1a/1c 5A/10A small power relays

RoHS compliant

FEATURES

- High electrical noise immunity
- High switching capacity in a compact package
- High sensitivity: 200 mW (1a), 400 mW (1c)
- High surge voltage: 8,000 V between contacts and coil
- UL, CSA, VDE, SEMKO approved and TÜV available
- Class B coil insulation type also available.

TYPICAL APPLICATIONS

- Air conditioners
- Refrigerators
- Microwave ovens
- Heaters

ORDERING INFORMATION

Contact arrangement
1a: 1 Form A
1:1 Form C
Contact capacity
Nil: Standard (5A)
P: High capacity (10A)
Coil insulation class
Nil: Class E coil insulation
B: Class B coil insulation (UL)
Nominal coil voltage (DC)
$5 \mathrm{~V}, 6 \mathrm{~V}, 9 \mathrm{~V}, 12 \mathrm{~V}, 18 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V} *$

Contact material

$\mathrm{F}: \mathrm{AgSnO}_{2}$ type
Certified by UL, CSA, VDE and SEMKO
Note: *Available only for 1 Form C type

TYPES

1) Standard type

Nominal coil voltage	Standard type		High capacity type	
	1 Form A	1 Form C	1 Form A	1 Form C
	Part No.	Part No.	Part No.	Part No.
5V DC	JQ1a-5V-F	JQ1-5V-F	JQ1aP-5V-F	JQ1P-5V-F
6V DC	JQ1a-6V-F	JQ1-6V-F	JQ1aP-6V-F	JQ1P-6V-F
9V DC	JQ1a-9V-F	JQ1-9V-F	JQ1aP-9V-F	JQ1P-9V-F
12V DC	JQ1a-12V-F	JQ1-12V-F	JQ1aP-12V-F	JQ1P-12V-F
18V DC	JQ1a-18V-F	JQ1-18V-F	JQ1aP-18V-F	JQ1P-18V-F
24V DC	JQ1a-24V-F	JQ1-24V-F	JQ1aP-24V-F	JQ1P-24V-F
48V DC	-	JQ1-48V-F	-	JQ1P-48V-F

[^0]
RATING

1. Coil data

Contact arrangement	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Max. applied voltage
1 Form A	5V DC	Standard type: $75 \% \mathrm{~V}$ or less of nominal voltage (Initial) High capacity type: $80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$5 \% \mathrm{~V}$ or more of nominal voltage (Initial)	40.0 mA	125Ω	200mW	180\% of nominal voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) 130% of nominal voltage (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$) [When using relays at $85^{\circ} \mathrm{C} 185^{\circ}$ F, see Notes*4]
	6V DC			33.3 mA	180Ω		
	9V DC			22.2 mA	405Ω		
	12V DC			16.7 mA	720Ω		
	18 V DC			11.1 mA	1,620 Ω		
	24V DC			8.3 mA	2,880 Ω		
1 Form C	5V DC	Standard type: $75 \% \mathrm{~V}$ or less of nominal voltage (Initial) High capacity type: $80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$5 \% \mathrm{~V}$ or more of nominal voltage (Initial)	80 mA	62.5Ω	400 mW	150% of nominal voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
	6V DC			66.7 mA	90Ω		
	9V DC			44.4 mA	202.5Ω		
	12 V DC			33.3 mA	360Ω		110\% of nominal voltage
	18 V DC			22.2 mA	810Ω		(at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$) [When using relays at
	24V DC			16.7 mA	1,440 Ω		
	48V DC			8.3 mA	5,760 Ω		

