | 35                | +.078            | +.041             |
|                               |                                  |                                  | 5                                        | 234                         | +.131    | 36                | +.078            | 049               |
| /                             |                                  |                                  | 6                                        | 234                         | +.041    | 37                | +.078            | 139               |
|                               |                                  |                                  | 7                                        | 234                         | 049      | 38                | +.078            | 229               |
| 40° .                         |                                  | <u>\</u>                         | 8                                        | 234                         | 139      | 39                | +.078            | 319               |
|                               | ₱₱₱₱₽                            | 3                                | 9                                        | 234                         | 229      | 40                | +.172            | +.279             |
|                               | Ŋ <u>₽</u> ₽₽₽₽₽₽                | P                                | 10                                       | 172                         | +.279    | 41                | +.156            | +.176             |
| -×- <u>{</u> Φ  <u>↓</u> (¢   | ᢣᠴᢆᡃᡃ᠋ᠿᠴᢆᡰᠿᠴᢆᡰᡏ                  | € <del> </del> +×                | 11                                       | 156                         | +.176    | 42                | +.156            | +.086             |
| <b>\</b> ⊕  <mark>⊕</mark>  ∉ | 判╨ӏѲѬӏѲ҄ѿӏҨ                      | ₽/                               | 12                                       | 156                         | +.086    | 43                | +.156            | 004               |
| V°∞[€                         | 逊ᠿ᠕ᠿ᠁                            | 1                                | 13                                       | 156                         | 004      | 44                | +.156            | 094               |
| $\bigvee_{6}$                 |                                  |                                  | 14                                       | 156                         | 094      | 45                | +.156            | 184               |
| $\sim$                        | 240 31 0 40                      |                                  | 15                                       | 156                         | 184      | 46                | +.156            | 274               |
|                               |                                  |                                  | 16                                       | 156                         | 274      | 47                | +.242            | +.221             |
|                               | -Y                               |                                  | 17                                       | 089                         | +.316    | 48                | +.234            | +.131             |
|                               | -                                |                                  | 18                                       | 078                         | +.221    | 49                | +.234            | +.041             |
|                               |                                  |                                  | 19                                       | 078                         | +.131    | 50                | +.234            | 049               |
|                               |                                  |                                  | 20                                       | 078                         | +.041    | 51                | +.234            | 139               |
|                               |                                  |                                  | 21                                       | 078                         | 049      | 52                | +.234            | 229               |
|                               |                                  |                                  | 22                                       | 078                         | 139      | 53                | +.312            | +.086             |
|                               |                                  |                                  | 23                                       | 078                         | 229      | 54                | +.312            | 004               |
|                               |                                  |                                  | 24                                       | 078                         | 319      | 55                | +.312            | 094               |
|                               |                                  |                                  | 25                                       | .000                        | +.329    |                   |                  |                   |
|                               |                                  |                                  | 26                                       | .000                        | +.176    |                   |                  |                   |
|                               |                                  |                                  | 27                                       | .000                        | +.086    |                   |                  |                   |
|                               |                                  |                                  | 28                                       | .000                        | 004      |                   |                  |                   |
|                               |                                  |                                  | 29                                       | .000                        | 094      |                   |                  |                   |
|                               |                                  |                                  | 30                                       | .000                        | 184      |                   |                  |                   |
|                               |                                  |                                  | 31                                       | .000                        | 274      |                   |                  |                   |


All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for PCB applications. For availability of other arrangements, consult Amphenol Corp., Sidney, NY.

#### Insert Arrangement #18-1



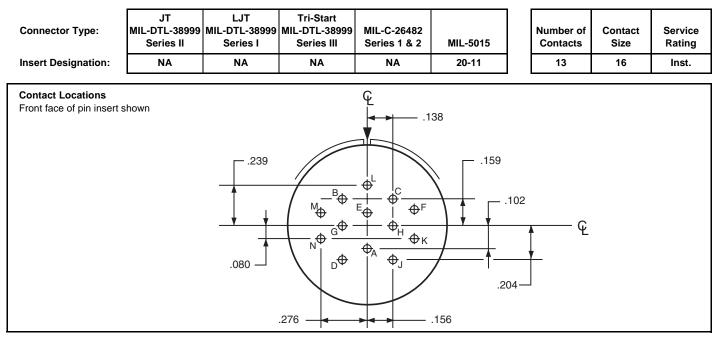
### Insert Arrangement #18-11 / 19-11

| Connector Type:     | JT<br>MIL-DTL-38999<br>Series II | LJT<br>MIL-DTL-38999<br>Series I | Tri-Start<br>MIL-DTL-38999<br>Series III | MIL-C-26482<br>Series 1 & 2 | MIL-5015 | Number of<br>Contacts | Contact<br>Size | Service<br>Rating |
|---------------------|----------------------------------|----------------------------------|------------------------------------------|-----------------------------|----------|-----------------------|-----------------|-------------------|
| Insert Designation: | 18-11                            | 19-11                            | 19-11                                    | 18-11                       | NA       | 11                    | 16              | II                |



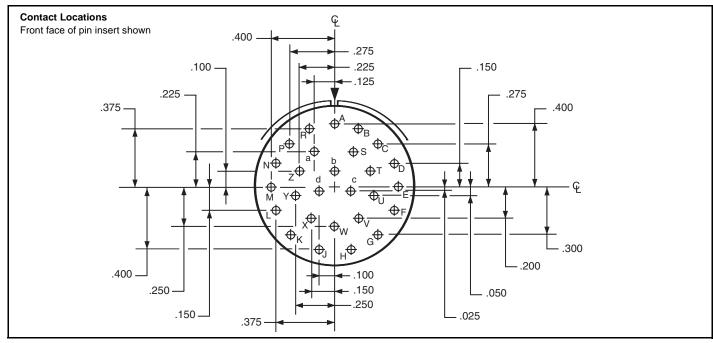
All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for PCB applications. For availability of other arrangements, consult Amplement Corp. Sidney, NV

### Insert Arrangement #18-32 / 19-32


| Connector Type:             | JT<br>MIL-DTL-38999<br>Series II | LJT<br>MIL-DTL-38999<br>Series I | Tri-Start<br>MIL-DTL-38999<br>Series III | MIL-C-26482<br>Series 1 & 2 | MIL-5015 | Num<br>Cont |        | Contact<br>Size | Service<br>Rating |
|-----------------------------|----------------------------------|----------------------------------|------------------------------------------|-----------------------------|----------|-------------|--------|-----------------|-------------------|
| Insert Designation:         | 18-32                            | 19-32                            | 19-32                                    | 18-32                       | NA       | 3           | 2      | 20              | I                 |
| Contact Locations           |                                  |                                  | Con                                      | tact Hole Locati            | ons      |             | Contac | t Hole Locat    | ions              |
| Front face of pin insert    | shown                            |                                  | Contact                                  | Locat                       | ion      | Conta       | ct     | Loca            | tion              |
| i font lace of pirt inserts |                                  |                                  | Letter                                   | X Axis                      | Y Axis   | Lette       |        | X Axis          | Y Axis            |
|                             | + Y                              |                                  | Α                                        | +.066                       | +.353    | v           |        | +.124           | +.193             |
|                             |                                  |                                  | В                                        | +.189                       | +.305    | w           |        | +.209           | +.095             |
|                             | <b></b>                          |                                  | С                                        | +.286                       | +.217    | Х           |        | +.228           | 033               |
|                             |                                  |                                  | D                                        | +.345                       | +.098    | Y           |        | +.174           | 151               |
|                             | TO DA                            |                                  | E                                        | +.357                       | 033      | Z           |        | +.065           | 221               |
| st                          |                                  |                                  | F                                        | +.321                       | 160      | а           |        | 065             | 221               |
| ∕ <b>_</b> ⊕ ,              | eΦ <sup>Φ</sup> ⊕∨               | <b>⊕_`\`</b>                     | G                                        | +.242                       | 265      | b           |        | 174             | 151               |
|                             |                                  | ,, <sup>™</sup> →                | н                                        | +.130                       | 335      | c           |        | 228             | 033               |
|                             | · Ψ                              | D                                | J                                        | .000                        | 359      | d           |        | 209             | +.095             |
| _ X                         | - j�+ �g _                       | +                                | ×к                                       | 130                         | 335      | е           |        | 124             | +.193             |
|                             | ₩                                | x ∯                              | L                                        | 242                         | 265      | f           |        | .000            | +.096             |
|                             | ₽ <sub>b</sub> <sup>n</sup> Φγ   | ⊕/                               | М                                        | 321                         | 160      | g           |        | +.096           | .000              |
|                             | ~⊕ <sub>a</sub> ⊕ <sub>Z ⊿</sub> | <u>,</u> F                       | N                                        | 357                         | 033      | h           |        | .000            | 096               |
| <u>\</u>                    | ₩ H H                            |                                  | Р                                        | 345                         | +.098    | j           |        | 096             | .000              |
|                             |                                  |                                  | R                                        | 286                         | +.217    |             |        |                 |                   |
|                             |                                  |                                  | S                                        | 189                         | +.305    |             |        |                 |                   |
|                             | _ Y                              |                                  | Т                                        | 066                         | +.353    |             |        |                 |                   |
|                             | - 1                              |                                  | U                                        | .000                        | +.230    |             |        |                 |                   |

### Insert Arrangement #18-35 / 19-35

| Connector Type:          | JT<br>MIL-DTL-38999<br>Series II | LJT<br>MIL-DTL-38999<br>Series I | Tri-Start<br>MIL-DTL-38999<br>Series III | MIL-C-26482<br>Series 1 & 2 | MIL-5015                                              | Number of<br>Contacts | Contact<br>Size | Service<br>Rating |
|--------------------------|----------------------------------|----------------------------------|------------------------------------------|-----------------------------|-------------------------------------------------------|-----------------------|-----------------|-------------------|
| Insert Designation:      | 18-35                            | 19-35                            | 19-35                                    | NA                          | NA                                                    | 66                    | 22D             | М                 |
| Contact Locations        |                                  |                                  |                                          | G                           |                                                       |                       |                 |                   |
| Front face of pin insert | shown                            |                                  |                                          |                             | 357                                                   |                       |                 |                   |
|                          |                                  |                                  |                                          |                             | 279                                                   |                       |                 |                   |
|                          | .3603                            | 315                              |                                          | <b>    - -  </b> −          | 201                                                   |                       |                 |                   |
|                          |                                  | — .270<br>225                    |                                          |                             | 123                                                   |                       |                 |                   |
|                          |                                  | .180                             |                                          |                             | .045                                                  |                       |                 |                   |
|                          |                                  | .13                              | 85                                       |                             | 51                                                    |                       |                 |                   |
|                          |                                  |                                  | 090                                      | ᢤᢩᠲᢩᠲ <mark>᠊</mark> ᠿᡛ     |                                                       |                       |                 |                   |
|                          |                                  |                                  | .045                                     |                             |                                                       |                       |                 |                   |
|                          |                                  |                                  |                                          | $ \Psi $                    |                                                       | ę                     |                 |                   |
|                          |                                  |                                  |                                          |                             | $ \begin{array}{c} \Phi \\ \Phi \\ \Phi \end{array} $ |                       |                 |                   |
|                          |                                  | Y                                |                                          | ₿⊕₱₽₽₽                      |                                                       |                       |                 |                   |
|                          | <u> </u>                         |                                  |                                          |                             | 57                                                    |                       |                 |                   |


All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for PCB applications. For availability of other arrangements, consult

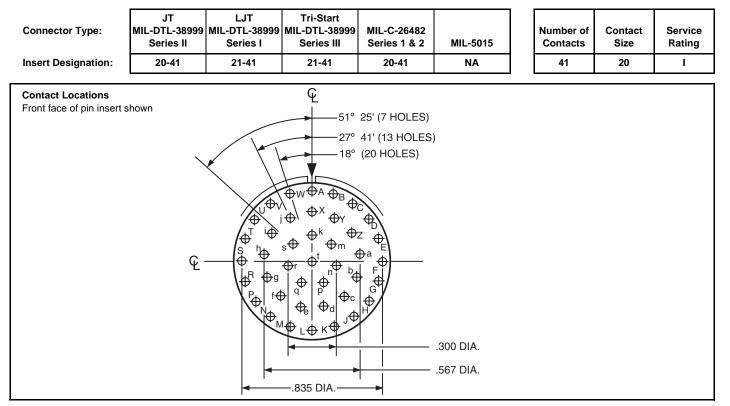
#### Insert Arrangement #20-11



### Insert Arrangement #20-27 / 21-27

| Connector Type:     | JT<br>MIL-DTL-38999<br>Series II | LJT<br>MIL-DTL-38999<br>Series I | Tri-Start<br>MIL-DTL-38999<br>Series III | MIL-C-26482<br>Series 1 & 2 | MIL-5015 | Number of<br>Contacts | Contact<br>Size | Service<br>Rating |
|---------------------|----------------------------------|----------------------------------|------------------------------------------|-----------------------------|----------|-----------------------|-----------------|-------------------|
| Insert Designation: | 20-27                            | 21-27                            | NA                                       | 20-27                       | NA       | 27                    | 20              | Ι                 |




All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for PCB applications. For availability of other arrangements. consult

