

N-CHANNEL MOSFET

Qualified per MIL-PRF-19500/555

Qualified Levels: JAN, JANTX, and JANTXV

DESCRIPTION

These 2N6788 and 2N6790 devices are military qualified up to a JANTXV level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N6788 and 2N6790 number.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/555.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- High frequency operation.
- · Lightweight package.
- ESD rated to class 1A.

MAXIMUM RATINGS @ T_C = +25 °C unless otherwise noted

Parameters / Test Conditions		Symbol	Value	Unit
Junction & Storage Temperature		T_J, T_{stg}	-55 to +150	°C
Thermal Resistance Junction-to-Case (see Fig.	gure 1)	R _{eJC}	6.25	°C/W
Total Power Dissipation (1)		P _T	0.8	W
Drain to Gate Voltage	2N6788 2N6790	V_{DG}	100 200	V
Drain – Source Voltage	2N6788 2N6790	V_{DS}	100 200	V
Gate – Source Voltage		V_{GS}	± 20	V
Drain Current, dc @ $T_C = +25 ^{\circ}C^{(2)}$ (see Figure ?)	2N6788 2N6790	I _{D1}	6.0 3.5	А
Drain Current, dc @ T _C = +100 °C	2N6788 2N6790	I _{D2}	3.5 2.25	А
Off-State Current (3)	2N6788 2N6790	I _{DM}	24 14	A (pk)
Source Current	2N6788 2N6790	I _S	6.0 3.5	А

Notes

- 1. Derated linearly by 0.16 W/°C for $T_C > +25$ °C.
- 2. The following formula derives the maximum theoretical I_D limit. I_D is also limited by package and internal wires and may be limited due to pin diameter.

 $I_D = \sqrt{\frac{T_J (max) - T_C}{R_{\theta JC} x R_{DS(on)} @ T_J (max)}}$

3. $I_{DM} = 4 \times I_{D1}$; I_{D1} as calculated in note 2.

TO-205AF (formerly TO-39) Package

Also available in:

U-18 LCC Package

7

(surface mount) 2N6788U & 2N6790U

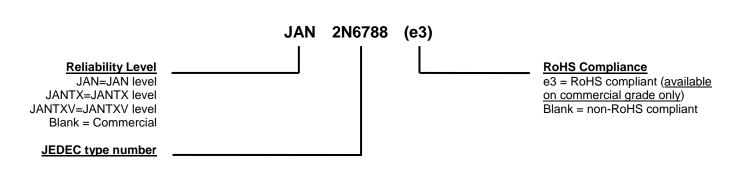
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Tin/lead solder dip nickel plate or RoHS compliant pure tin plate (commercial grade only).
- MARKING: Part number, date code, manufacturer's ID.
- WEIGHT: Approximately 1.064 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS					
Symbol	Definition					
I_{D}	Drain current.					
I _F	Forward current.					
Tc	Case temperature.					
V_{DD}	Drain supply voltage.					
V_{DS}	Drain to source voltage.					
V_{GS}	Gate to source voltage.					

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions		Symbol	Min.	Max.	Unit	
OFF CHARACTERTICS						
Drain-Source Breakdown Voltage V _{GS} = 0 V, I _D = 1 mA	2N6788 2N6790	$V_{(BR)DSS}$	100 200		V	
Gate-Source Voltage (Threshold) $V_{DS} \ge V_{GS}, \ I_D = 0.25 \text{ mA}$ $V_{DS} \ge V_{GS}, \ I_D = 0.25 \text{ mA}, \ T_j = +125 \text{ °C}$ $V_{DS} \ge V_{GS}, \ I_D = 0.25 \text{ mA}, \ T_j = -55 \text{ °C}$		V _{GS(th)1} V _{GS(th)2} V _{GS(th)3}	2.0 1.0	4.0 5.0	V	
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_j = +125 °C$		I _{GSS1}		±100 ±200	nA	

