

RL78/G12

RENESAS MCU

R01DS0193EJ0200 Rev.2.00 Sep 06, 2013

True Low Power Platform (as low as 63 μ A/MHz), 1.8V to 5.5V operation, 2 to 16 Kbyte Flash, 31 DMIPS at 24MHz, for General Purpose Applications

1. OUTLINE

<R> 1.1 Features

Ultra-Low Power Technology

- 1.8 V to 5.5 V operation from a single supply
- Stop (RAM retained): 0.23 μA, (LVD enabled): 0.31 μA
- Snooze: 0.7 mA (UART), 1.20 mA (ADC)
- Operating: 63 μA /MHz

16-bit RL78 CPU Core

- Delivers 31 DMIPS at maximum operating frequency of 24 MHz
- Instruction Execution: 86 % of instructions can be executed in 1 to 2 clock cycles
- CISC Architecture (Harvard) with 3-stage pipeline
- Multiply Signed & Unsigned: 16 x 16 to 32-bit result in 1 clock cycle
- MAC: 16 x 16 to 32-bit result in 2 clock cycles
- 16-bit barrel shifter for shift & rotate in 1 clock cycle
- · 1-wire on-chip debug function

Main Flash Memory

- Density: 2 KB to 16 KB
- Block size: 1 KB
- On-chip single voltage flash memory with protection from block erase/writing

Data Flash Memory

- Data Flash with background operation
- Data flash size: 2 KB size options
- Erase Cycles: 1 Million (typ.)
- Erase/programming voltage: 1.8 V to 5.5 V

RAM

- 256 B to 1.5 KB size options
- Supports operands or instructions
- Back-up retention in all modes

High-speed Oscillator Oscillator

- 24MHz with +/- 1% accuracy over voltage (1.8 V to 5.5 V) and temperature (-20 °C to 85 °C)
- Pre-configured settings: 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz

Reset and Supply Management

- Power-on reset (POR) monitor/generator
- Low voltage detection (LVD) with 12 setting options (Interrupt and/or reset function)

Data Memory Access (DMA) Controller

- Up to 2 fully programmable channels
- Transfer unit: 8- or 16-bit

Multiple Communication Interfaces

- Up to 3 x I²C master
- Up to 1 x I²C multi-master
- Up to 3 x CSI/SPI (7-, 8-bit)
- Up to 3 x UART (7-, 8-, 9-bit)

Extended-Function Timers

- Multi-function 16-bit timers: Up to 8 channels
- Interval Timer: 12-bit, 1 channel
- 15 kHz watchdog timer: 1 channel (window function)

Rich Analog

- ADC: Up to 11 channels, 10-bit resolution, 2.1 µs conversion time
- Supports 1.8 V to 5.5 V
- Internal voltage reference (1.45 V)
- On-chip temperature sensor

Safety Features (IEC or UL 60730 compliance)

- Flash memory CRC calculation
- · RAM parity error check
- · RAM write protection
- SFR write protection
- Illegal memory access detection
- · Clock stop/ frequency detection
- ADC self-test

General Purpose I/O

- 5 V tolerant, high-current (up to 20 mA per pin)
- Open-Drain, Internal Pull-up support

Operating Ambient Temperature

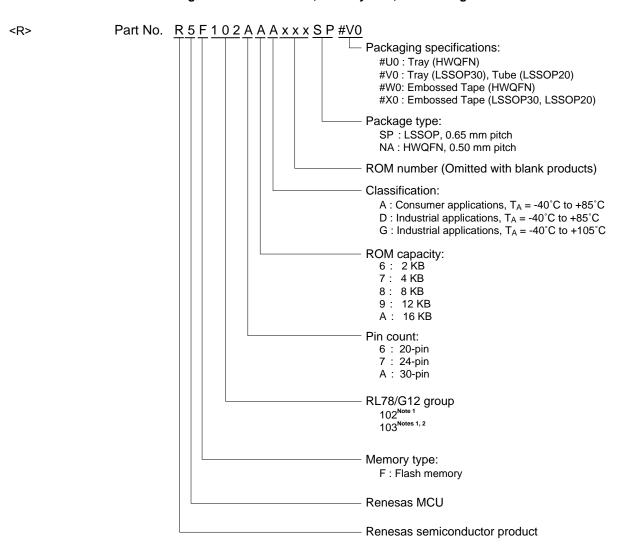
- Standard: -40 °C to +85 °C
- Extended: -40 °C to +105 °C