### Insert Arrangement #20-35 / 21-35

| Connector Type:        | JT<br>MIL-DTL-38999<br>Series II                        | LJT<br>MIL-DTL-38999<br>Series I | Tri-Start<br>MIL-DTL-38999<br>Series III | MIL-C-26482<br>Series 1 & 2 | MIL-5015 | Number of<br>Contacts | Contact<br>Size | Servic<br>Rating |
|------------------------|---------------------------------------------------------|----------------------------------|------------------------------------------|-----------------------------|----------|-----------------------|-----------------|------------------|
| nsert Designation:     | 20-35                                                   | 21-35                            | 21-35                                    | NA                          | NA       | 79                    | 22D             | м                |
| Contact Locations      |                                                         |                                  | Con                                      | tact Hole Location          | ons      | Conta                 | ct Hole Locat   | ions             |
| Front face of pin inse | ert shown                                               |                                  | Contact                                  | Locat                       | ion      | Contact               | Loca            | tion             |
|                        |                                                         |                                  | Number                                   | X Axis                      | Y Axis   | Number                | X Axis          | Y Axis           |
|                        |                                                         |                                  | 10                                       | +.365                       | 227      | 45                    | 332             | 048              |
|                        | N/                                                      |                                  | 11                                       | +.306                       | 302      | 46                    | 332             | +.048            |
|                        | + Y                                                     |                                  | 12                                       | +.232                       | 362      | 47                    | 311             | +.141            |
|                        | <b></b>                                                 |                                  | 13                                       | +.146                       | 404      | 48                    | 258             | +.220            |
|                        |                                                         |                                  | 14                                       | +.053                       | 426      | 49                    | 184             | +.280            |
|                        |                                                         |                                  | 15                                       | 053                         | 426      | 50                    | 098             | +.322            |
| //⊕                    |                                                         | $\Rightarrow$                    | 16                                       | 146                         | 404      | 51                    | 048             | +.241            |
| /⊕/€                   |                                                         | \⊕\                              | 17                                       | 232                         | 362      | 52                    | +.048           | +.241            |
| [⊕/⊕                   | $\Phi \Phi \Phi \Phi$                                   | ⊕\⊕ <b>\</b>                     | 18                                       | 306                         | 302      | 53                    | +.134           | +.199            |
| ,  ⊕ ⊕ ·               | $\Phi(\Phi^{\Psi}) \Phi^{\Psi} \Phi^{\Psi} \Phi^{\Psi}$ | $\oplus \oplus$ + X              | 19                                       | 365                         | 227      | 54                    | +.208           | +.139            |
| -X                     | ∌\♥ू\��/⋧∕⊕                                             | $\Phi \Phi$                      | 20                                       | 406                         | 141      | 55                    | +.237           | +.048            |
| <b>/</b> ⊕/⊕/          | $\oplus \oplus \oplus \oplus^7 \oplus \oplus/7$         | ⊕/⊕/                             | 21                                       | 427                         | 048      | 56                    | +.237           | 048              |
| \⊕\∉                   |                                                         | •/,⊕/                            | 22                                       | 427                         | +.048    | 57                    | +.208           | 139              |
| \ <del>\</del>         |                                                         | <b>⊕</b> 7                       | 23                                       | 406                         | +.141    | 58                    | +.134           | 199              |
|                        |                                                         |                                  | 24                                       | 365                         | +.227    | 59                    | +.048           | 241              |
|                        |                                                         |                                  | 25                                       | 306                         | +.302    | 60                    | 048             | 241              |
|                        | - Y                                                     |                                  | 26                                       | 232                         | +.362    | 61                    | 134             | 199              |
|                        | ·                                                       |                                  | 27                                       | 146                         | +.404    | 62                    | 208             | 139              |
|                        |                                                         |                                  | 28                                       | 053                         | +.426    | 63                    | 237             | 048              |
|                        |                                                         |                                  | 29                                       | .000                        | +.323    | 64                    | 237             | +.048            |
|                        |                                                         |                                  | 30                                       | +.098                       | +.322    | 65                    | 208             | +.139            |
|                        |                                                         |                                  | 31                                       | +.184                       | +.280    | 66                    | 134             | +.199            |
|                        |                                                         |                                  | 32                                       | +.258                       | +.220    | 67                    | 048             | +.146            |
|                        | Contact Hole Loc                                        | ations                           | 33                                       | +.311                       | +.141    | 68                    | +.048           | +.146            |
|                        |                                                         | cation                           | 34                                       | +.332                       | +.048    | 69                    | +.125           | +.090            |
|                        | ntact Lo<br>Nober X Axis                                | Y Axis                           | 35                                       | +.332                       | 048      | 70                    | +.155           | .000             |
|                        |                                                         | +.426                            | 36                                       | +.311                       | 141      | 71                    | +.125           | 090              |
|                        | 2 +.146                                                 | +.404                            | 37                                       | +.258                       | 220      | 72                    | +.048           | 146              |
|                        | 3 +.232                                                 | +.362                            | 38                                       | +.184                       | 280      | 73                    | 048             | 146              |
|                        | 4 +.306                                                 | +.302                            | 39                                       | +.098                       | 322      | 74                    | 125             | 090              |
|                        | 5 +.365                                                 | +.227                            | 40                                       | .000                        | 347      | 75                    | 155             | .000             |
|                        | 6 +.406                                                 | +.141                            | 41                                       | 098                         | 322      | 76                    | 125             | +.090            |
|                        | 7 +.427                                                 | +.048                            | 42                                       | 184                         | 280      | 77                    | .000            | +.053            |
|                        |                                                         | 048                              | 43                                       | 258                         | 220      | 78                    | +.048           | 029              |
|                        |                                                         |                                  |                                          |                             |          |                       |                 |                  |

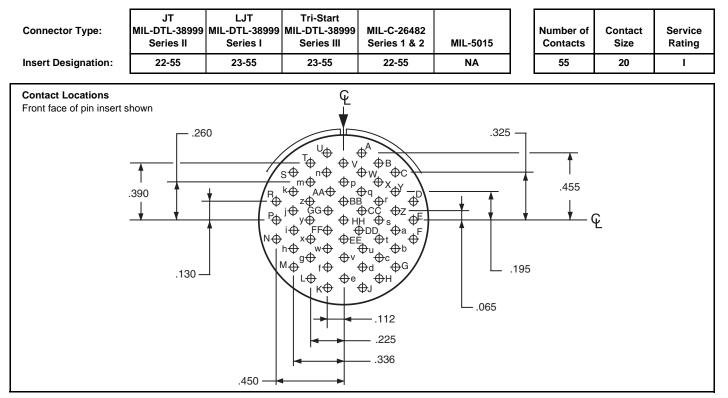
All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for PCB applications. For availability of other arrangements, consult Amphenol Corp., Sidney, NY.

### Insert Arrangement #20-41 / 21-41



#### Insert Arrangement #22-14

| Connector Type:                               | JT<br>MIL-DTL-38999<br>Series II | LJT<br>MIL-DTL-38999<br>Series I | Tri-Start<br>MIL-DTL-38999<br>Series III | MIL-C-26482<br>Series 1 & 2 | MIL-5015 | Number of<br>Contacts | Contact<br>Size | Service<br>Rating |
|-----------------------------------------------|----------------------------------|----------------------------------|------------------------------------------|-----------------------------|----------|-----------------------|-----------------|-------------------|
| Insert Designation:                           | NA                               | NA                               | NA                                       | NA                          | 22-14    | 19                    | 16              | Α                 |
| Contact Locations<br>Front face of pin insert |                                  |                                  | →−v ⊕ − P⊕ − SΦ ⊕R I                     |                             | 168      |                       |                 |                   |

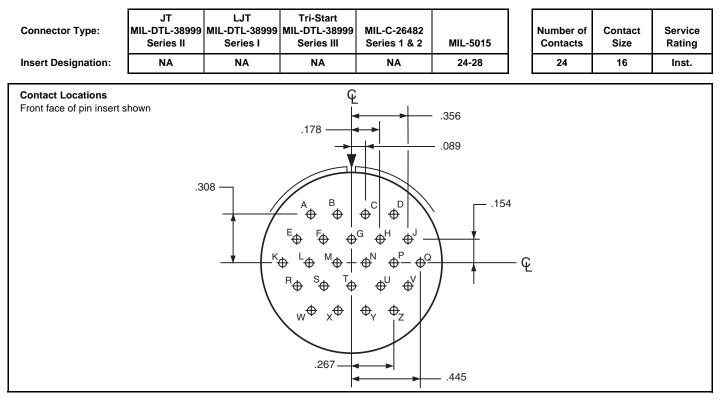

All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for

### Insert Arrangement #22-35 / 23-35

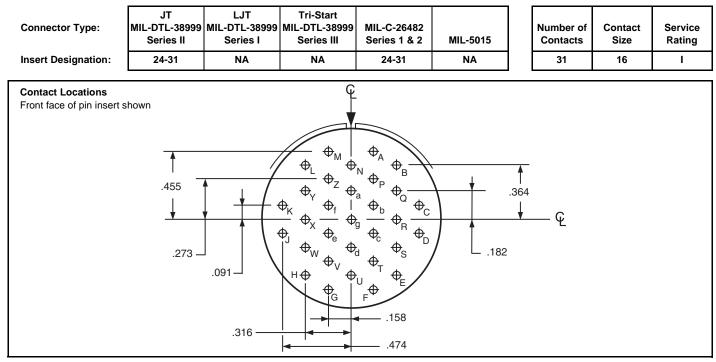
| Connector     | Туре:                                      | JT<br>MIL-DTL-38999<br>Series II                 | LJT<br>MIL-DTL-38999<br>Series I | Tri-Start<br>MIL-DTL-38999<br>Series III | MIL-C-26482<br>Series 1 & 2 | MIL-5015       | Number<br>Contact |                 | Service<br>Rating |
|---------------|--------------------------------------------|--------------------------------------------------|----------------------------------|------------------------------------------|-----------------------------|----------------|-------------------|-----------------|-------------------|
| Insert Desi   | gnation:                                   | 22-35                                            | 23-35                            | 23-35                                    | NA                          | NA             | 100               | 22D             | м                 |
| Contact Lo    | actions                                    |                                                  |                                  | Con                                      | tact Hole Locati            | ons            | Co                | ntact Hole Loca | tions             |
|               | of pin insert s                            | hown                                             |                                  | Contact                                  | Locat                       | tion           | Contact           | Loca            | ation             |
| i ioni iace c | n pin insen s                              | nown                                             |                                  | Number                                   | X Axis                      | Y Axis         | Number            | X Axis          | Y Axis            |
|               |                                            | + Y                                              |                                  | 19                                       | 249                         | +.095          | 61                | +.083           | .000              |
|               |                                            | . <u> </u>                                       |                                  | 20                                       | 249                         | .000           | 62                | +.083           | 095               |
|               |                                            |                                                  |                                  | 21                                       | 249                         | 095            | 63                | +.083           | 190               |
|               | 12                                         | 5 125 1 59 67                                    |                                  | 22                                       | 249                         | 190            | 64                | +.083           | 285               |
|               |                                            | ┨╷╢╬╎╷┾┤ァ"                                       |                                  | 23                                       | 249                         | 285            | 65                | +.083           | 380               |
|               |                                            | ╘┫╎╎╪╿╎┝┿┤╎╠                                     | ΞHNN                             | 24                                       | 249                         | 380            | 66                | +.083           | 475               |
|               | <b>/</b> <sub>2</sub> + +  <sup>+</sup> ]- | <sub>╋┥</sub> ╖┽╎╖┿╎┇                            | +                                | 25                                       | 166                         | +.428          | 67                | +.166           | +.428             |
|               | ┟┼╵┤┥┦┦╴                                   | ┥╗┽╔┾┼╔┾                                         | + 95 +                           | 26                                       | 166                         | +.333          | 68                | +.166           | +.333             |
| <i> </i>      | ╙╅╻╎┿┥╧┤╴                                  | ╷ <del>╶</del> ╢ <del>╶</del> ╢ <sub>┿</sub> ╟╼╋ | + 97 <del>+</del>                | 27                                       | 166                         | +.238          | 69                | +.166           | +.238             |
| -×-           | <sub>╩┹</sub> ┿┥┵┥┿┥                       | ┧┑┥┼╵┽┥╺┝┽┥                                      |                                  | 28                                       | 166                         | +.143          | 70                | +.166           | +.143             |
| 1             |                                            | ╷┥┥ <sub>┷</sub> ┝┽╽                             | - 199<br>                        | 29                                       | 166                         | +.048          | 71                | +.166           | +.048             |
|               |                                            | <u>╢╫</u> ╟╫ <u>┊</u> ╟╢                         | 109                              | 30                                       | 166                         | 047            | 72                | +.166           | 047               |
|               |                                            | ╏┽┨⊥┝┿┨╩┝┿┨                                      | 11/                              | 31                                       | 166                         | 142            | 73                | +.166           | 142               |
|               |                                            | ╏┿┥Т┝┿┥╏┝┿┥                                      | 93                               | 32                                       | 166                         | 237            | 74                | +.166           | 237               |
|               | 24 3                                       |                                                  |                                  | 33                                       | 166                         | 332            | 75                | +.166           | 332               |
|               |                                            |                                                  |                                  | 34                                       | 166                         | 427            | 76                | +.166           | 427               |
|               |                                            | – Y                                              |                                  | 35                                       | 083                         | +.475          | 77                | +.249           | +.380             |
|               |                                            |                                                  |                                  | 36                                       | 083                         | +.380          | 78                | +.249           | +.285             |
|               |                                            |                                                  |                                  | 37                                       | 083                         | +.285          | 79                | +.249           | +.190             |
|               |                                            |                                                  |                                  | 38                                       | 083                         | +.190          | 80                | +.249           | +.095             |
|               | C (                                        | ontact Hole Locat                                | ions                             | 39                                       | 083                         | +.095          | 81                | +.249           | .000              |
|               |                                            | Loca                                             |                                  | 40                                       | 083                         | .000           | 82                | +.249           | 095               |
|               | Contact<br>Number                          | X Axis                                           | Y Axis                           | 41                                       | 083                         | 095            | 83                | +.249           | 190               |
|               | 1                                          | 428                                              | +.241                            | 42                                       | 083                         | 190            | 84                | +.249           | 285               |
|               | 2                                          | 467                                              | +.154                            | 43                                       | 083                         | 285            | 85                | +.249           | 380               |
|               | 3                                          | 488                                              | +.061                            | 44                                       | 083                         | 380            | 86                | +.332           | +.333             |
|               | 4                                          | 415                                              | .000                             | 45<br>46                                 | 083                         | 475<br>+.428   | 87<br>88          | +.332<br>+.332  | +.238<br>+.143    |
|               | 5                                          | 488                                              | 061                              | 46                                       | .000                        | +.428<br>+.333 | 88                | +.332           | +.143             |
|               | 6                                          | 428                                              | 142                              | 47                                       | .000                        | +.238          | 90                | +.332           | +.048             |
|               | 7                                          | 428                                              | 237                              | 48                                       | .000                        | +.230          | 90                | +.332           | 047               |
|               | 8                                          | 332                                              | +.333                            | 49<br>50                                 | .000                        | +.048          | 91                | +.332           | 142               |
|               | 9                                          | 332                                              | +.238                            | 51                                       | .000                        | 047            | 92                | +.332           | 332               |
|               | 10                                         | 332                                              | +.143                            | 52                                       | .000                        | 142            | 94                | +.428           | +.241             |
|               | 11                                         | 332                                              | +.048                            | 53                                       | .000                        | 237            | 95                | +.467           | +.154             |
|               | 12                                         | 332                                              | 047                              | 54                                       | .000                        | 332            | 96                | +.488           | +.061             |
|               | 13                                         | 332                                              | 142                              | 55                                       | .000                        | 427            | 97                | +.415           | .000              |
|               | 14                                         | 332                                              | 237                              | 56                                       | +.083                       | +.475          | 98                | +.488           | 061               |
|               | 15                                         | 332                                              | 332                              | 57                                       | +.083                       | +.380          | 99                | +.428           | 142               |
|               | 16                                         | 249                                              | +.380                            | 58                                       | +.083                       | +.285          | 100               | +.428           | 237               |
|               | 17                                         | 249                                              | +.285                            | 59                                       | +.083                       | +.190          |                   | -               | -                 |
|               | 18                                         | 249                                              | +.190                            | 60                                       | +.083                       | +.095          |                   |                 |                   |
|               |                                            |                                                  |                                  | L                                        | I                           |                |                   |                 |                   |