2. Specifications

Characteristics	Item		Specifications			
			Standard type		High capacity type	
Contact	Arrangement		1 Form A	1 Form C	1 Form A	1 Form C
	Contact resistance (Initial)		Max. 100m Ω (By voltage drop 6 V DC 1 A)			
	Contact material		AgSnO_{2} type			
Rating	Nominal switching capacity (resistive load)		5 A 125 V AC, 2 A 250 V AC, 5 A 30 V DC	$\begin{aligned} & \text { N.O. side: } \\ & 5 \text { A } 125 \text { V AC, } \\ & 2 \text { A } 250 \text { V AC, } \\ & 3 \text { A } 30 \text { V AC } \\ & \text { N.C. side: } \\ & \text { A } 125 \text { V AC, } \\ & 1 \text { A } 250 \text { A AC, } \\ & \text { A } 30 \text { V DC } \end{aligned}$	10 A 125 V AC, 5 A 250 V AC, 5 A 30 V DC	$\begin{gathered} \text { N.O. side: } \\ 10 \text { A } 125 \mathrm{~V} \mathrm{AC}, \\ 5 \text { A } 250 \mathrm{~V} \mathrm{AC}, \\ 5 \text { A } 30 \mathrm{~V} \mathrm{AC} \\ \text { N.C. side: } \\ 3 \text { A } 125 \mathrm{~V} \mathrm{AC,} \\ 2 \text { A } 250 \mathrm{~V} \mathrm{AC,} \\ 1 \text { A } 30 \mathrm{~V} \text { DC } \end{gathered}$
	Max. switching power (resistive load)		625 VA, 150 W	N.O. side: 625 VA, 90 W N.C. side: 250 VA, 30 W	1,250 V AC, 150 W	N.O. side: 1,250 VA, 150 W N.C. side: 500 V AC, 30 W
	Max. switching voltage		250 V AC, 110 V DC (0.3A)			
	Max. switching current		N.O.: 5 A, N.C.: 2 A		N.O.: 10 A, N.C.: 3 A	
	Nominal operating power		200 mW	400 mW	200 mW	400 mW
	Min. switching capacity (reference value) ${ }^{\star_{1}}$		$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC			
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000 $\mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Breakdown voltage" section.			
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min .	750 Vrms for 1 min .	1,000 Vrms for 1 min .	750 Vrms for 1 min .
		Between contact and coil	4,000 Vrms for 1 min . (Detection current: 10 mA)			
	Temperature rise (coil)		Max. $45^{\circ} \mathrm{C} 113^{\circ} \mathrm{F}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: $\left.5 \mathrm{~A} \text {, at } 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}\right)$		Max. $45^{\circ} \mathrm{C} 113^{\circ} \mathrm{F}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: $10 \mathrm{~A} \text {, at } 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F} \text {) }$	
	Surge breakdown voltage ${ }^{* 2}$ (Between contact and coil) (Initial)		$8,000 \mathrm{~V}$			
	Operate time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (Initial)		Max. 20 ms (excluding contact bounce time.)			
	Release time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (Initial)		Max. 10 ms (excluding contact bounce time) (Without diode)			
Mechanical characteristics	Shock resistance	Functional	$294 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)			
		Destructive	$980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)			
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.6 mm (Detection time: $10 \mu \mathrm{~s}$.)			
		Destructive	10 to 55 Hz at double amplitude of 2.0 mm			
Expected life	Mechanical (at 180 times/min.)		Min. 10^{7}			
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ (class E insulation), $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}^{* 4}$ (class B insulation) Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)			
	Max. operating speed		20 times/min. (at nominal switching capacity)			
Unit weight			Approx. 7 g .25 oz			

* Specifications will vary with foreign standards certification ratings.

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.
*4. When using relays in a high ambient temperature, consider the pick-up voltage rise due to the high temperature (a rise of approx. $0.4 \% \mathrm{~V}$ for each $1^{\circ} \mathrm{C} 33.8^{\circ} \mathrm{F}$ with $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ as a reference) and use a coil impressed voltage that is within the maximum applied voltage range