Package Type and Pin Count

- QFN: 24
- SSOP: 20, 30
- * There is difference in specifications between every product.
 Please refer to specification for details.

O ROM, RAM capacities

Code flash	Data flash	RAM	20 pins	24 pins	30 pins
16 KB	2 KB	2 KB	_	_	R5F102AA
	_		_	_	R5F103AA
	2 KB	1.5 KB	R5F1026A Note 1	R5F1027A Note 1	_
	_		R5F1036A Note 1	R5F1037A Note 1	_
12 KB	2KB	1 KB	R5F10269 Note 1	R5F10279 Note 1	R5F102A9
	_		R5F10369 Note 1	R5F10379 Note 1	R5F103A9
8 KB	2 KB	768 B	R5F10268 Note 1	R5F10278 Note 1	R5F102A8
	_		R5F10368 Note 1	R5F10378 Note 1	R5F103A8
4 KB	2KB	512 B	R5F10267	R5F10277	R5F102A7
	_		R5F10367	R5F10377	R5F103A7
2 KB	2 KB	256 B	R5F10266 Note 2	_	_
	_		R5F10366 Note 2	_	_


Notes 1. This is 640 bytes when the self-programming function or data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE in the RL78/G12 User's Manual Hardware.)

2. The self-programming function cannot be used for R5F10266 and R5F10366.

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/G12

- **Notes 1.** For details about the differences between the R5F102 products and the R5F103 products of RL78/G12, see **1.3 Differences between the R5F102 Products and the R5F103 Products**.
 - 2. Products only for "A: Consumer applications ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)" and "D: Industrial applications ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)"

