

FEATURES

- 1 GHz Specified Performance
- 22 dB Gain
- Very Low Distortion
- Excellent 75 Ω Input and Output Match
- Stable with High VSWR Load Conditions
- Monolithic Design for Consistent Performance
 Part-to-Part
- Low DC Power Consumption
- Surface Mount Package Compatible with Automatic Assembly
- Low Cost Alternative to Hybrids
- Meets Cenelec Standards
- Materials set consistent with RoHS Directives.

APPLICATIONS

 CATV Line Amplifiers, System Amplifiers, Distribution Nodes

PRODUCT DESCRIPTION

The ACA2402 is a highly linear, monolithic GaAs RF amplifier that has been developed as an alternative to standard CATV hybrid amplifiers. Offered in a convenient surface mount package, the MMIC consists of two pairs of parallel amplifiers that are optimized for exceptionally low distortion and noise figure. A

hybrid equivalent that provides flat gain response and excellent input and output return loss over the 40 to 1000 MHz CATV downstream band is formed when one ACA2402 is cascaded between two appropriate transmission line baluns.

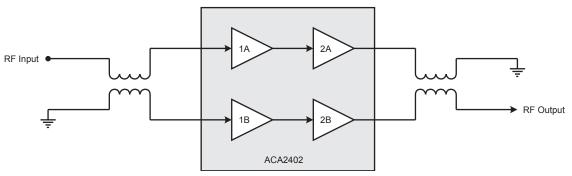


Figure 1: Hybrid Application Diagram

ACA2402 750/870/1000 MHz CATV Push-Pull Line Amplifier Data Sheet - Rev 2.2

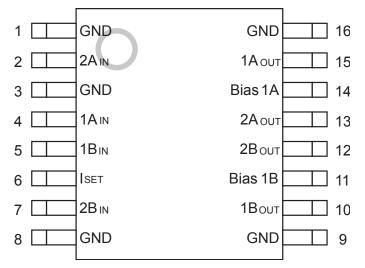


Figure 2: Pin Out

PIN	NAME	DESCRIPTION	PIN	NAME	DESCRIPTION
1	GND	Ground	16	GND	Ground
2	2Ain	Amplifier 2A Input	15	1Аоит	Amplifier 1A Output
3	GND	Ground	14	Bias 1A	Bias for 1A Amplifier
4	1AıN	Amplifier 1A Input	13	2A out	Amplifier 2A Output and Supply
5	1B⊪	Amplifier 1B Input	12	2 Воит	Amplifier 2B Output and Supply
6	1set	Current Adjust	11	Bias 1B	Bias for 1B Amplifier
7	2B⊪	Amplifier 2B Input	10	1Воит	Amplifier 1B Output
8	GND	Ground	9	GND	Ground

ELECTRICAL CHARACTERISTICS

			-	
PARAMETER	MIN	MAX	UNIT	
Supply (pins 12, 13)	0	+28	VDC	
RF Power at Inputs (pins 4, 5)	-	+75	dBmV	
Storage Temperature	-65	+150	°C	
Soldering Temperature	-	+260	°C	
Soldering Time	-	5.0	Sec	
Changes in success of the sheelute actions many source as means at domains				

Table 2: Absolute Mimimum and Maximum Ratings

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Notes:

- 1. Pins 2, 4, 5 and 7 should be AC-coupled. No external DC bias should be applied.
- 2. Pin 6 should be AC-grounded and/or pulled to ground through a resistor for current control. No external DC bias should be applied.
- 3. Pins 11 and 14 are bias feeds for input amplifiers 1A and 1B. No external DC bias should be applied.
- 4. Pins 10 and 15 receive DC bias directly from pins 11 and 14. No other external bias should be applied.

