

TECHNICAL DATA

NPN LOW POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/182

Devices Qualified Level

2N720A 2N1893 2N1893S JAN JANTX JANTXV

MAXIMUM RATINGS

Ratings	Symbol	All Devices		Units
Collector-Emitter Voltage	V_{CEO}	80		Vdc
Collector-Base Voltage	V_{CBO}	120		Vdc
Emitter-Base Voltage	$V_{\rm EBO}$	7.0		Vdc
Collector-Emitter Voltage ($R_{BE} = 10 \Omega$)	V_{CER}	100		Vdc
Collector Current	I_{C}	500		mAdc
		2N720A	2N1893, S	
Total Power Dissipation @ $T_A = +25^0C^{(1)}$ @ $T_C = +25^0C^{(2)}$	P_{T}	0.5 1.8	0.8 3.0	W
Operating & Storage Junction Temperature Range	T _J , T _{srg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	2N720A	2N1893, S	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	97	58	⁰ C/W

- 1) Derate linearly 2.86 mW/ $^{\circ}$ C for 2N720A, 4.57 mW/ $^{\circ}$ C for 2N1893, S T_A > 25 $^{\circ}$ C
- 2) Derate linearly 10.3 mW/ 0 C for 2N720A, 17.2 mW/ 0 C for 2N1893, S T_C > 25 0 C

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS (T_A = 25⁰C unless otherwise noted)

Characteristics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage	N/			Vdc
$I_C = 30 \text{ mAdc}$	$V_{(BR)CEO}$	80		vuc
Collector-Emitter Breakdown Voltage	N/			Vdc
$I_C = 10 \text{ mAdc}, R_{BE} = 10 \Omega$	$V_{(BR)CER}$	100		vac
Collector-Base Cutoff Current				4.1.
$V_{CB} = 120 \text{ Vdc}$	I_{CBO}		10	μAdc
$V_{CB} = 90 \text{ Vdc}$			10	ηAdc
Emitter-Base Cutoff Current				4.1.
$V_{EB} = 7.0 \text{ Vdc}$	$ m I_{EBO}$		10	μAdc
$V_{EB} = 5.0 \text{ Vdc}$			10	ηAdc

6 Lake Street, Lawrence, MA 01841

120101

2N720A; 2N1893; 2N1893S JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (3)				
Forward-Current Transfer Ratio				
$I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$	1.	20		
$I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$	$ ho_{ m FE}$	35		
$I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$		40	120	
Collector-Emitter Saturation Voltage	17		5.0	17.1.
$I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$	V _{CE(sat)}			Vdc
Base-Emitter Voltage	V			Vdc
$I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$	V _{BE(sat)}		1.3	vac
DYNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio	$ h_{fe} $			
$I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 20 \text{ MHz}$		3.0	10	
Small-Signal Short-Circuit Forward Current Transfer Ratio				
$V_{CE} = 5.0 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc}$	h_{fe}	35		
$V_{CE} = 10 \text{ Vdc}, I_{C} = 5.0 \text{ mAdc}, f = 1.0 \text{ kHz}$		45	100	
Small-Signal Short-Circuit Input Impedance	1.		8.0	Ω
$V_{CB} = 10 \text{ Vdc}, I_{C} = 5.0 \text{ mAdc}$	h _{ib}	4.0		
Small-Signal Short-Circuit Output Admittance	1-		0.5	μΩ
$V_{CB} = 10 \text{ Vdc}, I_{C} = 5.0 \text{ mAdc}$	h_{ob}			
Output Capacitance	C			P^{F}
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C_{obo}	2	15	r
SWITCHING CHARACTERISTICS				
Turn-On Time + Turn-Off Time	ton + toff			ne
(See Figure 3 of MIL-PRF-19500/182)	OII + OII		30	ηs

⁽³⁾ Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B