Sensitive Gate Triacs Series

Silicon Bidirectional Thyristors

Designed for use in solid state relays, MPU interface, TTL logic and any other light industrial or consumer application. Supplied in an inexpensive TO-92 package which is readily adaptable for use in automatic insertion equipment.

Features

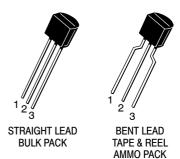
- One-Piece, Injection-Molded Package
- Blocking Voltage to 600 V
- Sensitive Gate Triggering in Four Trigger Modes (Quadrants) for all possible Combinations of Trigger Sources, and especially for Circuits that Source Gate Drives
- All Diffused and Glassivated Junctions for Maximum Uniformity of Parameters and Reliability
- Improved Noise Immunity (dv/dt Minimum of 10 V/µsec at 110°C)
- Commutating di/dt of 1.6 A/msec at 110°C
- High Surge Current of 8 A
- These are Pb-Free Devices

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage $(T_J = -40 \text{ to } +125^{\circ}\text{C})^{(1)}$ Sine Wave 50 to 60 Hz, Gate Open	V _{DRM,} V _{RRM}	600	V
On-State RMS Current Full Cycle Sine Wave 50 to 60 Hz (T _C = 50°C)	I _{T(RMS)}	1.0	A
Peak Non-Repetitive Surge Current One Full Cycle, Sine Wave 60 Hz (T _C = 110°C)	I _{TSM}	8.0	Α
Circuit Fusing Considerations (t = 8.3 ms)	I ² t	0.35	A ² s
Average Gate Power ($T_C = 80^{\circ}C$, $t \le 8.3$ ms)	P _{G(AV)}	1.0	W
Peak Gate Current (t \leq 20 μ s, T _J = +125°C)	I _{GM}	1.0	Α
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

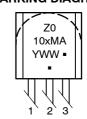
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.



ON Semiconductor

http://onsemi.com


TRIACS 1.0 AMPERE RMS 600 VOLTS

TO-92 (TO-226AA) CASE 029 STYLE 12

MARKING DIAGRAM

x = 3,7,9 Y = Year WW = Work Week

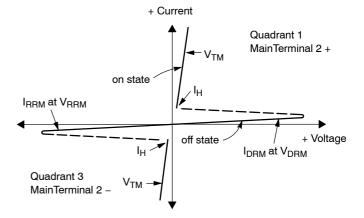
= = Pb-Free Package (*Note: Microdot may be in either location)

PIN ASSIGNMENT		
1	Main Terminal 1	
2	Gate	
3	Main Terminal 2	

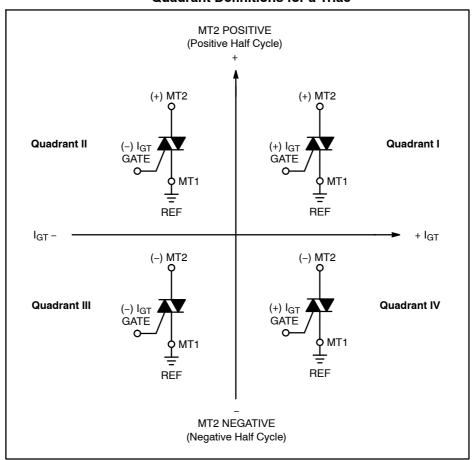
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	50	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{ hetaJA}$	160	°C/W
Maximum Lead Temperature for Soldering Purposes for 10 Seconds	T_L	260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted; Electricals apply in both directions)