PARAMETER	MIN	TYP	MAX	UNIT
Supply: VDD (pins 12, 13)	-	+24	-	VDC
RF Frequency	40	-	1000	MHz
Case Temperature	-40	-	+110	°C

Table 3: Operating Ranges

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

Table 4: AC and DC Electrical Specifications (T_A = +25 °C, V_{DD} = +24 VDC)

PARAMETER	MIN	ТҮР	МАХ	UNIT	COMMENTS
Gain @ 1000 MHz (1)	21.1	21.6	22.1	dB	
Cable Equivalent Slope (1)	-	0	-	dB	
Gain Flatness ⁽¹⁾ @ 1000 MHz	-	±0.2	-	dB	
Noise Figure (1)	-	3.5	4.5	dB	
CTB ⁽¹⁾ 77 Channels ⁽²⁾ 77 Channels plus QAM to 1 GHz ⁽⁶⁾ 110 Channels ⁽³⁾ 110 Channels plus QAM to 1 GHz ⁽⁷⁾ 128 Channels ⁽⁴⁾	- - -	-76 - -73 - -70	-74 -74 -71 -71	dBc	
CSO ⁽¹⁾ 77 Channels ⁽²⁾ 77 Channels plus QAM to 1 GHz ⁽⁶⁾ 110 Channels ⁽³⁾ 110 Channels plus QAM to 1 GHz ⁽⁷⁾ 128 Channels ⁽⁴⁾	- - -	-72 - -72 - -69	-70 -70 -70 -68 -	dBc	
XMOD ⁽¹⁾ 77 Channels ⁽²⁾ 77 Channels plus QAM to 1 GHz ⁽⁶⁾ 110 Channels ⁽³⁾ 110 Channels plus QAM to 1 GHz ⁽⁷⁾ 128 Channels ⁽⁴⁾		-65 - -65 - -62	-63 -63 -63 -63 -	dBc	
Return Loss (Input/Output) (1)	18	22	-	dB	75 Ω system
Supply Current (5)	240	250	260	mA	
Thermal Resistance	-	-	3.8	°C/W	

Notes:

(1) Measured with baluns on the input and output of the device.

(2) Parts measured with 77 channels flat output, +42 dBmV per channel.

(3) Parts measured with 110 channels flat output, +40 dBmV per channel.

(4) Parts measured with 128 channels flat output, +40 dBmV per channel.

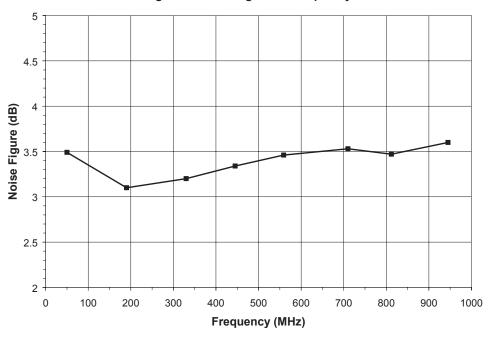
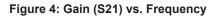
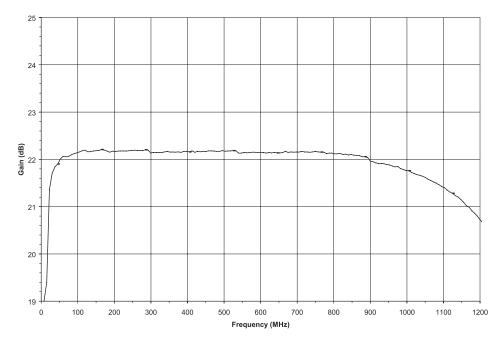
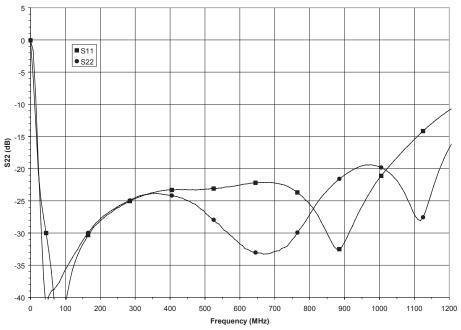
(5) The supply current may be reduced by decreasing the value of R3 (see Figure 17)

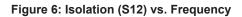
(6) 47.5 dBmV output, 9.5 dB tilt @ 1 GHz