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
ON CHARACTERISTICS				•	
Drain Current $V_{GS} = 0V$, $V_{DS} = 80 V$ $V_{GS} = 0V$, $V_{DS} = 160 V$	2N6788 2N6790	I _{DSS1}		25	μΑ
$\begin{aligned} & \text{Drain Current} \\ & \text{V}_{\text{GS}} = \text{0V}, \text{V}_{\text{DS}} = \text{80 V}, \text{T}_{j} = +125 ^{\circ}\text{C} \\ & \text{V}_{\text{GS}} = \text{0V}, \text{V}_{\text{DS}} = \text{160 V}, \text{T}_{j} = +125 ^{\circ}\text{C} \end{aligned}$	2N6788 2N6790	I _{DSS2}		0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 2.25 \text{ A pulsed}$	2N6788 2N6790	r _{DS(on)1}		0.30 0.80	Ω
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A pulsed}$	2N6788 2N6790	r _{DS(on)2}		0.35 0.85	Ω
Static Drain-Source On-State Resistance $T_j = +125$ °C: $V_{GS} = 10$ V, $I_D = 3.5$ A pulsed $V_{GS} = 10$ V, $I_D = 2.25$ A pulsed	2N6788 2N6790	r _{DS(on)3}		0.54 1.50	Ω
Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_D = 6.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 3.5 \text{ A pulsed}$	2N6788 2N6790	V_{SD}		1.8 1.5	V

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted (continued)

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate Charge:					
On-State Gate Charge $V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}, V_{DS} = 100 \text{ V}$	2N6788 2N6790	$Q_{g(on)}$		18.0 14.3	nC
Gate to Source Charge $V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}, V_{DS} = 100 \text{ V}$	2N6788 2N6790	Q_gs		4.0 3.0	nC
Gate to Drain Charge $V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}, V_{DS} = 100 \text{ V}$	2N6788 2N6790	Q_gd		9.0 9.0	nC

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit	
Turn-on delay time $I_D = 6.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 35 \text{ V}$ $I_D = 3.5 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 74 \text{ V}$	2N6788 2N6790	$t_{d(on)}$		40	ns
Rinse time $I_D = 6.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 35 \text{ V}$ $I_D = 3.5 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 74 \text{ V}$	2N6788 2N6790	t _r		70 50	ns
Turn-off delay time $I_D = 6.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 35 \text{ V}$ $I_D = 3.5 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 74 \text{ V}$	2N6788 2N6790	$t_{d(off)}$		40 50	ns
Fall time $I_D = 6.0 \text{ A}, \ V_{GS} = 10 \text{ V}, \ R_G = 7.5 \ \Omega, \ V_{DD} = 35 \text{ V}$ $I_D = 3.5 \text{ A}, \ V_{GS} = 10 \text{ V}, \ R_G = 7.5 \ \Omega, \ V_{DD} = 74 \text{ V}$	2N6788 2N6790	t _f		70 50	ns
Diode Reverse Recovery Time di/dt = 100 A/ μ s, $V_{DD} \le 50$ V, $I_F = 6.0$ A di/dt = 100 A/ μ s, $V_{DD} \le 50$ V, $I_F = 3.5$ A	2N6788 2N6790	t _{rr}		240 400	ns

GRAPHS

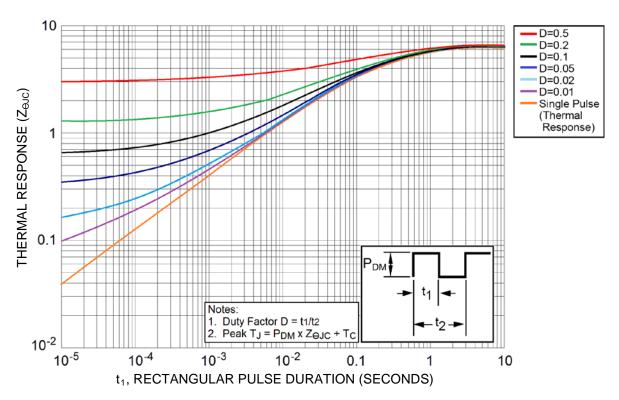
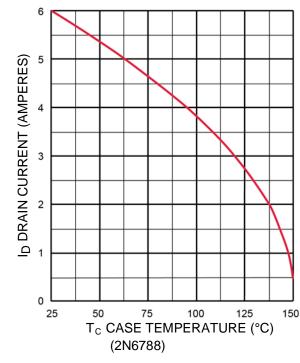