Characteristic	Symbol	Min	Тур	Max	Unit
DFF CHARACTERISTICS					
$ \begin{array}{ll} \mbox{Peak Repetitive Blocking Current} & T_{J} = 25^{\circ}\mbox{C} \\ \mbox{($V_{D} = Rated V_{DRM}, V_{RRM}; Gate Open)} & T_{J} = +125^{\circ}\mbox{C} \\ \end{array} $	I _{DRM} , I _{RRM}	- -	- -	5.0 500	μΑ
ON CHARACTERISTICS					
Peak On–State Voltage ($I_{TM} = \pm 1.4$ A Peak; Pulse Width ≤ 2.0 ms, Duty Cycle $\leq 2.0\%$)	V _{TM}	_	_	1.56	٧
Gate Trigger Current (Continuous dc) $ \begin{aligned} &(V_D=12\ Vdc,\ R_L=30\ \Omega) \\ &MT2(+),\ G(+) \\ &MT2(+),\ G(-) \\ &MT2(-),\ G(-) \\ &MT2(-),\ G(+) \end{aligned} $	I _{GT}	0.15 0.15 0.15 0.25	- - - -	3.0 3.0 3.0 5.0	mA
Latching Current (V_D = 12 V, I_G = 1.2 x I_{GT}) MT2(+), G(+) All Types MT2(+), G(-) All Types MT2(-), G(-) All Types MT2(-), G(+) All Types	IL	- - - -	- - - -	7.0 15 7.0 7.0	mA
Gate Trigger Voltage (Continuous dc) $ \begin{aligned} &(V_D=12 \text{ Vdc, R}_L=30 \ \Omega) \\ &\text{MT2(+), G(+) All Types} \\ &\text{MT2(+), G(-) All Types} \\ &\text{MT2(-), G(-) All Types} \\ &\text{MT2(-), G(+) All Types} \end{aligned} $	V _{GT}	- - - -	- - - -	1.3 1.3 1.3 1.3	V
Gate Non–Trigger Voltage (V_D = 12 V, R_L = 30 Ω , T_J = 125°C) All Four Quadrants	V_{GD}	0.2	_	1.3	V
Holding Current (V _D = 12 Vdc, Initiating Current = 50 mA, Gate Open)	I _H	-	-	7.0	mA
DYNAMIC CHARACTERISTICS					-
Rate of Change of Commutating Current ($V_D = 400 \text{ V}$, $I_{TM} = 0.84 \text{ A}$, Commutating dv/dt = 1.5 V/ μ s, Gate Open, $T_J = 110^{\circ}\text{C}$, f = 250 Hz, with Snubber)	di/dt(c)	1.6	=	-	A/ms
Critical Rate of Rise of Off–State Voltage (V_D = 67% Rated V_{DRM} , Exponential Waveform, Gate Open, T_J = 110°C)	dv/dt	10	30		V/μs
Repetitive Critical Rate of Rise of On–State Current, T_J = 125°C Pulse Width = 20 μ s, IPK _{max} = 15 A, diG/dt = 1 A/ μ s, f = 60 Hz	di/dt	-	-	20	A/μs

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
IH	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

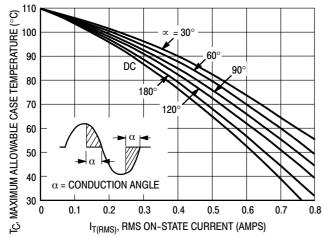


Figure 1. RMS Current Derating

Figure 2. RMS Current Derating

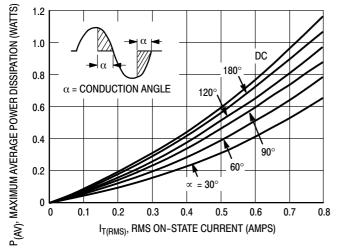
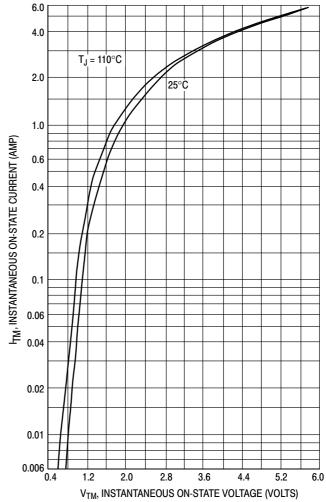
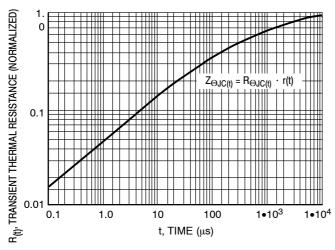
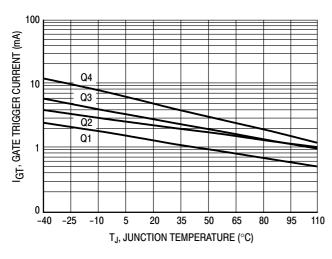


Figure 3. Power Dissipation


Figure 4. On-State Characteristics

10 TSM, PEAK SURGE CURRENT (AMPS) 5.0 3.0 $T_J = 110^{\circ}C$ 2.0 f = 60 Hz Surge is preceded and followed by rated current 1.0 L 1.0 50 10 30 100 2.0 3.0 5.0 NUMBER OF CYCLES