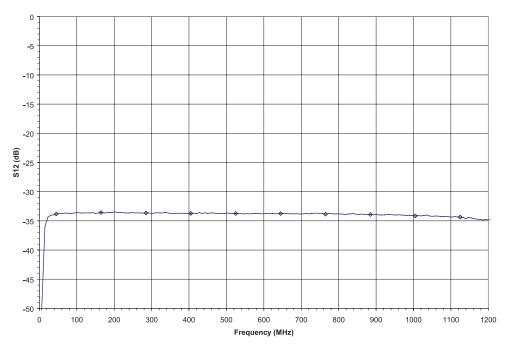
(7) 45.5 dBmV output, 9.5 dB tilt @ 1 GHz

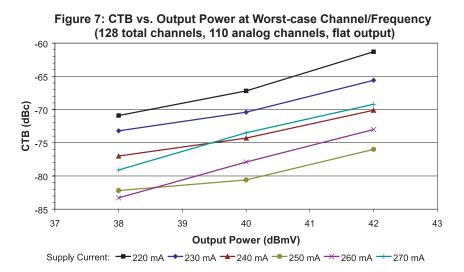
8. All specifications as measured on Evaluation Board (see Figures 16 & 17).

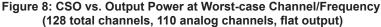
PERFORMANCE DATA

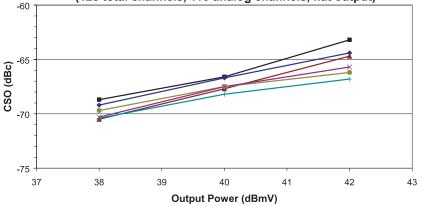





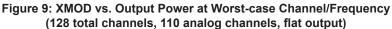

Figure 3: Noise Figure vs Frequency

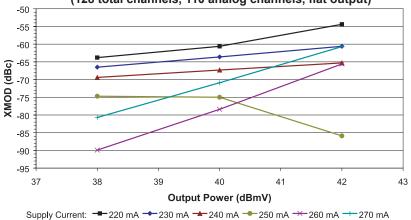


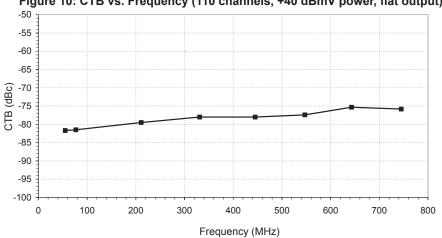












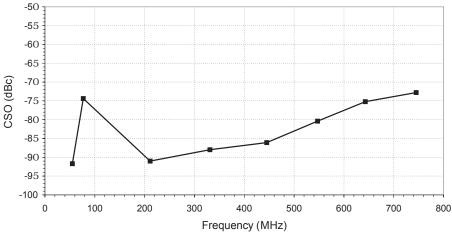
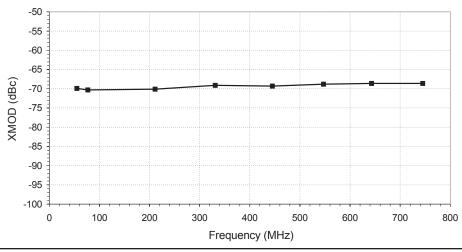



Figure 12: XMOD vs. Frequency (110 channels, +40 dBmV power, flat output)