All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for PCB applications. For availability of other arrangements, consult Amphenol Corp., Sidney, NY.

### Insert Arrangement #22-55 / 23-55




### Insert Arrangement #24-5


| Connector Type:                               | JT<br>MIL-DTL-38999<br>Series II | LJT<br>MIL-DTL-38999<br>Series I | Tri-Start<br>MIL-DTL-38999<br>Series III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MIL-C-26482<br>Series 1 & 2 | MIL-5015 | Number of<br>Contacts      | Contact<br>Size | Service<br>Rating |
|-----------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|----------------------------|-----------------|-------------------|
| Insert Designation:                           | NA                               | NA                               | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                          | 24-5     | 16                         | 16              | Α                 |
| Contact Locations<br>Front face of pin insert |                                  | .352                             | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ |                             | .270     | ₽<br>₽<br>₽<br>₽<br>₽<br>₽ |                 |                   |

All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for

#### Insert Arrangement #24-28



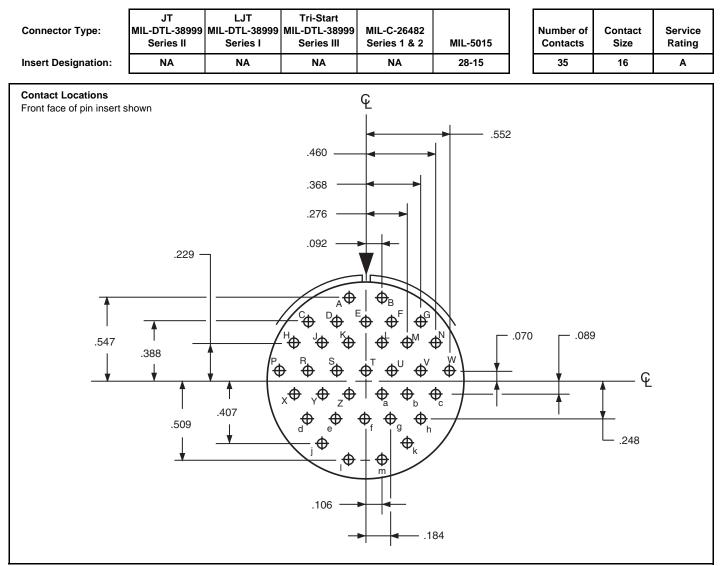
### Insert Arrangement #24-31 / 25-31





### Insert Arrangement #24-35 / 25-35

| Connector T      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JT<br>MIL-DTL-38999<br>Series II<br>24-35                       | LJT<br>MIL-DTL-38999<br>Series I<br>25-35 | Tri-Start<br>MIL-DTL-38999<br>Series III<br>25-35 | MIL-C-26482<br>Series 1 & 2<br>NA | MIL-5015<br>NA |          | Number of<br>Contacts<br>128 | Contact<br>Size<br>22D | Service<br>Rating<br>M |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|---------------------------------------------------|-----------------------------------|----------------|----------|------------------------------|------------------------|------------------------|
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                           |                                                   |                                   |                |          |                              |                        |                        |
| Contact Loca     | ations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |                                           | Con                                               | tact Hole Location                |                |          | Conta                        | ct Hole Locati         |                        |
| Front face of    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hown                                                            |                                           | Contact                                           | Locat                             |                |          | Contact                      | Loca                   |                        |
|                  | pini incont o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + Y                                                             |                                           | Number                                            | X Axis                            | Y Axis         |          | Number                       | X Axis                 | Y Axis                 |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - T I                                                           |                                           | 28                                                | 249                               | +.190          |          | 78                           | +.083                  | 190                    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                               |                                           | 29                                                | 249                               | +.095          |          | 79                           | +.083                  | 285                    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                           | 30                                                | 249                               | .000           |          | 80                           | +.083                  | 380                    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                           | 31                                                | 249                               | 095            |          | 81                           | +.083                  | 475                    |
| /                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$+21\$+2\$577-                                                 |                                           | 32                                                | 249                               | 190            |          | 82                           | +.160                  | +.531                  |
| /                | <u>^*</u> >;×+>¦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\langle + \rangle \langle + \rangle \langle + \rangle^{\circ}$ |                                           | 33                                                | 249                               | 285            |          | 83                           | +.166                  | +.427                  |
| /4               | -\$77(+)7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <+X+X+X+X                                                       | <'<+\                                     | 34                                                | 249                               | 380            |          | 84                           | +.166                  | +.332                  |
| /+'              | $(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}(+)^{+}$ | 2+372+372+37                                                    | ·(+) + <b>\</b>                           | 35                                                | 249                               | 475            |          | 85                           | +.166                  | +.237                  |
| /_'              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~``\\                                                           | <'i  '+ <b>/</b>                          | 36                                                | 160                               | +.531          |          | 86                           | +.166                  | +.142                  |
| - X-+ 4          | _{<+><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>~}{</u> ;}                                                   | $\left  \frac{1}{25} \right  + X$         | 37                                                | 166                               | +.427          |          | 87                           | +.166                  | +.047                  |
|                  | '{+}\_{+}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y                                                               | ->:  :/ <b>_</b> +^                       | 38                                                | 166                               | +.332          |          | 88                           | +.166                  | 047                    |
| /+               | 174574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1}{1}$                                                   | <u> + </u>                                | 39                                                | 166                               | +.237          |          | 89                           | +.166                  | 142                    |
| \+               | (+2(+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>&lt;+ଧ</u> <+간                                               | <u>&lt;+ </u> +/                          | 40                                                | 166                               | +.142          |          | 90                           | +.166                  | 237                    |
| $\lambda_{\neq}$ | ->)::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <+> <+>T<+>                                                     | <u> </u>                                  | 41                                                | 166                               | +.047          |          | 91                           | +.166                  | 332                    |
|                  | +574+57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (+)T(+)T(+)T                                                    | -<br>421                                  | 42                                                | 166                               | 047            |          | 92                           | +.166                  | 427                    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                           | 43                                                | 166                               | 142            |          | 93                           | +.166                  | 522                    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58 70 81 104                                                    |                                           | 44                                                | 166                               | 237            |          | 94                           | +.249                  | +.496                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                           | 45                                                | 166                               | 332            |          | 95                           | +.249                  | +.380                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | – Y                                                             |                                           | 46                                                | 166                               | 427            |          | 96                           | +.249                  | +.285                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                                                             |                                           | 47                                                | 166                               | 522            |          | 97                           | +.249                  | +.190                  |
| Г                | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ontact Hole Locat                                               | tions                                     | 48                                                | 083                               | +.475          |          | 98                           | +.249                  | +.095                  |
| -                | Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 | ation                                     | 49                                                | 083                               | +.380          |          | 99                           | +.249                  | .000                   |
|                  | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X Axis                                                          | Y Axis                                    | 50                                                | 083                               | +.285          |          | 100                          | +.249                  | 095                    |
| -                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 479                                                             | +.279                                     | 51                                                | 083                               | +.190          |          | 101                          | +.249                  | 190                    |
| -                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 520                                                             | +.190                                     | 52                                                | 083                               | +.095          |          | 102                          | +.249                  | 285                    |
| -                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 546                                                             | +.095                                     | 53                                                | 083                               | .000           |          | 103                          | +.249                  | 380                    |
| -                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 555                                                             | .000                                      | 54                                                | 083                               | 095            |          | 104                          | +.249                  | 475                    |
| -                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 546                                                             | 095                                       | 55                                                | 083                               | 190            | _        | 105                          | +.332                  | +.444                  |
| -                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 520                                                             | 190                                       | 56                                                | 083                               | 285            |          | 106                          | +.332                  | +.332                  |
| -                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 479                                                             | 279                                       | 57                                                | 083                               | 380            |          | 107                          | +.332                  | +.237                  |
| -                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 473                                                             | +.357                                     | 58                                                | 083                               | 475            | $\vdash$ | 107                          | +.332                  | +.142                  |
| -                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 424                                                             | +.190                                     | 59                                                | .000                              | +.522          | $\vdash$ | 109                          | +.332                  | +.047                  |
| F                | 9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 415                                                             | +.095                                     | 60                                                | .000                              | +.427          | $\vdash$ | 110                          | +.332                  | 047                    |
| ŀ                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 415                                                             | .000                                      | 61                                                | .000                              | +.332          | $\vdash$ | 111                          | +.332                  | 142                    |
|                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 415                                                             | 095                                       | 62                                                | .000                              | +.237          | $\vdash$ | 112                          | +.332                  | 142                    |
| F                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 415                                                             | 190                                       | 63                                                | .000                              | +.142          | $\vdash$ | 112                          | +.332                  | 332                    |
| ŀ                | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 415                                                             | 357                                       | 64                                                | .000                              | +.047          | $\vdash$ | 114                          | +.332                  | 427                    |
| F                | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 | 357<br>+.444                              | 65                                                | .000                              | 047            | $\vdash$ | 114                          | +.424                  | +.357                  |
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 332                                                             | +.444<br>+.332                            | 66                                                | .000                              | 142            | $\vdash$ | 115                          | +.424                  | +.357                  |
| F                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 332                                                             |                                           | 67                                                | .000                              | 142            | $\vdash$ | 116                          | +.415                  | +.190                  |
| F                | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 | +.237                                     |                                                   |                                   | 332            | $\vdash$ | 117                          |                        | +.095                  |
| _                | 18<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 332                                                             | +.142                                     | 68<br>69                                          | .000                              | 427            |          | 118                          | +.415<br>+.415         | 095                    |
| -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 332                                                             | +.047                                     | 70                                                | .000                              | 427            | $\vdash$ | 119                          | +.415                  | 190                    |
| _                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 332                                                             | 047                                       |                                                   |                                   |                | $\vdash$ |                              |                        |                        |
| Ļ                | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 332                                                             | 142                                       | 71                                                | +.083                             | +.475          |          | 121                          | +.424                  | 357                    |
| Ļ                | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 332                                                             | 237                                       | 72                                                | +.083                             | +.380          |          | 122                          | +.479                  | +.279                  |
| L                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 332                                                             | 332                                       | 73                                                | +.083                             | +.285          |          | 123                          | +.520                  | +.190                  |
| L                | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 332                                                             | 427                                       | 74                                                | +.083                             | +.190          |          | 124                          | +.546                  | +.095                  |
| L                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 249                                                             | +.496                                     | 75                                                | +.083                             | +.095          |          | 125                          | +.555                  | .000                   |
|                  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 249                                                             | +.380                                     | 76                                                | +.083                             | .000           |          | 126                          | +.546                  | 095                    |
| L                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                           | 77                                                | . 002                             | 005            | 1        | 127                          | +.520                  | 190                    |
| E                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 249                                                             | +.285                                     | 77                                                | +.083                             | 095            |          | 127                          | +.479                  | 279                    |