Figure 1
Thermal Impedance Curves

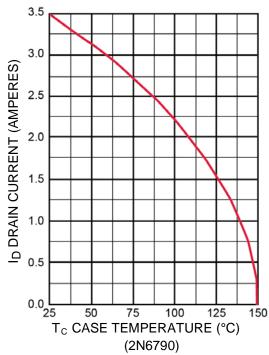
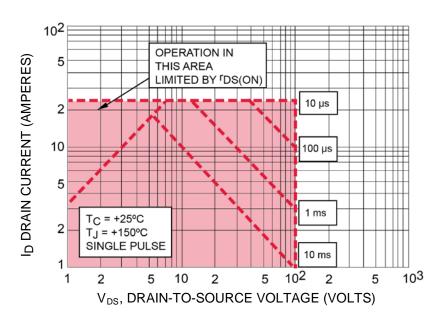
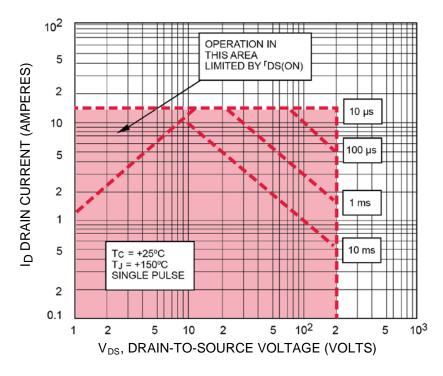
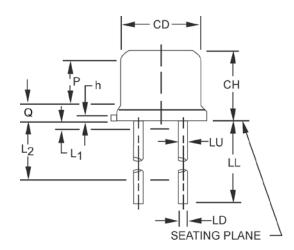
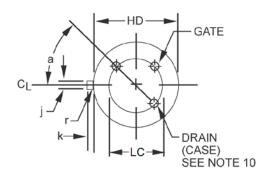



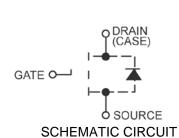
Figure 2


Maximum Drain Current vs. Case Temperature Graph

GRAPHS (continued)


Maximum Safe Operating Area (2N6788)




Maximum Safe Operating Area (2N6790)

PACKAGE DIMENSIONS

Ltr	Inc	h	Millir	neters	Notes
	Min	Max	Min	Max	
CD	.305	.335	7.75	8.51	
СН	.160	.180	4.07	4.57	
HD	.335	.370	8.51	9.40	
h	.009	.041	0.23	1.04	
J	.028	.034	0.71	0.86	3
k	.029	.045	0.74	1.14	3, 4
LD	.016	.021	0.41	0.53	7, 8
LL	.500	.750	12.7	19.05	7, 8, 12
LS	.200 TP		5.08 TP		6
LU	.016	.019	0.41	0.48	7, 8
L1		.050		1.27	7, 8
L2	.250		6.35		7, 8
Р	.100		2.54		
Q		.050		1.27	5
r		.010		0.25	10
α	45° TP		45° TP		6

NOTES:

- Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TL shall be held for a minimum length of .011 inch (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- 6. Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- 7. Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- All three leads.
- 9. The collector shall be internally connected to the case.
- 10. Dimension r (radius) applies to both inside corners of tab.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 12. Lead 1 = source, lead 2 = gate, lead 3 = drain.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by International Rectifier manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q)