Table 1-1. List of Ordering Part Numbers

Pin count	Package	Data flash	Fields of Application	Part Number									
20 pins	20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65 mm pitch)	Mounted	A	R5F1026AASP#V0, R5F10269ASP#V0, R5F10268ASP#V0, R5F10267ASP#V0, R5F10266ASP#V0 R5F1026AASP#X0, R5F10269ASP#X0, R5F10268ASP#X0, R5F10267ASP#X0, R5F10266ASP#X0									
			D	R5F1026ADSP#V0, R5F10269DSP#V0, R5F10268DSP#V0, R5F10267DSP#V0, R5F10266DSP#V0 R5F1026ADSP#X0, R5F10269DSP#X0, R5F10268DSP#X0, R5F10267DSP#X0, R5F10266DSP#X0									
			G	R5F1026AGSP#V0, R5F10269GSP#V0, R5F10268GSP#V0, R5F10267GSP#V0, R5F10266GSP#V0 R5F1026AGSP#X0, R5F10269GSP#X0, R5F10268GSP#X0, R5F10267GSP#X0, R5F10266GSP#X0									
		Not mounted	A	R5F1036AASP#V0, R5F10369ASP#V0, R5F10368ASP#V0, R5F10367ASP#V0, R5F10366ASP#V0 R5F1036AASP#X0, R5F10369ASP#X0, R5F10368ASP#X0, R5F10366ASP#X0, R5F10366ASP#X0									
				D	R5F1036ADSP#V0, R5F10369DSP#V0, R5F10368DSP#V0, R5F10367DSP#V0, R5F10366DSP#V0 R5F10366DSP#V0 R5F1036ADSP#X0, R5F10369DSP#X0, R5F10368DSP#X0, R5F10367DSP#X0, R5F10366DSP#X0								
24 pins	24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)	Mounted 5	A	R5F1027AANA#U0, R5F10279ANA#U0, R5F10278ANA#U0, R5F10277ANA#U R5F1027AANA#W0, R5F10279ANA#W0, R5F10278ANA#W0, R5F10277ANA#W0									
												D	R5F1027ADNA#U0, R5F10279DNA#U0, R5F10278DNA#U0, R5F10277DNA#U R5F1027ADNA#W0, R5F10279DNA#W0, R5F10278DNA#W0, R5F10277DNA#W0
			G	R5F1027AGNA#U0, R5F10279GNA#U0, R5F10278GNA#U0, R5F10277GNA#U0 R5F1027AGNA#W0, R5F10279GNA#W0, R5F10278GNA#W0, R5F10277GNA#W0									
		Not mounted	Α	R5F1037AANA#V0, R5F10379ANA#V0, R5F10378ANA#V0, R5F10377ANA#V R5F1037AANA#X0, R5F10379ANA#X0, R5F10378ANA#X0, R5F10377ANA#X									
			D	R5F1037ADNA#V0, R5F10379DNA#V0, R5F10378DNA#V0, R5F10377DNA#VR5F1037ADNA#X0, R5F10379DNA#X0, R5F10378DNA#X0, R5F10377DNA#X									
30 pins	30-pin plastic LSSOP	Mounted	А	R5F102AAASP#V0, R5F102A9ASP#V0, R5F102A8ASP#V0, R5F102A7ASP#\ R5F102AAASP#X0, R5F102A9ASP#X0, R5F102A8ASP#X0, R5F102A7ASP#X									
	(7.62 mm (300), 0.65 mm		D	R5F102AADSP#V0, R5F102A9DSP#V0, R5F102A8DSP#V0, R5F102A7DSP# R5F102AADSP#X0, R5F102A9DSP#X0, R5F102A8DSP#X0, R5F102A7DSP#.									
	pitch)	1)	G	R5F102AAGSP#V0, R5F102A9GSP#V0, R5F102A8GSP#V0, R5F102A7GSP#V0 R5F102AAGSP#X0, R5F102A9GSP#X0, R5F102A8GSP#X0, R5F102A7GSP#X0									
		Not mounted	А	R5F103AAASP#V0, R5F103A9ASP#V0, R5F103A8ASP#V0, R5F103A7ASP#\ R5F103AAASP#X0, R5F103A9ASP#X0, R5F103A8ASP#X0, R5F103A7ASP#X									
			D	R5F103AADSP#V0, R5F103A9DSP#V0, R5F103A8DSP#V0, R5F103A7DSP# R5F103AADSP#X0, R5F103A9DSP#X0, R5F103A8DSP#X0, R5F103A7DSP#.									

Note For fields of application, see Figure 1-1. Part Number, Memory Size, and Package of RL78/G12.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering <R> part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Differences between the R5F102 Products and the R5F103 Products

The following are differences between the R5F102 products and the R5F103 products.

- O Whether the data flash memory is mounted or not
- O High-speed on-chip oscillator oscillation frequency accuracy
- O Number of channels in serial interface
- O Whether the DMA function is mounted or not
- O Whether a part of the safety functions are mounted or not

1.3.1 Data Flash

The data flash memory of 2 KB is mounted on the R5F102 products, but not on the R5F103 products.

Product	Data Flash
R5F102 products	2KB
R5F1026A, R5F1027A, R5F102AA,	
R5F10269, R5F10279, R5F102A9,	
R5F10268, R5F10278, R5F102A8,	
R5F10267, R5F10277, R5F102A7,	
R5F10266 Note	
R5F103 products	Not mounted
R5F1036A, R5F1037A, R5F103AA,	
R5F10369, R5F10379, R5F103A9,	
R5F10368, R5F10378 R5F103A8,	
R5F10367, R5F10377, R5F103A7,	
R5F10366	

Note The RAM in the R5F10266 has capacity as small as 256 bytes. Depending on the customer's program specification, the stack area to execute the data flash library may not be kept and data may not be written to or erased from the data flash memory.