All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for

### Insert Arrangement #24-61 / 25-61

| Connector Type:                             | JT<br>MIL-DTL-38999<br>Series II                                           | LJT<br>MIL-DTL-38999<br>Series I | Tri-Start<br>MIL-DTL-38999<br>Series III | MIL-C-26482<br>Series 1 & 2 | MIL-5015 | Number of<br>Contacts | Contact<br>Size | Service<br>Rating |
|---------------------------------------------|----------------------------------------------------------------------------|----------------------------------|------------------------------------------|-----------------------------|----------|-----------------------|-----------------|-------------------|
| Insert Designation:                         | 24-61                                                                      | 25-61                            | 25-61                                    | 24-61                       | NA       | 61                    | 20              | I                 |
| Contact Locations                           |                                                                            |                                  | Con                                      | tact Hole Locatio           | ons      | Conta                 | ct Hole Locat   | ions              |
| Front face of pin insert                    | shown                                                                      |                                  | Contact                                  | Locat                       | ion      | Contact               | Loca            | tion              |
|                                             |                                                                            |                                  | Number                                   | X Axis                      | Y Axis   | Number                | X Axis          | Y Axis            |
|                                             |                                                                            |                                  | Α                                        | +.196                       | +.500    | h                     | +.341           | 213               |
|                                             |                                                                            |                                  | В                                        | +.314                       | +.435    | i                     | +.251           | 314               |
|                                             | +Y                                                                         |                                  | С                                        | +.413                       | +.343    | j                     | +.133           | 379               |
|                                             |                                                                            |                                  | D                                        | +.485                       | +.230    | k                     | .000            | 402               |
|                                             |                                                                            |                                  | E                                        | +.527                       | +.101    | m                     | 133             | 379               |
| /                                           |                                                                            |                                  | F                                        | +.536                       | 030      | n                     | 251             | 314               |
|                                             | $\widehat{\Phi^{Z}}_{\Phi}$ $\widehat{\Phi^{A}}_{\Phi}$                    |                                  | G                                        | +.511                       | 164      | р                     | 341             | 213               |
|                                             | $\Phi_a \Phi_V \Phi_b \Phi_{\phi}$                                         | <del>)</del>                     | н                                        | +.454                       | 287      | q                     | 392             | 088               |
| //Φ <sup>^</sup> Ψ.                         | ₲₲₡₮                                                                       | <sup>→</sup> ,⊕)//               | J                                        | +.368                       | 391      | r                     | 399             | +.046             |
|                                             | $\overset{u}{\Phi} \overset{h}{\Phi} \overset{h}{\Phi} \overset{v}{\star}$ |                                  | к                                        | +.259                       | 470      | S                     | 362             | +.175             |
|                                             | ANY JJA Ô                                                                  |                                  | L                                        | +.134                       | 519      | t                     | 285             | +.283             |
|                                             |                                                                            | ₋,⊕,Ψ, +                         | ХМ                                       | .000                        | 537      | u                     | 173             | +.363             |
| $[\Phi, \Phi, \Phi]$                        | $\Phi$ $LL$ $\Phi$ $\Phi$                                                  |                                  | N                                        | 134                         | 519      | v                     | .000            | +.338             |
|                                             |                                                                            |                                  | Р                                        | 259                         | 470      | w                     | +.147           | +.223             |
| $\bigwedge_{\Phi}^{s} \Phi_{\rho}^{\sigma}$ |                                                                            | hФн/                             | R                                        | 368                         | 391      | x                     | +.237           | +.122             |
| $\chi_{\rm R}^{\rm R} \Phi$                 | ⊕k⊕' <sup>₩</sup>                                                          | Ψ                                | S                                        | 454                         | 287      | у                     | +.267           | 010               |
| Ľ₽                                          |                                                                            | /                                | т                                        | 511                         | 164      | z                     | +.228           | 139               |
|                                             |                                                                            |                                  | U                                        | 536                         | 030      | AA                    | +.131           | 233               |
|                                             |                                                                            |                                  | v                                        | 527                         | +.101    | BB                    | .000            | 267               |
|                                             | l                                                                          |                                  | w                                        | 485                         | +.230    | СС                    | 131             | 233               |
|                                             | -Y                                                                         |                                  | x                                        | 413                         | +.343    | DD                    | 228             | 139               |
|                                             |                                                                            |                                  | Y                                        | 314                         | +.435    | EE                    | 267             | 010               |
|                                             |                                                                            |                                  | Z                                        | 196                         | +.500    | FF                    | 237             | +.122             |
|                                             |                                                                            |                                  | а                                        | 068                         | +.454    | GG                    | 147             | +.223             |
|                                             |                                                                            |                                  | b                                        | +.068                       | +.454    | НН                    | .000            | +.200             |
|                                             |                                                                            |                                  | C                                        | +.173                       | +.363    | JJ                    | +.105           | +.094             |
|                                             |                                                                            |                                  | d                                        | +.285                       | +.283    | кк                    | +.135           | 041               |
|                                             |                                                                            |                                  | e                                        | +.362                       | +.175    | LL                    | .000            | 132               |
|                                             |                                                                            |                                  | f                                        | +.399                       | +.046    | ММ                    | 135             | 041               |
|                                             |                                                                            |                                  | g                                        | +.392                       | 088      | NN                    | 105             | +.094             |
|                                             |                                                                            |                                  | 3                                        |                             |          | PP                    | .000            | .000              |

All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for PCB applications. For availability of other arrangements, consult Amphenol Corp., Sidney, NY.

### Insert Arrangement #28-15



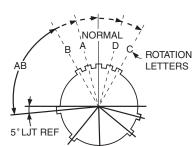
All dimensions for reference only. For alternate rotations see pages 25 & 26. Note: Shown in this catalog are the most common insert patterns for PCB applications. For availability of other arrangements, consult Amphenol Corp., Sidney, NY.

### Cylindrical Connectors with PCB contacts alternate positioning available for MIL-DTL-38999 connectors

To avoid cross-plugging problems in applications requiring the use of more than one connector of the same series, size and arrangement, alternate rotations are available as indicated in the accompanying charts.

In MIL-DTL-38999 Series I, II and III connectors the rotation is based on rotating the master key/keyway in the connector shell. A plug with a given rotation letter will mate with a receptacle with the same rotation letter. Only the master key/keyway rotates in the shell, and the insert always remains in the same position relative to the minor keys. Refer to diagrams below for each connector series.

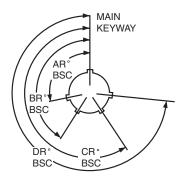
LJT (MIL-DTL-38999 Series I) KEY/KEYWAY ROTATION


|               | AB ANGLE OF ROTATION (Degrees) |    |    |     |     |  |  |  |  |  |
|---------------|--------------------------------|----|----|-----|-----|--|--|--|--|--|
| Shell<br>Size | Normal°                        | A° | B° | C°  | D°  |  |  |  |  |  |
| 9             | 95                             | 77 | -  | -   | 113 |  |  |  |  |  |
| 11            | 95                             | 81 | 67 | 123 | 109 |  |  |  |  |  |
| 13            | 95                             | 75 | 63 | 127 | 115 |  |  |  |  |  |
| 15            | 95                             | 74 | 61 | 129 | 116 |  |  |  |  |  |
| 17            | 95                             | 77 | 65 | 125 | 113 |  |  |  |  |  |
| 19            | 95                             | 77 | 65 | 125 | 113 |  |  |  |  |  |
| 21            | 95                             | 77 | 65 | 125 | 113 |  |  |  |  |  |
| 23            | 95                             | 80 | 69 | 121 | 110 |  |  |  |  |  |
| 25            | 95                             | 80 | 69 | 121 | 110 |  |  |  |  |  |

JT (MIL-DTL-38999 Series II) KEY/KEYWAY ROTATION


|               | AB ANGLE OF ROTATION (Degrees) |    |    |     |     |  |  |  |  |  |
|---------------|--------------------------------|----|----|-----|-----|--|--|--|--|--|
| Shell<br>Size | Normal°                        | A° | B° | C°  | D°  |  |  |  |  |  |
| 8             | 100                            | 82 | -  | -   | 118 |  |  |  |  |  |
| 10            | 100                            | 86 | 72 | 128 | 114 |  |  |  |  |  |
| 12            | 100                            | 80 | 68 | 132 | 120 |  |  |  |  |  |
| 14            | 100                            | 79 | 66 | 134 | 121 |  |  |  |  |  |
| 16            | 100                            | 82 | 70 | 130 | 118 |  |  |  |  |  |
| 18            | 100                            | 82 | 70 | 130 | 118 |  |  |  |  |  |
| 20            | 100                            | 82 | 70 | 130 | 118 |  |  |  |  |  |
| 22            | 100                            | 85 | 74 | 126 | 115 |  |  |  |  |  |
| 24            | 100                            | 85 | 74 | 126 | 115 |  |  |  |  |  |

#### Tri-Start (MIL-DTL-38999 Series III) KEY/KEYWAY ROTATION


| Shell<br>Size | Key & Keyway<br>Arrangement<br>Identification Letter | AR°<br>BSC | BR°<br>BSC | CR°<br>BSC | DR°<br>BSC |
|---------------|------------------------------------------------------|------------|------------|------------|------------|
| 9             | N                                                    | 105        | 140        | 215        | 265        |
|               | A                                                    | 102        | 132        | 248        | 320        |
|               | В                                                    | 80         | 118        | 230        | 312        |
| 9             | С                                                    | 35         | 140        | 205        | 275        |
|               | D                                                    | 64         | 155        | 234        | 304        |
|               | E                                                    | 91         | 131        | 197        | 240        |
|               | N                                                    | 95         | 141        | 208        | 236        |
|               | A                                                    | 113        | 156        | 182        | 292        |
| 11, 13,       | В                                                    | 90         | 145        | 195        | 252        |
| and 15        | С                                                    | 53         | 156        | 220        | 255        |
|               | D                                                    | 119        | 146        | 176        | 298        |
|               | E                                                    | 51         | 141        | 184        | 242        |
|               | N                                                    | 80         | 142        | 196        | 293        |
|               | А                                                    | 135        | 170        | 200        | 310        |
| 17 and        | В                                                    | 49         | 169        | 200        | 244        |
| 19            | С                                                    | 66         | 140        | 200        | 257        |
|               | D                                                    | 62         | 145        | 180        | 280        |
|               | E                                                    | 79         | 153        | 197        | 272        |
|               | N                                                    | 80         | 142        | 196        | 293        |
|               | А                                                    | 135        | 170        | 200        | 310        |
| 21, 23,       | В                                                    | 49         | 169        | 200        | 244        |
| and 25        | С                                                    | 66         | 140        | 200        | 257        |
|               | D                                                    | 62         | 145        | 180        | 280        |
|               | -                                                    |            | 450        | 107        | 070        |



RELATIVE POSSIBLE POSITION OF ROTATED MASTER KEYWAY (front face of LJT connector receptacle shown)



RELATIVE POSSIBLE POSITION OF ROTATED MASTER KEYWAY (front face of JT connector receptacle shown)



RELATIVE POSSIBLE POSITION OF ROTATED MASTER KEYWAY (front face of Tri-Start connector receptacle shown)

#### TRI-START CONNECTORS ALTERNATE ROTATION CROSS REFERENCE LETTERS

| Pins in<br>Alternate<br>Rotations | Sockets in<br>Alternate<br>Rotations |  |
|-----------------------------------|--------------------------------------|--|
| PA = G                            | SA = H                               |  |
| PB = I                            | SB = J                               |  |
| PC = K                            | SC = L                               |  |
| PD = M                            | SD = N                               |  |
| PE = R                            | SE = T                               |  |

#### Explanation:

Use P at end of part number for pin contacts in Normal position. Use S at end of part number for socket contacts in Normal position. Use cross reference letters given in chart above for alternate rotations.

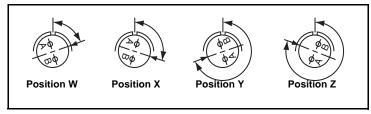
LJT & JT CONNECTORS ALTERNATE ROTATION CROSS REFERENCE LETTERS

| Pins in<br>Alternate<br>Rotations | Sockets in<br>Alternate<br>Rotations |  |  |
|-----------------------------------|--------------------------------------|--|--|
| PA = E                            | SA = F                               |  |  |
| PB = R                            | SB = T                               |  |  |
| PC = W                            | SC = X                               |  |  |
| PD = Y                            | SD = Z                               |  |  |

Explanation: Use P at end of part number for pin contacts in Normal position. Use S at end of part number for socket contacts in Normal position. Use cross reference letters given in chart above for alternate rotations.

25

### **Cylindrical Connectors with PCB contacts** alternate positioning available for MIL-C-26482 and MIL-5015 connectors


To avoid cross-plugging problems in applications requiring the use of more than one connector of the same series, size and arrangement, alternate rotations are available as indicated in the accompanying charts.

#### In MIL-C-26482 and MIL-5015 connectors the rotation is based on rotation of the insert within the connector.

A plug with a given rotation letter will mate with a receptacle with the same rotation letter. The front face of the pin insert is rotated within the shell in a clockwise direction from the normal shell key. Refer to diagram below for both MIL-C-26482 and MIL-C-5015 connectors.

#### MIL-C-26482 INSERT ROTATION

|       | Insert Rotation |         |     |     |     |  |
|-------|-----------------|---------|-----|-----|-----|--|
| Shell | Insert          | Degrees |     |     |     |  |
| Size  | Arrangement     | W       | Х   | Y   | Z   |  |
| 8     | 8-3             | 60      | 210 | -   | -   |  |
| 8     | 8-98            | -       | -   | -   | -   |  |
| 10    | 10-5            | 45      | 151 | 180 | 270 |  |
| 14    | 14-18           | 15      | 90  | 180 | 270 |  |
| 14    | 14-19           | 30      | 165 | 315 | -   |  |
| 16    | 16-26           | 60      | -   | 275 | 338 |  |
| 18    | 18-32           | 85      | 138 | 222 | 265 |  |
| 20    | 20-41           | 45      | 126 | 225 | -   |  |
| 22    | 22-36           | 72      | 144 | 216 | 288 |  |
| 24    | 24-31           | 90      | 225 | 255 | -   |  |
| 24    | 24-61           | 90      | 180 | 270 | 324 |  |



RELATIVE POSSIBLE POSITION OF ROTATED INSERT (front face of connector receptacle shown) (MIL-C-26482 and MIL-C-5015)

#### MIL-26482 AND MIL-5015 CONNECTORS ALTERNATE ROTATION CROSS REFERENCE LETTERS

| Pins in<br>Alternate Rotations | Sockets in Alternate<br>Rotations |  |  |  |  |
|--------------------------------|-----------------------------------|--|--|--|--|
| PW = G                         | SW = H                            |  |  |  |  |
| PX = I                         | SX = J                            |  |  |  |  |
| PY = K                         | SY = L                            |  |  |  |  |
| PZ = M                         | SZ = N                            |  |  |  |  |

Explanation: Use P at end of part number for pin contacts in Normal position. Use S at end of part number for socket contacts in Normal position. Use cross reference letters given in chart above for inserts with alternate rotations.

