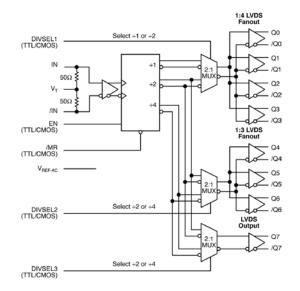
SY89200U

Ultra-Precision 1:8 LVDS Fanout Buffer with Three ÷1/÷2/÷4 Clock Divider Output Banks

Revision 6.0

General Description

The SY89200U is a 2.5V precision, high-speed, integrated clock divider and LVDS fanout buffer capable of handling clocks up to 1.5GHz. Optimized for communications applications, the three independently controlled output banks are phase matched and can be configured for pass through $(\div 1)$, $\div 2$ or $\div 4$ divider ratios.


The differential input includes Micrel's unique, 3-pin input termination architecture that allows the user to interface to any differential signal path. The low-skew, low-jitter outputs are LVDS-compatible with extremely fast rise/fall times guaranteed to be less than 150ps.

The EN (enable) input guarantees that the \div 1, \div 2 and \div 4 outputs will start from the same state without any runt pulse after an asynchronous master rest (MR) is asserted. This is accomplished by enabling the outputs after a four-clock delay to allow the counters to synchronize.

The SY89200U is part of Micrel's Precision Edge[®] product family.

Datasheets and support documentation are available on Micrel's web site at: <u>www.micrel.com</u>.

Functional Block Diagram

Precision Edge is a registered trademark of Micrel, Inc.

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

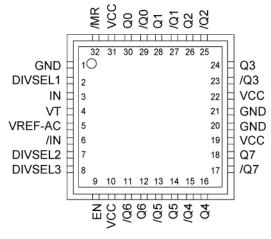
Features

- Three low-skew LVDS output banks with programmable ÷1, ÷2 and ÷4 divider options
- Three independently programmable output banks
- Guaranteed AC performance over temperature and voltage:
 - Accepts a clock frequency up to 1.5GHz
 - <900ps IN-to-OUT propagation delay
 - <150ps rise/fall time
 - <50ps bank-to-bank phase offset
- Ultra-low jitter design:
 - <1ps_{RMS} random jitter
 - <10ps_{PP} total jitter (clock)
- Patent-pending input termination and VT pin accepts DC- and AC-coupled inputs (CML, PECL, LVDS)
- LVDS-compatible outputs
- CMOS/TTL-compatible output enable (EN) and divider select control
- 2.5V ±5% power supply
- -40°C to +85°C temperature range
- Available in 32-pin (5mm × 5mm) QFN package

Applications

- All SONET/SD applications
- All Fibre Channel applications
- All Gigabit Ethernet applications

Ordering Information⁽¹⁾


Part Number	Package	Temperature Range	Package Marking	Package
SY89200UMG	QFN-32	Industrial	SY89200U with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY89200UMGTR ⁽²⁾	QFN-32	Industrial	SY89200U with Pb-Free bar-line indicator	Pb-Free NiPdAu

Note:

1. Other voltages are available. Contact Micrel for details.

2. Tape and Reel

Pin Configuration

32-Pin QFN

Pin Description

Pin Number	Pin Name	Pin Function
3, 6	IN, /IN	Differential Input: This input pair is the differential signal input to the device. This input accepts AC- or DC-coupled signals as small as 100mV. The input pair internally terminates to a VT pin through 50Ω . Note that these inputs will default to an indeterminate state if left open. Please refer to the "Input Interface Applications" section for more details.
2 7 8	DIVSEL1 DIVSEL2 DIVSEL3	Single-Ended Inputs: These TTL/CMOS inputs select the device ratio for each of the three banks of outputs. Note that each of these inputs is internally connected to a $25k\Omega$ pull-up resistor and will default to logic HIGH state if left open. The input-switching threshold is V _{CC} /2.
4	VT	Input Termination Center-Tap: Each side of the differential input pair terminates to the VT pin. The VT pin provides a center-tap to a termination network for maximum interface flexibility. See "Input Interface Applications" section for more details.
5	VREF-AC	Reference Voltage: This output biases to V _{CC} -1.2V. It is used for AC-coupling inputs IN and /IN. For AC-coupled applications, connect VREF-AC directly to the VT pin. Bypass with 0.01μ F low ESR capacitor to VCC. Maximum sink/source capability is 0.5mA.
9	EN	Single-Ended Input: This TTL/CMOS input disable and enable the Q0 – Q7 outputs. This input is internally connected to a $25k\Omega$ pull-up resistor and will default to logic HIGH state if left open. The input-switching threshold is V _{CC} /2. For the input enable and disable functional description, refer to Figures 2a through 2c.
30, 29, 28 27, 26, 25 24, 23	Q0, /Q0, /Q1 /Q1, Q2, /Q2 Q3, /Q3	Bank 1 LVDS differential output pairs controlled by DIVSEL1: LOW Q0 – Q3 = \div 1 HIGH, Q0 – Q3 = \div 2. Unused output pairs should be terminated with 100 Ω across the differential pair.
16, 15, 14 13, 12, 11	Q4, /Q4, Q5 /Q5, Q6, /Q6	Bank 2 LVDS differential output pairs controlled by DIVSEL2: LOW Q4 – Q6 = \div 2 HIGH, Q4 – Q6 = \div 4. Unused output pairs should be terminated with 100 Ω across the differential pair.
18, 17	Q7, /Q7	Bank 3 LVDS differential output pairs controlled by DIVSEL3: LOW Q7 = \div 2 HIGH. Q7 = \div 4. Unused output pairs should be terminated with 100 Ω across the differential pair.
32	/MR	Single-Ended Input: This TTL/CMOS-compatible master reset function asynchronously sets Q0 – Q7 outputs LOW, /Q0 – /Q7 outputs HIGH, and holds them in that state as long as /MR remains LOW. This input is internally connected to a $25k\Omega$ pull-up resistor and will default to a logic HIGH state if left open. The input-switching threshold is V _{CC} /2.
10, 19, 22, 31	VCC	Positive power supply. Bypass with 0.1µF∥0.01µF low ESR capacitors.
1, 20, 21	GND Exposed	Ground and exposed pad must be connected to the same GND plane on the board.

Truth Table

/MR ⁽³⁾	EN ^(4, 5)	DIVSEL1	DIVSEL2	DIVSEL3	Q0 – Q3	Q4 – Q6	Q7
0	Х	Х	Х	Х	0	0	0
1	0	х	Х	Х	0	0	0
1	1	0	0	0	÷1	÷2	÷2
1	1	1	1	1	÷2	÷4	÷4

Notes:

3. /MR asynchronously forces Q0 - Q7 LOW (/Q0 - /Q7 HIGH).

4. EN forces Q0 – Q7 LOW between 2 and 6 input clock cycles after the falling edge of EN. Refer to Timing Diagram section.

5. EN synchronously enables the outputs between two and six input clock cycles after the rising edge of EN. Refer to Timing Diagram section.

Absolute Maximum Ratings⁽⁶⁾

Supply Voltage (V _{CC})–0.5V to +4.0V Input Voltage (V _{IN})–0.5V to V _{CC}
Termination Current ⁽⁸⁾
Source or sink current on V _T ±100mA
Output Current ⁽⁸⁾
Source or sink current on IN, /IN±50mA
V _{REF-AC} Current ⁽⁸⁾
Source or sink current on V _{REF-AC} ±2mA
Lead Temperature (soldering, 20s)
Storage Temperature (Ts)65°C to +150°C

Operating Ratings⁽⁷⁾

Supply Voltage (V _{CC})	+2.375V to +2.625V
Ambient Temperature (T _A)	–40°C to +85°C
Package Thermal Resistance ⁽⁹⁾	
QFN (θ _{JA}) Still-Air	35°C/W
$QFN\left(\Psi_{JB} ight)$ Junction-to-Board	20°C/W

DC Electrical Characteristics⁽¹⁰⁾

 $T_{\text{A}} = -40^{\circ}\text{C}$ to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{CC}	Power Supply		2.375	2.5	2.625	V
lcc	Power Supply Current	No load, max. V _{CC} , Note 11			350	mA
$R_{\text{DIFF}_\text{IN}}$	Differential Input Resistance (IN-to-/IN)		80	100	120	Ω
R _{IN}	Input Resistance (IN-to-V _T , /IN-to-V _T)		40	50	60	Ω
V _{IH}	Input High Voltage; (IN, /IN)		1.2		V _{CC}	V
V _{IL}	Input Low Voltage; (IN, /IN)		0		V _{IH} -0.1	V
V _{IN}	Input Voltage Swing; (IN, /IN)	See Figure 1	0.1		V _{cc}	V
V_{DIFF_IN}	Differential Input Voltage Swing	See Figure 2	0.2			V
$V_{\text{REF-AC}}$	Reference Voltage		V _{CC} -1.3	V _{CC} -1.2	V _{CC} -1.1	V
IN-to-V _T	Voltage from Input to V_T				1.8	V

Notes:

6. Exceeding the absolute maximum ratings may damage the device.

7. The device is not guaranteed to function outside its operating ratings.

8. Due to the limited drive capability use for input of the same package only.

9. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB. Ψ_{JB} uses 4-layer θ_{JA} in still-air, unless otherwise stated.

10. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

11. Includes current through internal 50 $\ensuremath{\Omega}$ pull-up.

LVTTL/CMOS DC Electrical Characteristics⁽¹⁰⁾

 V_{CC} = 2.5V ±5%; T_{A} = –40°C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
VIH	Input HIGH Voltage		2.0			V
VIL	Input LOW Voltage				0.8	V
կո	Input HIGH Current		-125		30	μA
μL	Input Low Current				-300	μA

LVDS Output DC Electrical Characteristics⁽¹²⁾

 V_{CC} = 2.5V ±5%; T_A = –40°C to +85°C; R_L = 100 Ω across Q and /Q, unless otherwise stated.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{OH}	Output HIGH Voltage; (Q, /Q)				1.475	V
V _{OL}	Output LOW Voltage; (Q, /Q)		0.925			V
V _{OUT}	Output Voltage Swing; (Q, /Q)		250	350		mV
V _{DIFF_OUT}	Differential Output Voltage Swing Q - /Q		500	700		mV
V _{OCM}	Output Common Mode Voltage (Q, /Q)		1.125		1.275	V
ΔV_{OCM}	Change in Common Mode Voltage (Q, /Q)		-50		+50	mV

Note:

12. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

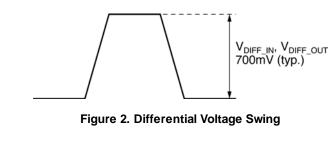
AC Electrical Characteristics⁽¹³⁾

	00 1 0500 D 1000		· · · · · · · · · · · · · · · · · · ·
$V_{CC} = 2.5V \pm 5\%; T_A = -40$	$^{\circ}$ C to +85 $^{\circ}$ C; R _L = 100 Ω a	icross all outputs (Q and /Q), unless otherwise stated.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
f _{MAX}	Maximum Operating Frequency	V _{OUT} >200mV Clock	1.5			GHz
		IN-to-Q	500	700	900	ps
t _{PD}	Differential Propagation Delay	/MR-to-Q			900	ps
t _{RR}	Reset Recovery Time	/MR(L-H)-to-(L-H)			900	ps
t _{PD} Tempco	Differential Propagation Delay Temperature Coefficient			115		fs/°C
	Within-Bank Skew	Within same fanout bank, Note 14		10	25	ps
	Bank-to-Bank Skew	Same divide setting, Note 15		15	35	ps
ISKEW	Bank-to-Bank Skew	Delay MR-to-Q 900 /MR(L-H)-to-(L-H) 900 Delay 115 Within same fanout bank, Note 14 10 25 Same divide setting, Note 15 15 35 Differential divide setting, Note 15 25 50 Note 16 200 200 Note 17 1 10 Note 18 10 10	50	ps		
	Part-to-Park Skew	Note 16			200	ps
	Random Jitter (RJ)	Note 17			1	ps _{RMS}
t _{JITTER}	Total Jitter (TJ)	Note 18			10	ps _{PP}
tskew	Cycle-to-Cycle Jitter	Note 19			1	ps _{RMS}
t _f ,/t _f	Rise/Fall Time	20% to 80% at full output swing	40	80	150	ps

Notes:

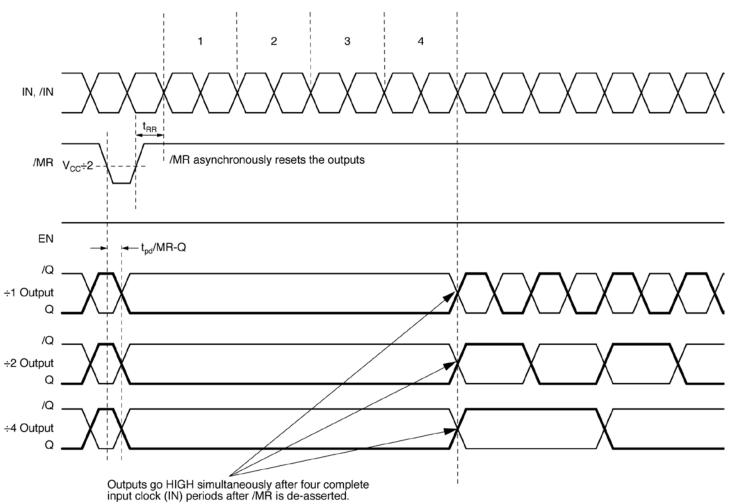
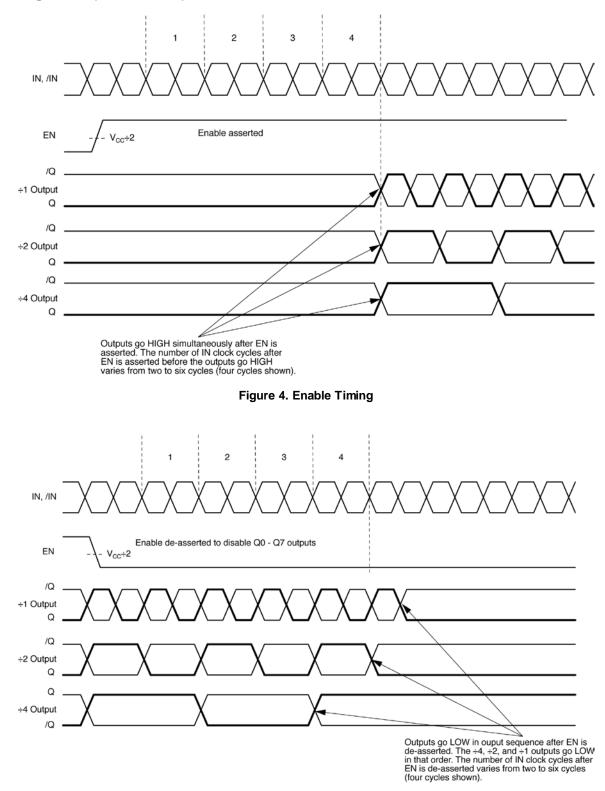
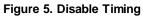
13. Measured with 100mV input swing. See Timing Diagram section for definition of parameters. High-frequency AC-parameters are guaranteed by design and characterization.

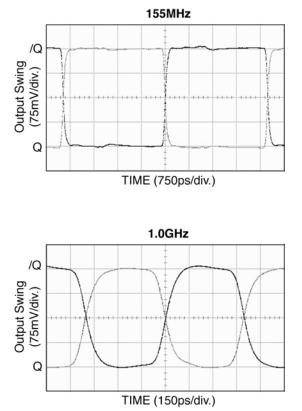

14. Within-bank is the difference in propagation delays among the outputs within the same bank.

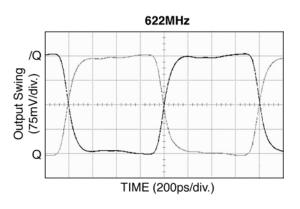
- 15. Bank-to-bank skew is the difference in propagation delays between outputs from difference banks. Bank-to-bank skew is also the phase offset between each bank after MR is applied.
- 16. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.
- 17. RJ is measured with a K28.7 comma detect character pattern.
- 18. Total jitter definition: With an ideal clock input of frequency ≤fMAX, no more than one output edge in 1012 output edges will deviate by more than the specified peak-to-peak jitter value.
- 19. Cycle-to-cycle jitter definition: The variation of periods between adjacent cycles, Tn Tn-1 where T is the time between rising edges of the output signal.

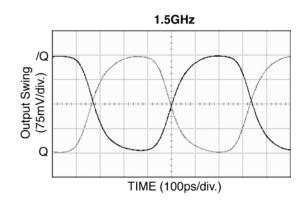
Single-Ended Differential Swings

Timing Diagrams


Figure 3. Reset with Output Enabled


Timing Diagrams (Continued)



Typical Operating Characteristics

Input Stage Internal Termination

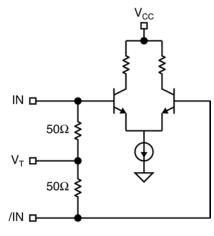
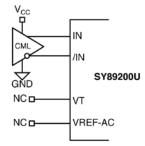
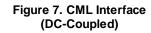




Figure 6. Simplified Differential Input Stage

Input Interface Applications

Option: May connect to $V_{\rm T}$ and $V_{\rm CC}$

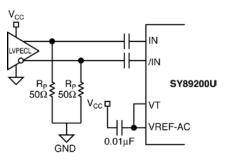


Figure 10. LVPECL Interface (AC-Coupled)