Figure 5. Transient Thermal Response

Figure 6. Maximum Allowable Surge Current

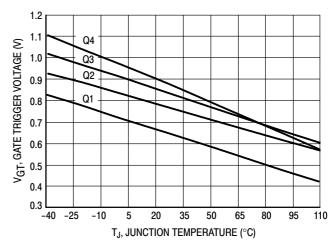
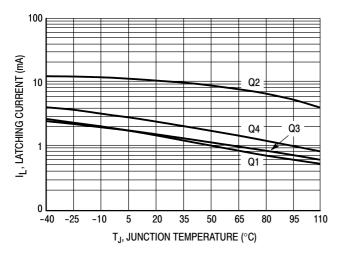



Figure 7. Typical Gate Trigger Current versus Junction Temperature

Figure 8. Typical Gate Trigger Voltage versus Junction Temperature

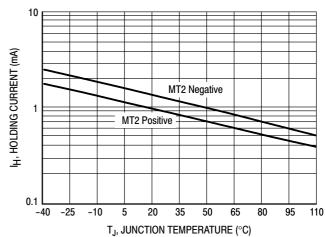
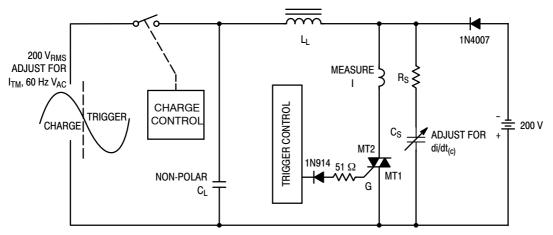



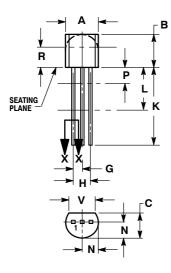
Figure 9. Typical Latching Current versus Junction Temperature

Figure 10. Typical Holding Current versus Junction Temperature

Note: Component values are for verification of rated (di/dt)_c. See AN1048 for additional information.

Figure 11. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)_c

ORDERING & SHIPPING INFORMATION: Packaging Options, Device Suffix

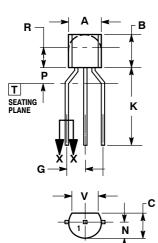

U.S.	Europe Equivalent	Shipping [†]	Description of TO-92 Tape Orientation
	Z0103MARL1G	Radial Tape and Reel (2K/Reel)	Flat side of TO-92 and adhesive tape visible
Z0103MAG		Bulk in Box (5K/Box)	N/A, Bulk
Z0103MARLRPG		Radial Tape and Fan Fold Box (2K/Box)	Round side of TO-92 and adhesive tape visible
Z0103MARLRFG		Radial Tape and Fan Fold Box (2K/Box)	Round side of TO-92 and adhesive tape on reverse side

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TO-92 (TO-226AA)

CASE 029-11 **ISSUE AM**


STRAIGHT LEAD **BULK PACK**

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		S MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

BENT LEAD TAPE & REEL AMMO PACK

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 CONTOUR OF PACKAGE BEYOND

- DIMENSION R IS UNCONTROLLED. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS			
DIM	MIN	MAX		
Α	4.45	5.20		
В	4.32	5.33		
С	3.18	4.19		
D	0.40	0.54		
G	2.40	2.80		
J	0.39	0.50		
K	12.70			
N	2.04	2.66		
P	1.50	4.00		
R	2.93	-		
٧	3.43			

STYLE 12:

PIN 1. MAIN TERMINAL 1 2 GATE

3. MAIN TERMINAL 2

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and war engineer trademarks of semiconductor components industries, Ite (SciLLC) solitate services are injective to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

T2035H-6G BT137-600-0Q Z0409MF0AA2 Z0109NA 2AL2 ACST1635T-8FP BCR20RM-30LA#B00 CMA60MT1600NHR NTE5611

NTE5612 NTE5613 NTE5621 NTE5623 NTE5629 NTE5638-08 NTE5688 NTE5689 NTE5690 T1235T-8I BTA312-600CT.127 T1210T
8G-TR Z0109NN0,135 T2535T-8I T2535T-8T TN4050-12WL MAC4DLM-1G BT137-600E,127 BT137X-600D BT148W-600R,115

BT258-500R,127 BTA08-800BW3G BTA140-800,127 BTA30-600CW3G BTA30-600CW3G BTB08-800BW3G BTB16-600CW3G

BTB16-600CW3G Z0410MF0AA2 Z0109MN,135 T825T-6I T1635T-6I T1220T-6I NTE5638 TYN612MRG TYN1225RG TPDV840RG

ACST1235-8FP ACS302-6T3-TR BT134-600D,127 BT134-600G,127 BT136X-600E,127