3. Expected electrical life

Type			Switching capacity	No. of operations
Standard type	1 Form A		$\begin{aligned} & 5 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} \\ & 3 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} \\ & 2 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC} \\ & 5 \text { A } 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{gathered} 5 \times 10^{4} \\ 2 \times 10^{5} \\ 2 \times 10^{5} \\ 10^{5} \\ \hline \end{gathered}$
	1 Form C	N.O.	$\begin{aligned} & \text { 5 A } 125 \mathrm{~V} \mathrm{AC} \\ & 3 \text { A } 125 \mathrm{~V} \mathrm{AC} \\ & 2 \mathrm{~A} 250 \mathrm{~V} \text { AC } \\ & 3 \text { A } 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{gathered} 5 \times 10^{4} \\ 2 \times 10^{5} \\ 2 \times 10^{5} \\ 10^{5} \end{gathered}$
		N.C.	$\begin{aligned} & 2 \mathrm{~A} 125 \mathrm{~V} \text { AC } \\ & \text { 1 A } 250 \mathrm{~V} \text { AC } \\ & 1 \text { A } 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{gathered} 2 \times 10^{5} \\ 2 \times 10^{5} \\ 10^{5} \end{gathered}$
High capacity type	1 Form A		10 A 125 V AC 5 A 250 V AC 5 A 30 V DC	$\begin{gathered} 5 \times 10^{4} \\ 5 \times 10^{4} \\ 10^{5} \end{gathered}$
	1 Form C	N.O.	$\begin{aligned} & 10 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} \\ & 5 \mathrm{~A} 250 \mathrm{VAC} \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{gathered} 5 \times 10^{4} \\ 5 \times 10^{4} \\ 10^{5} \\ \hline \end{gathered}$
		N.C.	3 A 125 V AC 2 A 250 V AC 1 A 30 V DC	$\begin{gathered} 2 \times 10^{5} \\ 2 \times 10^{5} \\ 10^{5} \end{gathered}$

REFERENCE DATA

1.-(1) Max. switching capacity (1 Form A type)

- Contact voltage, V
1.-(2) Max. switching capacity (1 Form C type)

- Contact voltage, V

Standard type

2. Life curve

Ambient temperature: room temperature

3.-(1) Operate \& release time (1 Form A type) Tested sample: JQ1a-12V-F, 25 pcs.

3.-(2) Operate \& release time (1 Form C type) Tested sample: JQ1-24V-F, 25 pcs.

4.-(1) Coil temperature rise (1 Form A type)

Contact carrying current: 3 A, 5 A
Measured portion: Inside the coil

5.-(1) Ambient temperature characteristics (1 Form A type)
Tested sample: JQ1a-24V-F
Contact carrying current: 3 A, 5 A

High capacity type

1. Life curve

Ambient temperature: room temperature

3.-(1) Coil temperature rise (1 Form A type) Contact carrying current: 5 A, 10 A
Measured portion: Inside the coil

2.-(1) Operate \& release time (1 Form A type) Tested sample: JQ1aP-12V-F, 25 pcs.

(1) Allowable ambient temperature against \% coil voltage (max. inside the coil temperature set as $130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}$) (Carrying current: 3 A)
(2) Allowable ambient temperature against \% coil voltage (max. inside the coil temperature set as $130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}$) (Carrying current: 5 A)
(3) Allowable ambient temperature against \% coil voltage (max. inside the coil temperature set as $115^{\circ} \mathrm{C} 239^{\circ} \mathrm{F}$) (Carrying current: 3 A)
(4) Allowable ambient temperature against \% coil voltage (max. inside the coil temperature set as $115^{\circ} \mathrm{C} 239^{\circ} \mathrm{F}$) (Carrying current: 5 A)
(5) Pick-up voltage with a hot-start condition of $100 \% \mathrm{~V}$ on the coil (Carrying current: 5 A)
(6) Pick-up voltage with a hot-start condition of 100% V on the coil (Carrying current: 3 A)
(7) Pick-up voltage
5.-(2) Ambient temperature characteristics (1 Form C type)
Tested sample: JQ1-24V-F
Contact carrying current: 3 A, 5 A

2.-(2) Operate \& release time (1 Form C type) Tested sample: JQ1P-12V-F, 25 pcs.