#### **MIL-5015 INSERT ROTATION**

|       | Insert Rotation |         |     |     |     |  |
|-------|-----------------|---------|-----|-----|-----|--|
| Shell | Insert          | Degrees |     |     |     |  |
| Size  | Arrangement     | W       | Х   | Y   | Z   |  |
| 10    | 10SL-3          | -       | -   | -   | -   |  |
| 14    | 14S-6           | -       | -   | -   | -   |  |
| 16    | 16S-1           | 80      | -   | -   | 280 |  |
| 18    | 18-1            | 70      | 145 | 215 | 290 |  |
| 20    | 20-11           | -       | -   | -   | -   |  |
| 22    | 22-14           | 80      | 110 | 250 | 280 |  |
| 24    | 24-28           | 80      | 110 | 250 | 280 |  |
| 28    | 28-15           | 80      | 110 | 250 | 280 |  |

LJTPQ00R wall mounting receptacle (back panel mounting)

21

23

25

All dimensions for reference only.

707-XXX .484 .790 1.332

708-XXX .484 .790 1.457

.790 1.582

709-XXX .484

.204

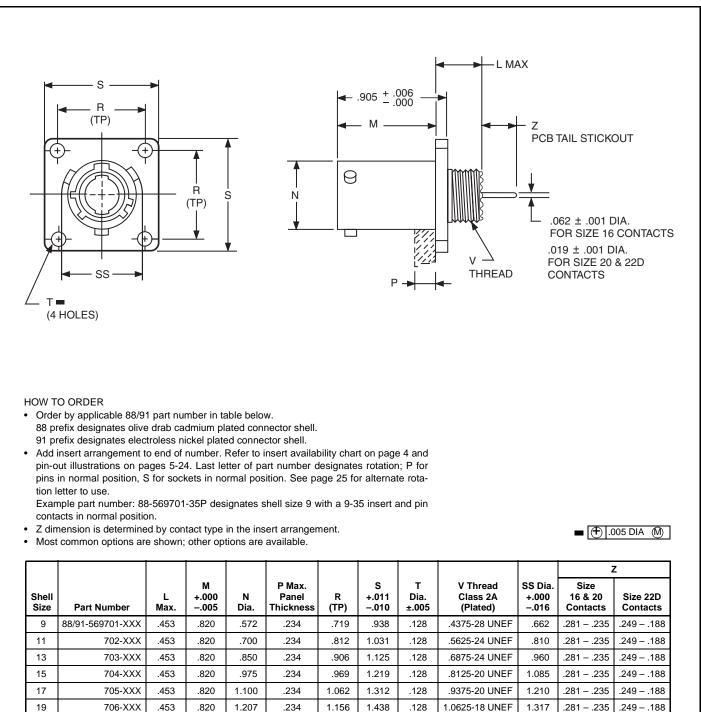
.204

.193

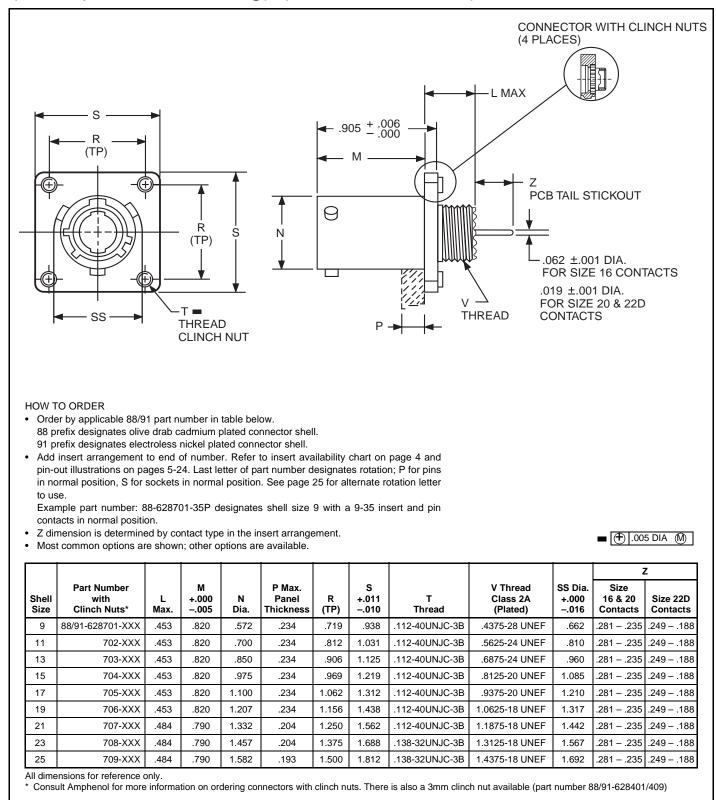
1.250

1.562

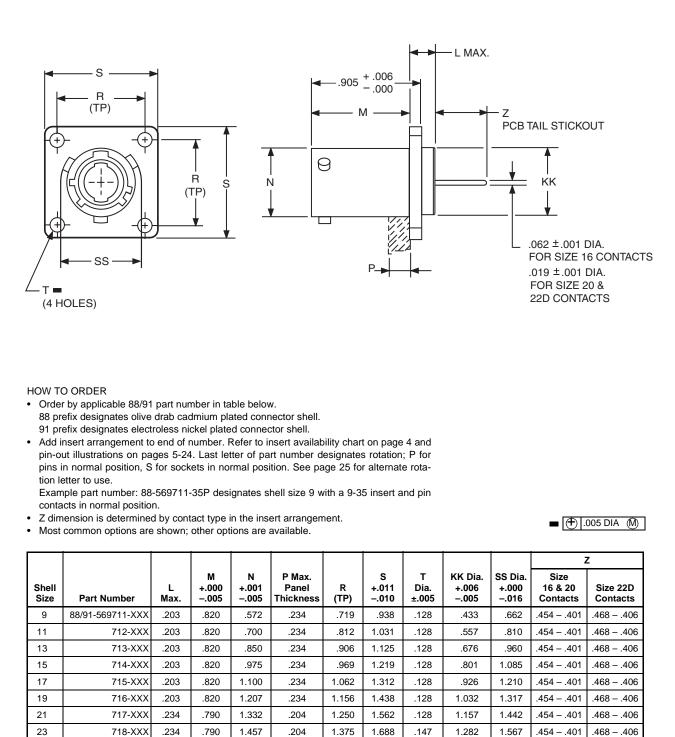
1.375 1.688


1.500 1.812

27


.128 1.1875-18 UNEF 1.442 .281 – .235 .249 – .188

.147 1.3125-18 UNEF 1.567 .281 – .235 .249 – .188


.147 1.4375-18 UNEF 1.692 .281 – .235 .249 – .188



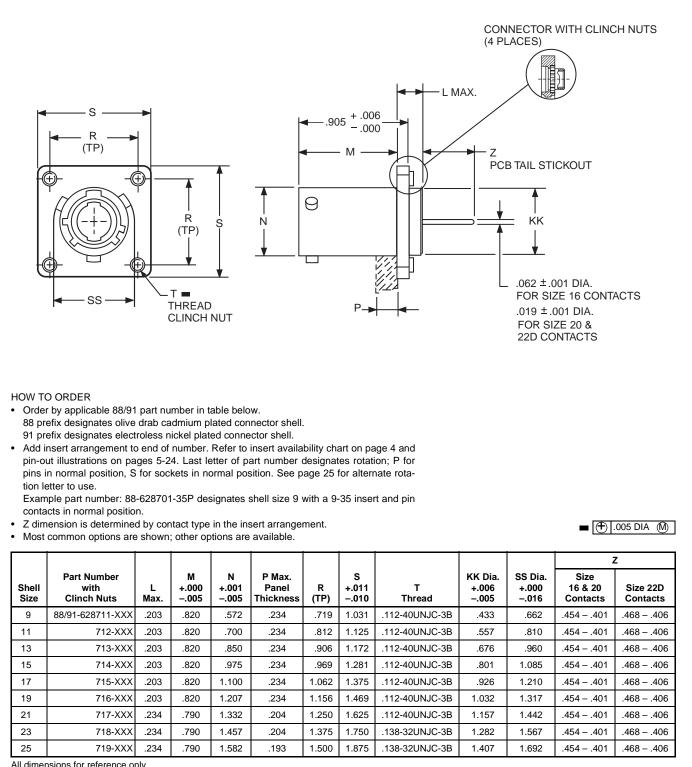
LJTPQ00R wall mounting receptacle (back panel mounting) (with clinch nuts)



LJTP02R box mounting receptacle (back panel mounting)

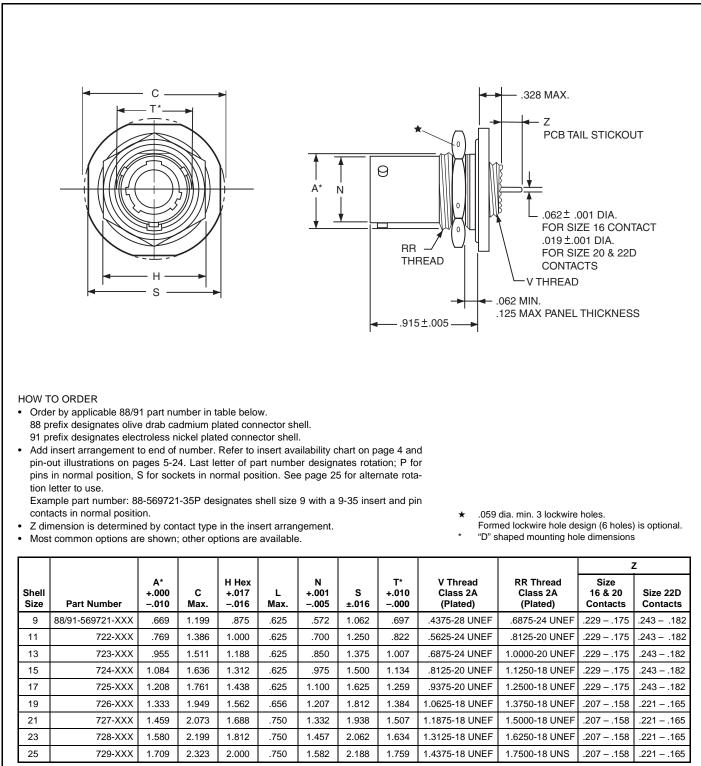


25 719-XXX .234 .790 1.437


All dimensions for reference only.

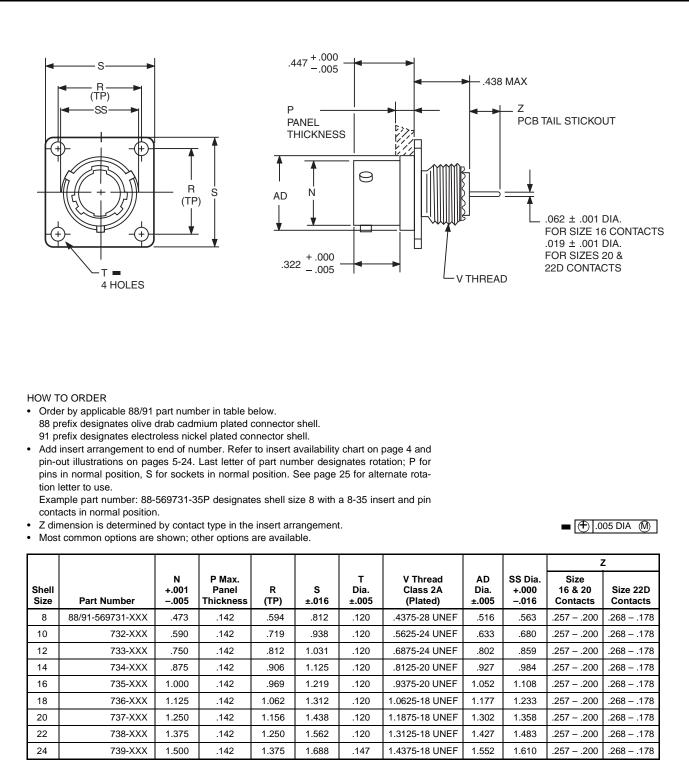
1.500 1.812 .147

1.407 1.692 .454 - .401 .468 - .406

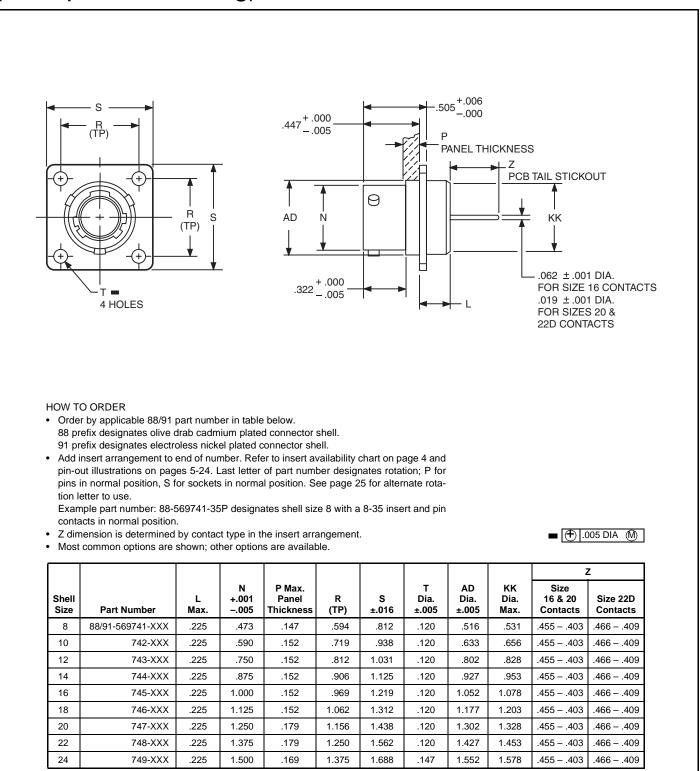

.193

LJTP02R box mounting receptacle (back panel mounting) (with clinch nuts)