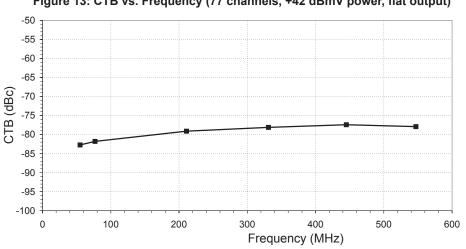
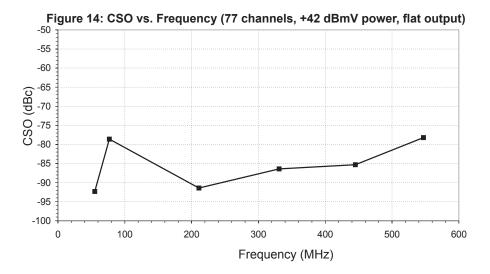
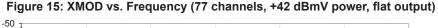
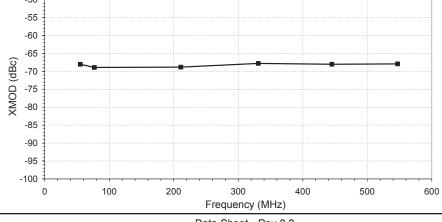
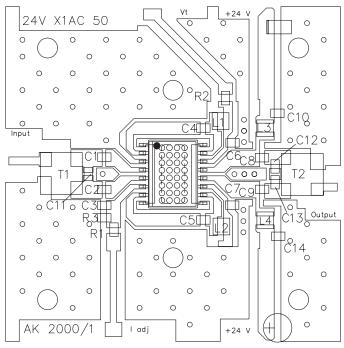
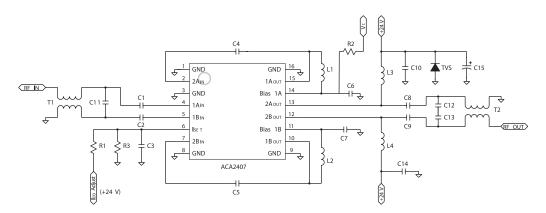





Figure 13: CTB vs. Frequency (77 channels, +42 dBmV power, flat output)

APPLICATION INFORMATION




Figure 16: Evaluation Board Layout

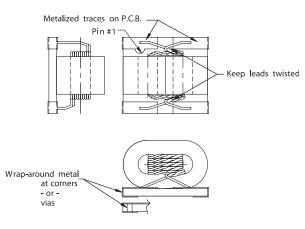
Notes:

1. Via holes should be 35 mils (0.89 mm) in diameter, and plated to 1 mil (0.025 mm) thickness. They need not be solder-filled.

2. WARNING: Due to the power dissipation of this device, the printed circuit board should be mounted/attached to a heat sink.

3. More assembly details, such as via hole diameters, via spacing, solder paste application, and soldering recommendations are provided in the application note entitled, "Thermal Management of ANADIGICS' Surface Mounted Amplifiers".

Table 5: Evaluation Board Parts List						
REF	DESCRIPTION	QTY	VENDOR	VENDOR P/N		
C1, C2, C3, C6, C7, C10, C14	0.01 μF CHIP CAP	7	MURATA	GRM39X7R103K50V		
C4, C5, C8, C9	470 pF CHIP CAP	4	MURATA	GRM39X7R471K50V		
C12, C13	1.0 pF CHIP CAP	2	MURATA	GRM36COG1R0C50		
C15	47 μ F ELECT. CAP	1	DIGI-KEY CORP	P5275-ND		
R1, R2, C11	NOT USED					
R3	18 k Ω RESISTOR	1	DIGI-KEY CORP	P18KGCT-ND		
TVS	TVS 24 VOLT 600 WATT	1	DIGI-KEY CORP	SMBJ24ACCCT-ND		
L1, L2, L3, L4 ⁽³⁾	680 nH INDUCTOR	4	COILCRAFT	1008CS-681XKBC		
CONNECTOR (1)	75 Ω N MALE PANEL MOUNT	2	PASTERNACK ENTERPRISES	PE4504		
T1, T2 ⁽²⁾	Ferrite Core	2	FAIR-RITE	2843002702		
(BÁLUN)	Wire		MWS WIRE IND.	T-2361429-20		
	Printed Circuit Board	1	STANDARD PRINTED CIRC. INC	24VX1AC50		
INDIUM	300 X 160 MILS	1	1 INDIUM CORP OF AMERICA 14996Y			


Table 5: Evaluation Board Parts List

Notes:

(1) N connector center pin should be approximately 80 mils in length.

(2) T1, T2 balun: 5.5 turns thru, as shown in Figure 18.