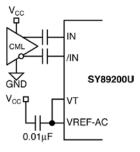


Figure 8. CML Interface (AC-Coupled)

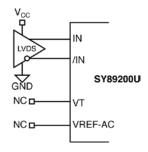


Figure 11. LVDS Interface

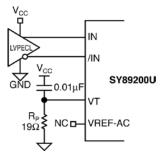


Figure 9. LVPECL Interface (DC-Coupled)

Output Interface Applications

LVDS specifies a small swing of 350mV typical, on a nominal 1.25V common mode above ground. The common mode voltage has tight limits to permit large variations in ground between an LVDS driver and receiver. Also, change in common mode voltage, as a function of data input, is kept to a minimum to keep EMI low.

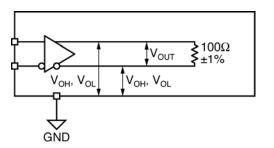


Figure 12. LVDS Differential Measurement

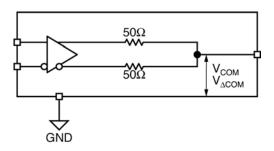
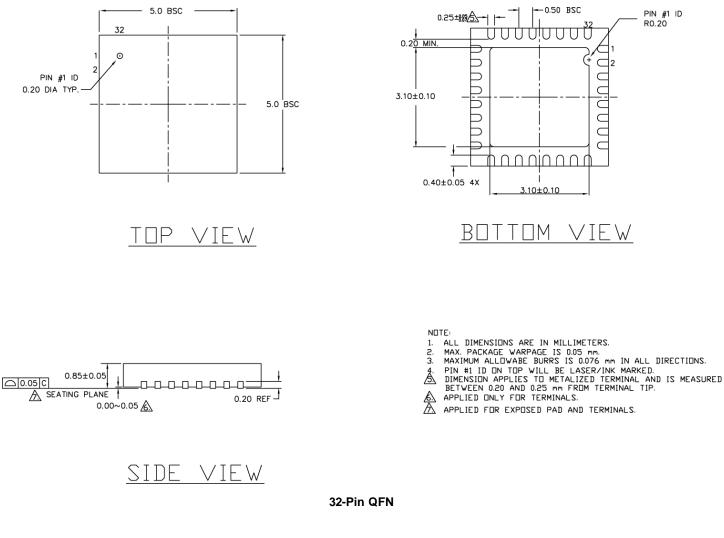



Figure 13. LVDS Common Mode Measurement

Package Information⁽²⁰⁾

Note:

20. Package information is correct as of the publication date. For updates and most current information, go to <u>www.micrel.com</u>.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2013 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Drivers & Distribution category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

 8501BYLF
 854\$015CKI-01LF
 8T33F\$6221EPGI
 NB7V72MMNHTBG
 \$i53314-B-GMR
 4RCD0124KC0ATG
 P9090-0NLGI8

 SY100EP33VKG
 850\$1201BGILF
 8004AC-13-33E-125.00000X
 ISPPAC-CLK5520V-01T100C8P
 4RCD0124KC0ATG8
 854110AKILF

 PI6C4931504-04LIE
 \$I53305-B-GMR
 83210AYLF
 NB6VQ572MMNG
 4RCD0229KB1ATG
 PI6C4931502-04LIEX
 8SLVD1212ANLGI

 PI6C4931504-04LIEX
 AD9508BCPZ-REEL7
 NBA3N200SDR2G
 8T79S308NLGI
 \$I53315-B-GMR
 NB7NQ621MMUTWG

 49FCT3805DPYGI8
 49FCT805BTPYG
 49FCT805PYGI
 RS232-S5
 542MILFT
 6ES7390-1AF30-0AA0
 74FCT3807PYGI
 \$Y89873LMG

 SY89875UMG-TR
 853S011BGILFT
 853S9252BKILF
 8P34\$1102NLGI8
 8T53\$111NLGI
 CDCVF2505IDRQ1
 CDCUA877ZQLT

 CDCE913QPWRQ1
 CDC2516DGGR
 8SLVP2104ANBGI/W
 8S73034AGILF
 LV5609LP-E
 5T9950PFGI
 STCD2400F35F

 74FCT3807PYG18
 74FCT3807PYG18
 74FCT3807PYG18
 8ST3034AGILF
 LV5609LP-E
 5T9950PFGI
 STCD2400F35F