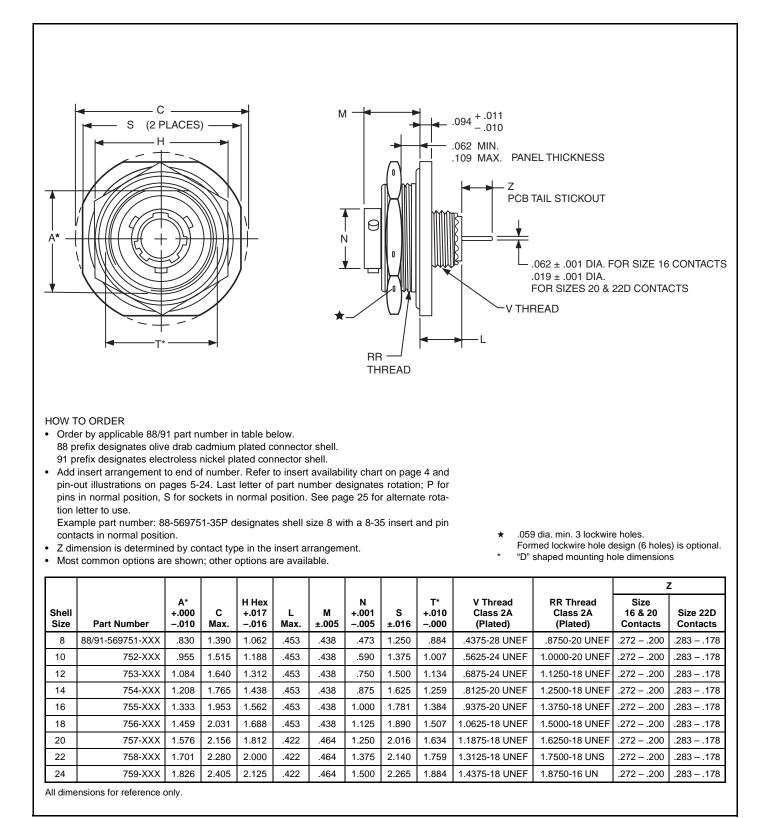



\* Consult Amphenol for more information on ordering connectors with clinch nuts. There is also a 3mm clinch nut available (part number 88/91-628410/419)

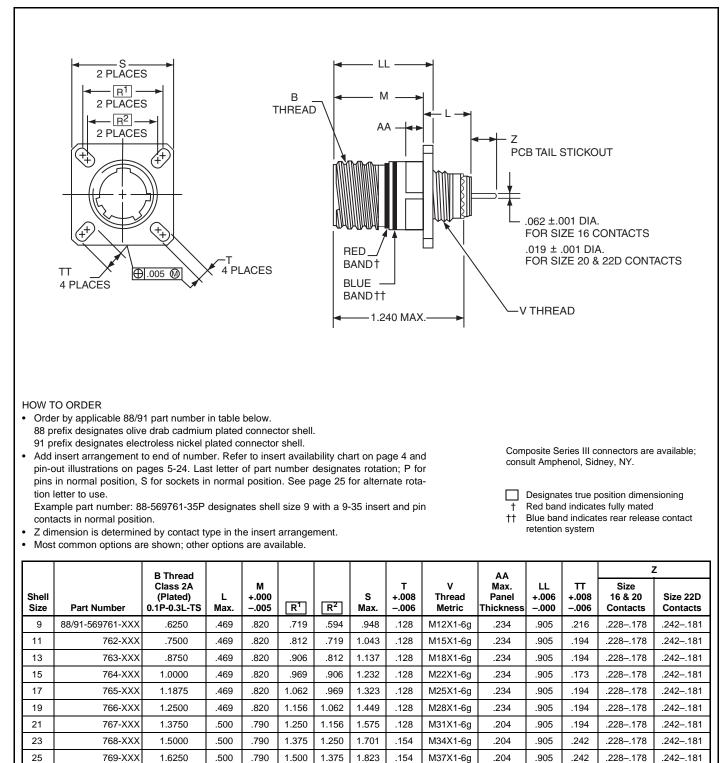
LJT07R jam nut receptacle



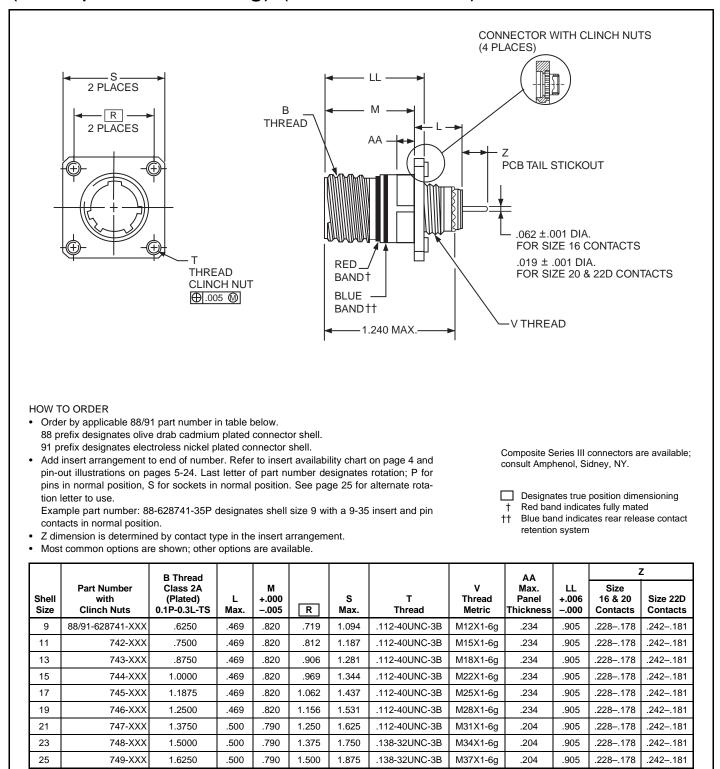

All dimensions for reference only.


JTPQ00R wall mounting receptacle (back panel mounting)




JTP02R box mounting receptacle (back panel mounting)

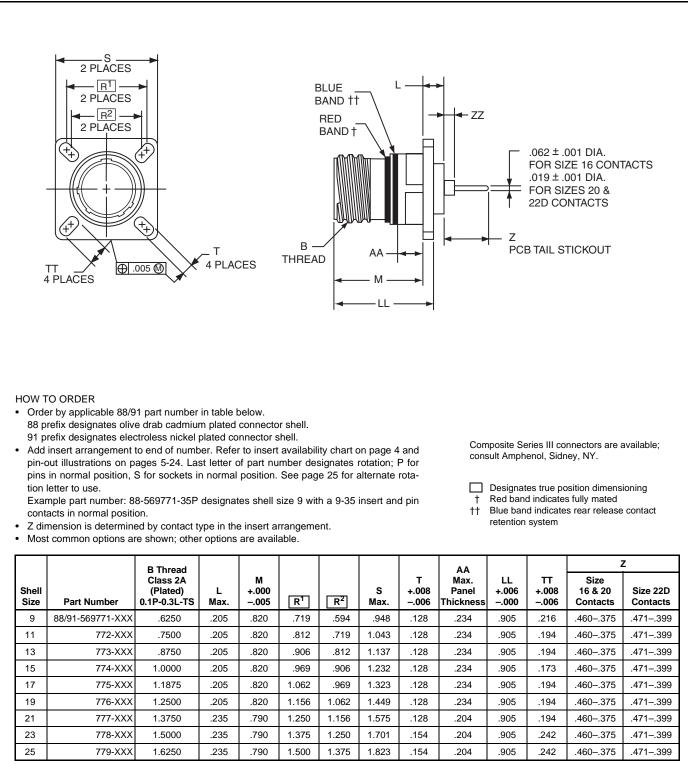



JT07R jam nut receptacle

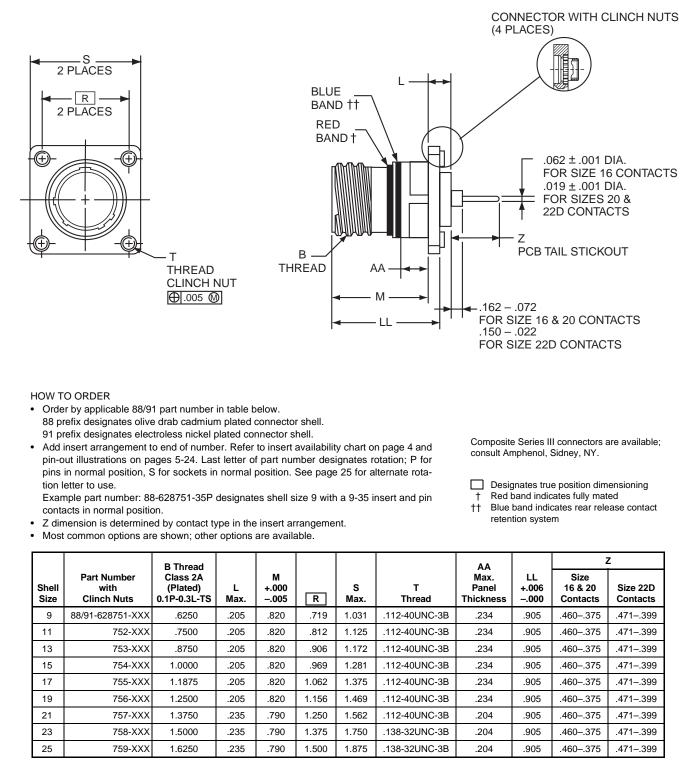


TVP00R wall mounting receptacle (back panel mounting)




TVP00R wall mounting receptacle (back panel mounting) (with clinch nuts)



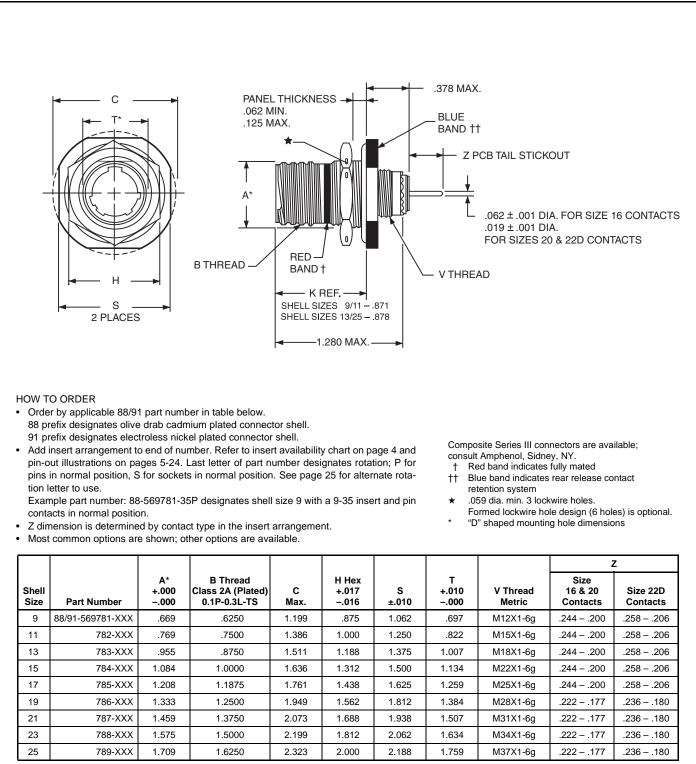

All dimensions for reference only.

\* Consult Amphenol for more information on ordering connectors with clinch nuts.

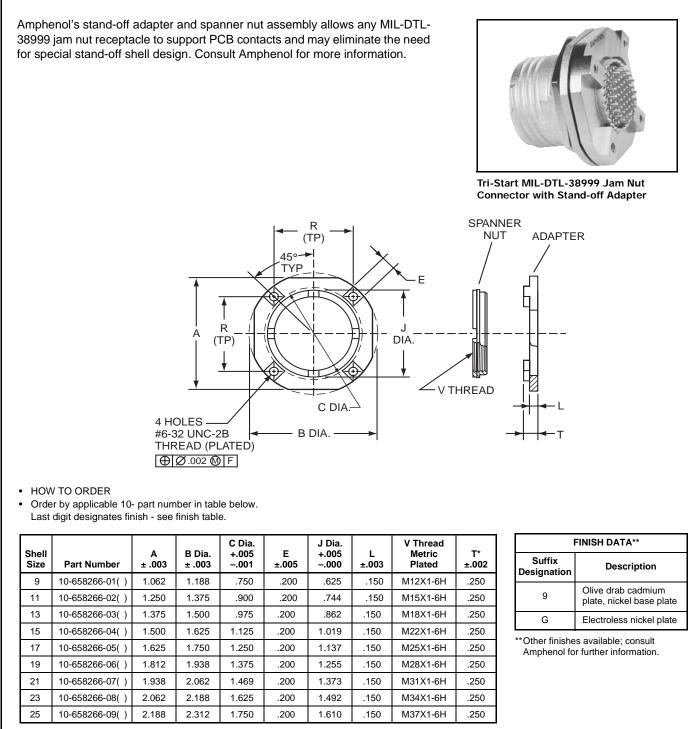
TVP02R box mounting receptacle



TVP02R box mounting receptacle (with clinch nuts)




All dimensions for reference only.


\* Consult Amphenol for more information on ordering connectors with clinch nuts.