3.-(2) Coil temperature rise (1 Form C type)

Contact carrying current: 5 A, 10 A
Measured portion: Inside the coil

4.-(1) Ambient temperature characteristics (1 Form A type)
Tested sample: JQ1aP-24V-F
Contact carrying current: $5 \mathrm{~A}, 10 \mathrm{~A}$

4.-(2) Ambient temperature characteristics
(1 Form C type)
Tested sample: JQ1P-24V-F
Contact carrying current: 5 A, 10 A

(1) Allowable ambient temperature against \% coil voltage (max. inside the coil temperature set as $130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}$) (Carrying current: 5 A)
(2) Allowable ambient temperature against \% coil voltage (max. inside the coil temperature set as $130^{\circ} \mathrm{C} 266^{\circ} \mathrm{F}$) (Carrying current: 10 A)
(3) Allowable ambient temperature against \% coil voltage (max. inside the coil temperature set as $115^{\circ} \mathrm{C} 239^{\circ} \mathrm{F}$) (Carrying current: 5 A)
(4) Allowable ambient temperature against \% coil voltage (max. inside the coil temperature set as $115^{\circ} \mathrm{C} 239^{\circ} \mathrm{F}$) (Carrying current: 10 A)
(5) Pick-up voltage with a hot-start condition of 100% V on the coil (Carrying current: 10 A)
(6) Pick-up voltage with a hot-start condition of 100% V on the coil (Carrying current: 5 A)
(7) Pick-up voltage

DIMENSIONS (mm inch)

CAD Data

External dimensions
1 Form A

1 Form C

Dimension:
Less than 1mm .039inch:
Min. 1 mm .039 inch less than 5 mm .197 inch: $\pm 0.3 \pm .012$
Min. 5mm . 197 inch:

1 Form A

PC board pattern (Bottom view)
1 Form A

1FormC

SAFETY STANDARDS

Item	UL/C-UL (Recognized)		CSA (Certified)		VDE (Certified)		TÜV (Certified)		SEMKO (Certified)	
	File No.	Contact rating	File No.	Contact rating	File No.	Contact rating	File No.	Rating	File No.	Contact rating
Standard type (5A) 1 Form A	E43028	5A 125 V AC 5A 277 V AC 5A 30V DC 0.3A 110V DC $1 / 10 \mathrm{HP} 125 \mathrm{~V}$ AC 1/6HP 277V AC	LR26550	5 A 125V AC 5A 277V AC 5A 30V DC 0.3A 110V DC $1 / 10 \mathrm{HP} 125 \mathrm{~V}$ AC 1/6HP 277V AC	40011435	5A 250V AC ($\cos \phi=0.4)$	$\begin{array}{\|l\|} \hline \text { B } 1104 \\ 13461296 \end{array}$	$\begin{aligned} & \text { 5A 250V AC (cos } \phi=0.4) \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC (0ms) } \end{aligned}$	817138	$\begin{aligned} & \text { 3(2)A } 125 \mathrm{~V} \text { AC } \\ & \text { 2(1)A } 250 \mathrm{~V} \text { AC } \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$
Standard type (5A) 1 Form C	E43028	$\begin{aligned} & \text { 5A 125V AC } \\ & \text { 5A 277V AC } \\ & \text { 5A 30V DC } \\ & 0.3 \mathrm{~A} 110 \mathrm{~V} \text { DC } \\ & 1 / 10 \mathrm{HP} 125 \mathrm{~V} \text { AC } \\ & 1 / 6 \mathrm{HP} 277 \mathrm{~V} \text { AC } \end{aligned}$	LR26550	5A 125V AC 5A 277V AC 5A 30V DC 0.3A 110V DC 1/10HP 125V AC 1/6HP 277V AC	40011435	$\begin{aligned} & \text { 5A } 250 \mathrm{~V} \text { AC }(\cos \phi=0.4) \\ & \text { (N.O.) } \\ & \text { 3A } 250 \mathrm{~V} \mathrm{AC}(\cos \phi=0.4) \\ & \text { (N.C.) } \end{aligned}$	$\begin{aligned} & \text { B } 1104 \\ & 13461296 \end{aligned}$	$\begin{aligned} & \text { 5A 250V AC }(\cos \phi=0.4) \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC (0ms) } \end{aligned}$	817138	$\begin{aligned} & \text { 3(2)A } 125 \mathrm{~V} \text { AC } \\ & \text { 2(1)A } 250 \mathrm{~V} \text { AC } \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$
High capacity type (10A) 1 Form A	E43028	$\begin{aligned} & \text { 10A 125V AC } \\ & \text { 8A 277V AC } \\ & 5 \mathrm{~A} 30 \mathrm{~V} D \\ & 0.3 \mathrm{~A} 110 \mathrm{~V} \text { DC } \\ & 1 / 6 \mathrm{HP} 125 \mathrm{~V} \text { AC } \\ & 1 / 6 \mathrm{HP} 277 \mathrm{~V} \end{aligned}$	LR26550	10 A 125 V AC 8A 277V AC 5A 30V DC 0.3A 110V DC $1 / 6 \mathrm{HP} 125 \mathrm{~V}$ AC $1 / 6 \mathrm{HP} 277 \mathrm{~V}$ AC	40011435	10A 250V AC ($\cos \phi=0.4)$	$\begin{aligned} & \text { B } 1104 \\ & 13461296 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}(\cos \phi=0.4) \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC (0ms) } \end{aligned}$	817138	$\begin{aligned} & \text { 5(3)A 250V AC } \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$
High capacity type (10A) 1 Form C	E43028	10 A 125 V AC 8A 277 V AC 5A 30V DC 0.3 A 110 V DC 1/6HP 125V AC 1/6HP 277V AC	LR26550	10 A 125 V AC 8A 277V AC 5A 30V DC 0.3A 110V DC $1 / 6 \mathrm{HP} 125 \mathrm{~V}$ AC $1 / 6 \mathrm{HP} 277 \mathrm{~V}$ AC	40011435	$\begin{aligned} & \text { (N.O.) } \\ & \text { 10A 250V AC }(\cos \phi=0.4) \\ & \text { (N.C.) } \\ & 3 \text { A } 250 \mathrm{VAC}(\cos \phi=0.4) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B } 1104 \\ 13461296 \end{array}$	$\begin{aligned} & 10 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}(\cos \phi=0.4) \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC (0ms) } \end{aligned}$	817138	$\begin{aligned} & \text { 5(3)A 250V AC } \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$

NOTES

Note about relay installation orientation

When installing with the relay terminals parallel to the ground, the contact terminals at the bottom and the coil terminals at the top, component friction will occur after numerous switching actions or due to vibration in the non-excitation state. Since this may cause the relay to stop functioning when the pick-up voltage increases even if the nominal voltage is applied, please do not install using this orientation.

For Cautions for Use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Panasonic manufacturer:
Other Similar products are found below :

```
APF30318 JVN1AF-4.5V-F PCN-105D3MHZ 5JO-10000S-SIL 5JO-1000CD-SIL 5JO-400CD-SIL LY2S-AC220/240 LYQ20DC12
6031007G 6131406HQ 6-1393099-3 6-1393099-8 6-1393122-4 6-1393123-2 6-1393767-1 6-1393843-7 6-1415012-1 6-1419102-2 6-
1423698-4 6-1608051-6 6-1608067-0 6-1616170-6 6-1616248-2 6-1616282-3 6-1616348-2 6-1616350-1 6-1616350-8 6-1616358-7 6-
1616359-9 6-1616360-9 6-1616931-6 6-1617039-1 6-1617052-1 6-1617090-2 6-1617090-5 6-1617347-5 6-1617353-3 6-1617801-8 6-
1617802-2 6-1618107-9 6-1618248-4 M83536/1-027M CX-4014 MAHC-5494 MAVCD-5419-6 703XCX-120A 7-1393100-5 7-1393111-7
7-1393144-5 7-1393767-8
```


[^0]: Standard packing: Carton 100 pcs., Case 500 pcs.