(3) 200 mA minimum current rating.

Figure 18: Balun Drawing

PACKAGE OUTLINE

0.000

0.013

0.007

0.398

0.290

0.394

0.010

0.024

0.120

0.330

REF. 0.015

0.050 BSC

A1

A2 0.087

В

С

D

Е

е

Н

h

L

LE 0.052

a 0.

S

Т

R

0.004

0.094

0.019

0.009

0.412

0.300

0.418

0.028

0.040

8'

0.140

0.350

0.00

2.21

0.33

0.18

10.11

7.37

10.01

0.25

0.61

1.32

0.

3.05

8.38

0.10

2.39

0.48

0.23

10.46

7.62

10.62

0.71

1.02

8'

3.56

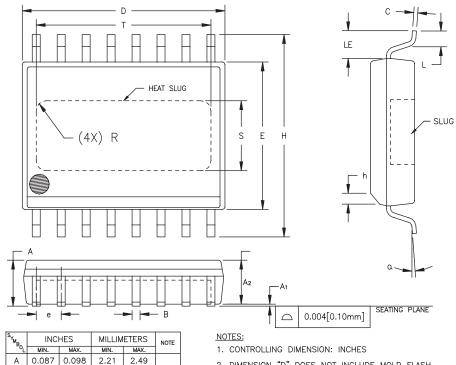
8.89

REF. 0.38

1.27 BSC

6

2


3

4

5

5

5

- 2. DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.006 [0.15mm] PER SIDE.
- DIMENSION "E" DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.010 [0.25mm] PER SIDE.
- 4. MAXIMUM LEAD TWIST/SKEW TO BE ± 0.005 [0.13mm].
- 5. DIMENSIONS "S", "T" AND "R" INDICATE EXPOSED SLUG AREA.
- 6. STANDOFF HEIGHT (A1) MEASURED FROM BOTTOM OF SLUG.

ORDERING INFORMATION

ORDER NUMBER	TEMPERATURE RANGE	PACKAGE DESCRIPTION	COMPONENT PACKAGING
ACA2402S7TR	-40 to 110 °C	16 Pin Wide Body SOIC with Heat Slug	1,500 piece tape and reel
ACA2402RS7P2	-40 to 110 °C	RoHS-Compliant 16 Pin Wide Body SOIC with Heat Slug	1,500 piece tape and reel
ACA2402S7P0	-40 to 110 °C	16 Pin Wide Body SOIC with Heat Slug	Plastic tubes (50 pieces per tube)
ACA2402RS7P0	-40 to 110 °C	RoHS-Compliant 16 Pin Wide Body SOIC with Heat Slug	Plastic tubes (50 pieces per tube)

ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A. Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com E-mail: Mktg@anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by Anadigics manufacturer:

Other Similar products are found below :

 00028
 00053P0231
 8967380000
 56956
 CR7E-30DB-3.96E(72)
 57.404.7355.5
 LT4936
 57.904.0755.0
 5801-0903
 5803-0901
 5811-0902

 5813-0901
 58410
 00576P0030
 00581P0070
 5882900001
 00103P0020
 00600P0005
 00-9050-LRPP
 00-9090-RDPP
 5951900000
 01

 1003W-10/32-15
 LTILA6E-1S-WH-RC-FN12VXCR1
 0131700000
 00-2240
 LTP70N06
 LVP640
 0158-624-00
 5J0-1000LG-SIL
 020017-13

 LY1D-2-5S-AC120
 LY2-0-US-AC120
 LY2-US-AC240
 LY3-UA-DC24
 00-5150
 00576P0020
 00600P0010
 LZNQ2M-US-DC5
 LZNQ2

 US-DC12
 LZP40N10
 00-8196-RDPP
 00-8274-RDPP
 00-8609-RDPP
 00-8722-RDPP
 00-8728-WHPP
 00-8869-RDPP
 00

 9051-RDPP
 00-9091-LRPP
 00-9291-RDPP
 00-8722-RDPP
 00-8728-WHPP
 00-8869-RDPP
 00