38

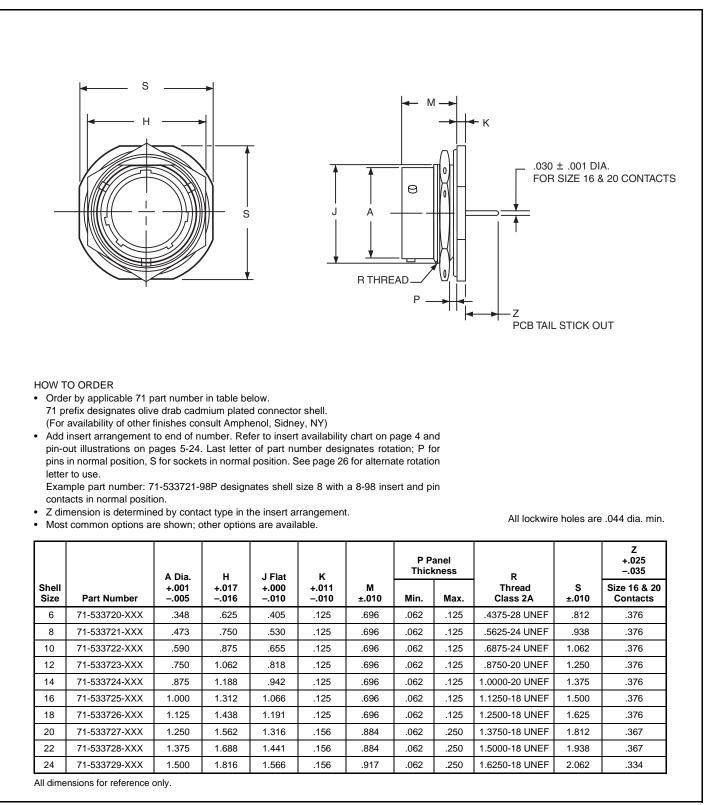
TV07R jam nut receptacle



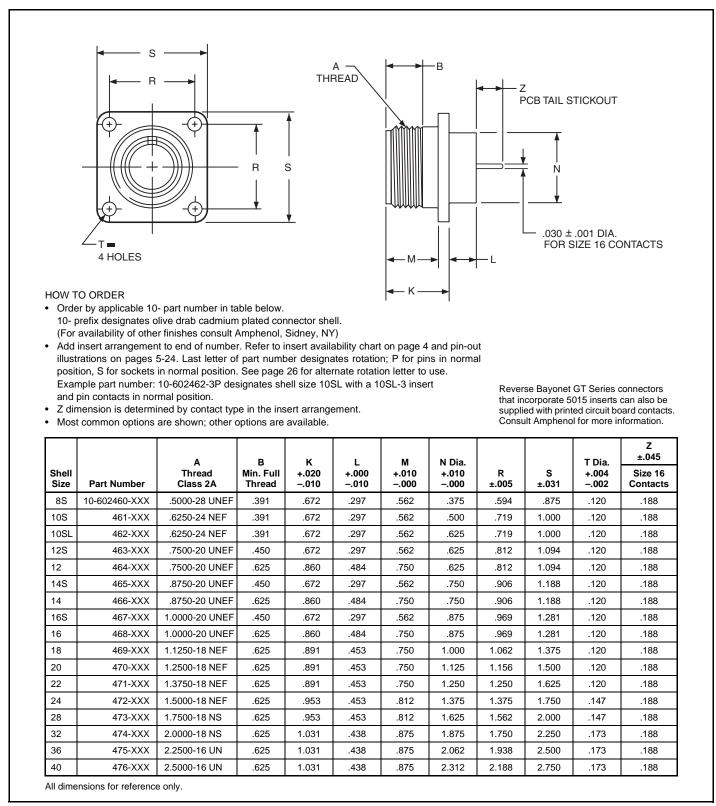

## **Stand-off Adapter** for use with 38999 PCB connectors



All dimensions for reference only. \* For information on additional 'T' dimension lengths, consult Amphenol.


# MIL-C-26482 Series 1 Type Connectors with PCB contacts

PT02 box mounting receptacle




## MIL-C-26482 Series 1 Type Connectors with PCB contacts

PT07 jam nut receptacle



## MIL-5015 Type Connectors with PCB contacts MS3102R box mounting receptacle



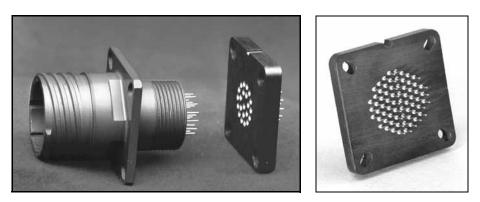
### **Universal Header Assemblies** for flex print or PCB connectors

### Mounts to all MIL-DTL-38999 and MIL-C-26482 Connectors

The use of connectors with printed circuit termination is rapidly gaining popularity due to the use of high volume, vapor phase or wave solder manufacturing processes. Termination of this style of connector to flex print or a printed circuit board represents a major cost in the manufacturing process for users. When adding flex or printed circuit board assemblies to an expensive filter or filter/transient protection connector, the total cost of a failed solder joint, a bent pin, or an

unanticipated electrical failure becomes prohibitive. The universal header assembly from Amphenol will provide for easy separation of the connector from the board on these occasions.

#### Header Assemblies Provide Cost Savings


Incorporation of the header assembly provides the user with time and cost saving potentials. These header assemblies can be vapor phase or wave soldered to flex or printed circuit boards prior to the receipt of the EMI/EMP connector. Headers can be installed to standard connectors, allowing for electrical testing that would adversely affect the sensitive diodes, MOV's or capacitors in the EMI/EMP connectors. Expensive connector assemblies can be easily removed from and reattached to the header assembly as the manufacturing process dictates.

#### Mounting Applications

Shell modifications are recommended, but are not necessary. The header assembly can be attached to connectors with standard flange placement or directly to the circuit board. The ideal application would involve either a single flange moved all the way to the rear of the connector or a double flange. Cinch nuts can be installed in either flange to allow easier mounting to the panel or the header assembly. The forward flange would mount the connector to the panel; the rear flange would be used to mount the header assembly. Various types of captivated or loose attaching screws can be utilized for unique applications. Amphenol universal headers are slotted to allow mounting to all series of MIL-DTL-38999 or MIL-C-26482 connectors without special alterations. They are of similar dimension as the flange of the mounting connector and would be approximately .185 inches (4.70 mm) thick.

#### Incorporates a Shorter Pin/Socket Contact

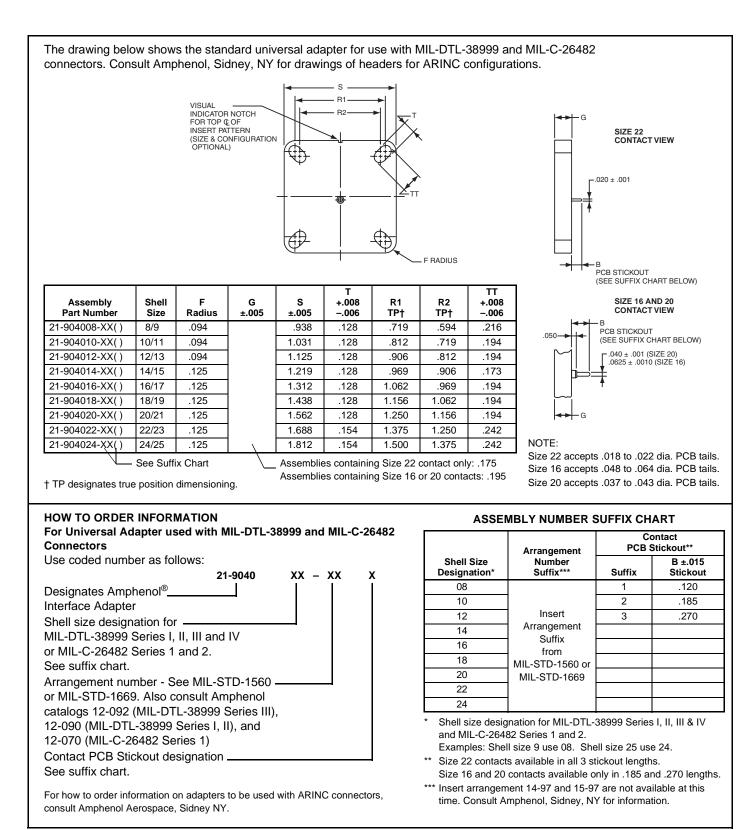
The heart of the header assembly is a short pin/socket contact. The tall of the contact would accommodate standard throughhole diameter and thickness of the flex or printed circuit board materials. The socket is imbedded in the molded material, making electrical engagement with the printed circuit tail of the connector.



Headers provide easy separation of the connector from the PC board.

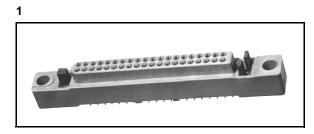
#### **Cylindrical Configuration**

- 3 PCB stickout dimensions are available.
- Size 22D contacts use .175 thick headers
- Size 16 contacts use .195 thick headers
- Consult Amphenol for Size 20 contact use with headers.
- Headers for cylindrical connectors accommodate up to 128 pins. Consult Amphenol catalogs for mating connector contact layouts (12-092 and 12-090 for MIL-DTL-38999 and 12-070 for MIL-C-26482).


#### Mounting to Rectangular ARINC Connectors

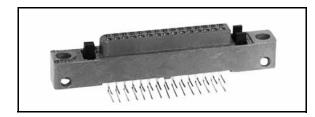
- Headers for ARINC connector arrangements accommodate up to 150 pins.
- Consult Amphenol for ARINC configurations and detailed dimensions.

#### Materials


- Body is molded from Torlon or PPS (Polyphenylene Sulfide)
- Electrical engagement areas of the header contact are plated with .00003 inches minimum of gold over .00005 inches minimum of nickel.

## **Universal Header Assemblies** for flex print or PCB connectors, cont.




### Additional Products for PCB Application Amphenol<sup>®</sup> rectangular interconnects

Amphenol is also a leader in rectangular interconnects for printed circuit board application. Within the rectangular families of Amphenol interconnects are Low Mating Force MIL-C-55302 connectors and LRM Surface Mount Connectors.









Variety of Low Mating Force Rectangular Connectors including styles with fiber optics (right) and small styles with only 10 contacts (upper left).

#### LOW MATING FORCE MIL-C-55302 CONNECTORS

- Superior electrical characteristics redundant current paths, low constrictive resistance, stable time/life contact resistance, uniform current densities
- High performance polyester dielectric moldings
- Over 20,000 mating cycles with B<sup>3</sup> Bristle Brush Bunch<sup>®</sup> contacts
- Significant reduction in mating force. Only 1.5 ounce max contact engaging and separating forces
- -65° to +125°C temperature rating
- High circuit count interconnections to 400 contacts per connector
- Two, three and four row patterns, 10 to 100 contacts per row, in one contact per row increments
- 0.100 in. center to center contact spacing, square grid
- Serviceability removable crimp contacts, repairable PC stud and solder less wrap contacts
- Board support structure reinforcing reduced
- Variety of contact terminations and platings
- Accessories to suit latching, piloting and polarization variations
- Up to 256 keyed mating polarizations

#### M55302/166 or 167 Mother Board, M55302/170 Daughter Board

**1., 2.** Two piece PCB connector featuring PCB stud or solderless wrap contacts in the MB Series and field repairable 90° PCB stud contacts in the DB Series.

#### M55302/169 Input/Output

**3.** Rear release, rear removable crimp contacts for discrete wire cabling. I/O connector series mates with standard MB and PC receptacle series to provide external inputs/outputs.

#### M55302/168 PC

**4.** 90° PCB stud contacts for side mounting on board. Mates with DB and I/O series.

### Hybrid Rectangular Connectors with Brush/Power/Coax/Fiber Optic Combinations

Amphenol offers wide versatility of combining contact types in rectangular interconnects.

For more information on Low Mating Force Connectors see catalog 12-035 online at www.amphenol-aerospace.com

## Additional Products for PCB Application Amphenol<sup>®</sup> rectangular interconnects, cont.

#### LRM SURFACE MOUNT CONNECTORS

The introduction of high speed integrated circuitry such as VHSIC and MMIC has enabled the Design Engineer to accomplish far more on his printed circuit board than ever before. This, coupled with the emergence of a revolutionary change in avionics packaging - modular avionic architectures - has created the need for a high performance, low insertion force PCB connector with significantly increased contact density.

The LRM (Line Replaceable Module) connector series are high performance, high density interconnects, specifically designed to connect printed circuit boards. The Amphenol Brush contact technology is the foundation of the LRM connector series.

#### LRM Connectors with Staggered Grid

- Advanced design to provide high contact density for high speed integrated circuitry in SEM-E and custom form factors
- 180 contact insert pattern grid in 8 rows: 0.100 inch spacing along the row with 0.050 inch between rows, rows offset 0.050 inch.
- Options include various shell designs to accommodate a wide range of PC board/heat sink combinations
- Solder tail, wire wrap or compliant contact availability
- ESD protection

#### LRM Connectors with GEN-X Grid

- Higher contact density and improved electrical performance
- All the features of the 180 contact pattern, including ESD protection
- Available in SEM-E and custom form factors
- 236 contact pattern grid in 8 rows: 0.075 inch spacing along the row with 0.060 inch between rows, rows offset 0.0375 inch

#### LRM Staggered Grid Airflow-thru Connectors

 Available for wider boards up to 0.425 inch. These accommodate standard brush tails in staggered pattern, but with increased spacing in the center, and they also provide more airflow cooling of inserts.

#### LRM Connectors with Many Contact and Shell Design Options

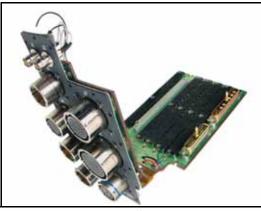
Flexibility to meet customer demands that include: combinations of brush and fiber optics; options for high speed contacts, RF contacts, or new high amperage RADSOK<sup>®</sup> contacts; incorporation of flex circuits; custom shells with multiple bays.


For more information on LRM Connectors see new catalog 12-037 at website www.amphenol-aerospace.com.

#### **BACKPLANE ASSEMBLIES**

Amphenol is the leading manufacturer of custom backplane assemblies using high density, ruggedized, board-to-board backplane interconnects. These can incorporate brush contacts, pc tail, or press-fit compliant pin contacts, or fiber optic termini. They also can incorporate fork and blade contacts (see next page for fork and blade contact connectors).

- Electrical Backplanes Large panel sizes with high layer counts, and features such as high aspect ratio plating, small diameter plated-through holes, and controlled impedances.
- Optical Backplanes Fiber termination with Multi-Terminal (MT) optical ferrules. Ribbon cable sorting allows programming flexibility; thus rendering the entire system easily upgradeable.
- Hybrid Optical Backplanes Integrated electrical and optical systems in one discreet package for advanced avionics systems.


For more information on Backplane Assemblies from Amphenol Backplane Systems division, see publication SL-392 at websites: www.amphenol-abs.com or www.amphenol-aerospace.com.



From top to bottom: Staggered Grid, 2 Bay LRM; GEN-X Grid, 2 Bay LRM; LRM inserts with RADSOK contacts; LRM insert with MT ferrule fiber optics and brush contacts in a Differential Pair insert.



LRM Module Inserts (showing front and back of inserts) with PC Tails in Staggered Grid Pattern



Backplane Assembly with LRM Connectors with Brush Contacts on one side and Cylindrical Connectors with Press-fit Compliant Contacts on the other.

### **Amphenol**<sup>®</sup> **Rectangular Interconnects** additional products for PCB application

### UHD MODULE/BACKPLANE CONNECTORS WITH FORK & BLADE CONTACTS

Amphenol's wide range of board level interconnects also includes high density UHD Series module and backplane connectors. These use the staggered grid pattern but do not use brush contacts. The staggered grid pattern is 80 contacts per inch, .025 pitch in 8 rows. They are SEM-E format and are qualified to: EIA 15-763, DESC 89065, IEEE 1101.1 to 1101.9.

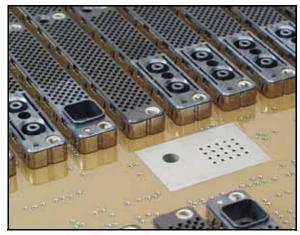
The UHD module connectors have surface mount blade contacts and the mating UHD backplane connectors have solderless press-fit tuning fork contacts. There are a wide range of high contact density patterns and the length and style can be tailored to meet customer requirements. They are rigid pin terminated to the board or flex terminated to the board. Coax, fiber optics and power contacts can also be integrated into the connector configuration. Other options include EMI shielding and UHD interconnects can be provided in a stacking configuration.

#### NAFI SERIES WITH FORK & BLADE CONTACTS

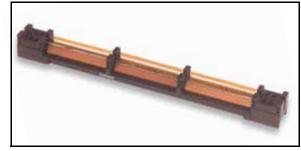
Amphenol NAFI daughtercard and backplane connectors are another board level interconnect that uses the fork and blade contact termination. They provide a wide range of medium contact density patterns and meet MIL-C-28754 standards. Daughtercard termination is through-hole, using nickel/gold solder plated contacts. The mating interface is a blade contact which can be either parallel or perpendicular to the daughtercard. They are available with 2, 3, 4 and 5 rows of contacts, .100 x .100 pitch. They can be rigid pin terminated to the board or flex circuitry can be used to attach to the board.

Both UHD and NAFI interconnects are used in military and commercial aviation, in space applications, shipboard and in military vehicles. For more information see catalog 12-036 at www.amphenol-abs.com or www.amphenol-aerospace.com.

#### PRINTED CIRCUIT BOARD TERMINAL BLOCKS


Amphenol Pcd division supplies wire-to-board discrete-wire connections in a variety of styles.

- Pluggable terminal blocks and headers in 3.5mm/.150" pitches in straight, angled, with locking ears, 2-tier, 3 tier, and low profile styles.
- Fixed terminal blocks in 5.0mm, .200", .250", .375" pitches in standard profiles, multi-tier, spring-clamp, high current and high voltage styles.
- Edgecard connectors that are screw terminated style in different size pitches.
- Custom designed terminal blocks with ear mounting options, DIN-rail mounting options, and others.


#### WIRING INTERFACE MODULES

Amphenol Pcd also supplies an industrial board level interconnect that replaces discrete terminations with a single pluggable unit. Connectors can be D-Sub, ribbon cable, RJ style, Centronic or DIN types. Also diodes, LEDs, resistors, capacitors, relays or fuses can be included in the unit.

For more information on terminal blocks and wiring interface modules go online to www.amphenol-pcd.com.



UHD Backplane Connectors on Board, Rigid Pin Termination, with Fiber Optics, Coax or Power Contacts



NAFI Daughtercard Connector with Flex Termination



PCB Circuit Board Terminal Blocks and Wiring Interface Modules

Amphenol Corporation Amphenol Aerospace Amphenol Industrial Operations 40-60 Delaware Avenue Sidney, NY 13838-1395 Phone: 607-563-5011 1-800-678-0141 Fax: 607-563-5157 Web: www.amphenol-aerospace.com Web: www.amphenol-industrial.com

#### SALES OFFICES

Amphenol Corporation Amphenol Aerospace Amphenol Industrial Operations 23276 South Pointe Drive Suite 113 Laguna Hills, CA 92653 Phone: 949-855-4454 1-800-678-0141 Fax: 949-855-9115

Amphenol Corporation Amphenol Aerospace Amphenol Industrial Operations 2010 Corporate Ridge McLean, VA 22101 Phone: 1-800-678-0141

Amphenol Backplane Systems

18 Celina Avenue Nashua, NH 03063 Phone: 888-318-3553 Fax: 603-883-0247

Web: www.amphenol.abs.com Advanced Circuit Technology 118 Northeastern Boulevard Nashua, NH 03062 Phone: 603-880-6000 Fax: 603-880-1785

Web: www.act.flexcircuit.com Amphenol Industrial Operations Amphenol Power Solutions

34190 Riviera Drive Fraser, MI 48026 Phone: 586-294-7400 Fax: 586-294-7402 www.radsok.com

Amphenol Pcd 2 Technology Drive Peabody, MA 01960 Phone: 978-532-8800 Fax: 978-532-6800

Amphenol Canada

20 Melford Drive Scarborough, ON M1B 2X6 Canada Phone: 416-291-4401 Fax: 416-292-0647 Web: www.amphenolcanada.com

Web: www.amphenolpcd.com

DISTRIBUTORS Corporate Headquarters Alphabetical Listing ARROW ELECTRONICS 7459 S. Lima Street Englewood, CO 80112-5816 Phone: 800-777-2776 Fax: 800-562-3542 Web: www/arrow.com AVNET EMG 11333 Pagemill Road Dallas, TX 75243 Phone: 800-332-8638 Fax: 214-553-2168 Web: www.avnet.com PEI GENESIS 2180 Hornig Road, Philadelphia, PA 19116 Phone: 800-642-8750 Fax: 215-552-8041 Web: www.peigenesis.com POWELL ELECTRONICS 4848 S. Island Ave. Philadelphia, PA 19153 Phone: 800-235-7880 Fax: 215-937-4655 Web: www.powell.com TTI INC. 2441 Northeast Pkwy. Fort Worth, TX 76106 Phone: 800-225-5884 Fax: 817-740-9494 Web: www.ttiinc.com

SMALL DISADVANTAGED/ MINORITY DISTRIBUTORS CHEROKEE NATION DISTRIBUTORS

Highway 51 West Stilwell, OK 74960 Phone: 918-696-2777 Fax: 918-696-3129 Web: www.chicnd.com JRH ELECTRONICS, INC. 2002 E. Lincoln Drive West Rt. 73, Marlton, NJ 08053 Phone: 800-467-9309 Fax: 609-988-8728 Web: www.jrhelec.com INTERNATIONAL (Military Aerospace Offices)

LATIN AMERICA ARGENTINA Amphenol Argentina Avenida Callao 930 2nd floor Office B Plaza C1023AAP Buenos Aires, Argentina Phone: (54 11) 48 15 68 86 Fax: (54 11) 48 14 57 79 E-mail: vendas@amphenol.com.ar BRA7II Amphenol do Brasil Ltda. Rua Diogo Moreira 132 CEP 05423-010 Sao Paulo - SP, Brazil Phone: (55-11) 3815.1003 Fax: (55-11) 3815.1629 E-mail: vendas@amphenol.com.br MEXICO Amphenol Mexico

Prolongacion Reforma 61-6 B2 Col. Paseo de las Lomas C.P. 01330 Mexico D.F., Mexico Phone: (52-55) 5258.9984 Fax: (52-55) 5081.6890 E-mail: info@amphenolmexico.com

EUROPE ENGLAND

Amphenol Limited Thanet Way, Whitstable Kent CT5 3JF, United Kingdom Phone: (44-1-227) 773200 Fax: (44-1-227) 276571

Web: www.amphenol.co.uk FRANCE Amphenol Socapex Promenade de l'Arve, BP29 Thyez 74301 948 Cedex, France Phone: (33-4) 50892800 Fax: (33-4) 5096-1941 Web: www.amphenol-socapex.com GERMANY Amphenol-Air LB GmbH Am Kleinbahnhof 4 D-66740 Saarlouis, Germany Phone: (49-6831) 9810-87 Fax: (49-6831) 9810-30 Web: www.amphenol-airlb.com

ITALY & REST OF EUROPE Amphenol Italia S.p.A. Via Barbaiana 5 20020 Lainate (Milano), Italy Phone: 39-02-932541 Fax: 39-02-93254444 E-mail: info@amphenol-it.com

Kfir-Barkan Bldg., East Indust. Zone Kfar Sava 44102, Israel Phone: (972-9) 764.4100 Fax: (972-9) 7674324 E-mail: www.bar-tec.com SOUTH AFRICA Amphenol South Africa 30 Impala Road 2196 Sandton - Chislehurston South Africa Tel: (27-11) 783-9517 Fax: (27-11) 783-9519 E-mail: amphenol africa@csi.com TURKEY **Amphenol Turkiye Office** Ayazaga Mah. Meydan Sk. No. 28 Beybi Giz Plaza, Kat. 26 Maslak 34396 Istanbul Phone: 90 (212) 335 25 01 Fax: 90 (212) 335 25 00 Web: www.amphenol.com.tr E-mail: saracoglu@amphenol.com.tr ASIA / PACIFIC AUSTRALIA Amphenol Australia Pty Ltd 2 Fiveways Blvd. Keysborough Melbourne, Victoria 3173 Australia Phone: 613 8796 8888 Fax: 613 8796 8801 E-mail: info@amphenol.com.au RUSSIA Amphenol Russia Office 8-2 Yaroslavskaja Str. 129164 Moscow, Russia Phone: 7495 937 634 E-mail: russia@amphenol.com CHINA Amphenol Aerospace China Office Phone: +607-563-4060 E-mail: ChinaSales@amphenol-aao.com INDIA Amphenol Interconnect India, Pvt, Ltd. 105 Bhosari Industrial Area Pune. 411 026. India Phone: (91-20) 27120 481 Fax: (91-20) 27120 581 E-mail: sales@amphenol-in.com JAPAN Amphenol Japan Mil Aero & Industrial 471-1, Deba, Ritto-city Shiga 520-3041, Japan Phone: 81-77553-8501 Fax: 81-77551-2200 KOREA Amphenol Aerospace Korea Office Phone: +607-563-4061 E-mail: KoreaSales@amphenol-aao.com SOUTHEAST ASIA Amphenol Aerospace South East Asia Office Phone: +607-563-4062 E-mail: SouthEastAsiaSales@amphenolaao.com TAIWAN Amphenol Aerospace Taiwan Phone: +607-563-4063 E-mail: TaiwanSales@amphenolaao.com

MIDDLE EAST / AFRICA

3 Hagavish St., P.O.B. 279

ISRAEL

Bar-Tec Ltd.

Notice: Specifications are subject to change without notice. Contact your nearest Amphenol Corporation Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable but are presented without guarantee, warranty, or responsibility of any kind expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are typical and may not apply to all connectors.

©2006 Amphenol Corp. Printed in U.S.A. JCP 5/2006

### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Circular DIN Connectors category:

Click to view products by Amphenol manufacturer:

Other Similar products are found below :

CTV06RQF-25-8SA-LC CTV06RQF-25-8S-LC CTV06RQW-25-8SB-LC CTV06RW-25-20P CTV06RW-25-20PA CTV06RW-25-20PB CTV06RW-25-20PB CTV06RW-25-20PB CTV06RW-25-20PE-LC CTV06RW-25-20SB CTV06RW-25-20SE CTV07RW-17-8S(506) CTVP00RW-19-32S(506) CTVP00RW-9-35S(506) M83723/71R20416 M83723/71R22196 M83723/71W2039N M83723/71W24196 M83723/71W2419N M83723/72A1404N-LC M83723/72R1203N M83723/72W20418 M83723/72W22126 M83723/72W22556 M83723/72W2419N M83723/72W2461N M83723/73R2028N M83723/73R2039N M83723/73W1412N M83723/73W2039N M83723/74R1624N M83723/74R1808N M83723/74R1624N M83723/74R1808N M83723/74R2212N M83723/74W1203N M83723/74W1412N M83723/74W20416 M83723/74W2041N M83723/75R10058 M83723/75W2232N M83723/76R14157 M83723/76R20256 M83723/76W1808N M83723/76W2016N M83723/76W2461N M83723/76W2016N M83723/76R22327 M83723/78W2212N M83723/78W22556 M85049/50-5F D38999/20FF11AC D38999/20FJ20BB D38999/20FJ20SC