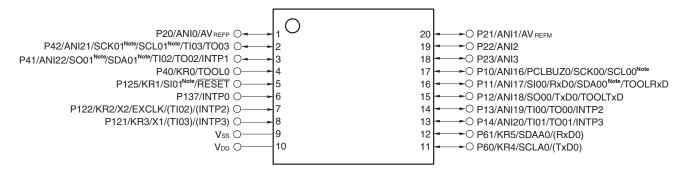
Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

1.3.2 On-chip oscillator characteristics

(1) High-speed on-chip oscillator oscillation frequency of the R5F102 products

Oscillator	Condition	MIN	MAX	Unit
High-speed on-chip	T _A = -20 to +85 °C	-1.0	+1.0	%
oscillator oscillation	T _A = -40 to -20 °C	-1.5	+1.5	
frequency accuracy	T _A = +85 to +105 °C	-2.0	+2.0	

(2) High-speed on-chip oscillator oscillation frequency of the R5F103 products


Oscillator	Condition	MIN	MAX	Unit
High-speed on-chip	T _A = -40 to + 85 °C	-5.0	+5.0	%
oscillator oscillation				
frequency accuracy				

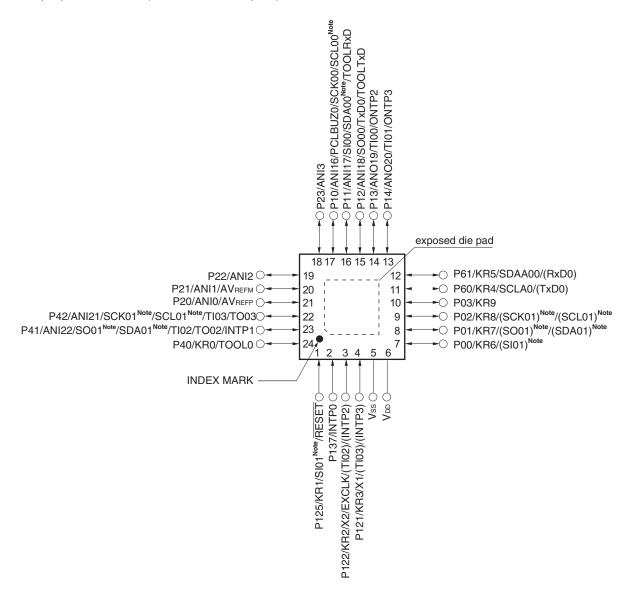
1.3.3 Peripheral Functions

The following are differences in peripheral functions between the R5F102 products and the R5F103 products.

	R5F102	? product	R5F103 product			
RL78/G12	RL78/G12			20, 24 pin	30 pin	
	product		product	product		
Serial interface	UART	1 channel	3 channels	1 channel		
	CSI	2 channels	3 channels	1 channel		
	Simplified I ² C	2 channels	3 channels	None		
DMA function		2 channels		None		
Safety function	CRC operation	Yes		None		
	RAM guard	Yes	•	None		
	SFR guard	Yes	Yes			

- 1.4 Pin Configuration (Top View)
- 1.4.1 20-pin products
- <R> 20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65 mm pitch)

Note Provided only in the R5F102 products.

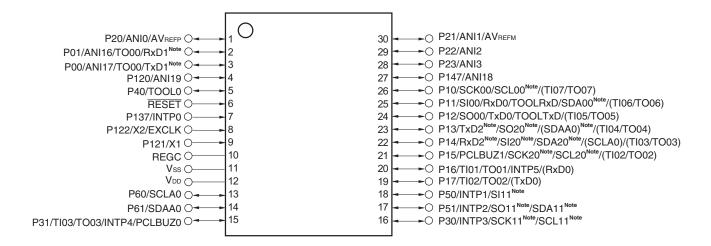

Remarks 1. For pin identification, see 1.5 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G12 User's Manual Hardware.

.

1.4.2 24-pin products

<R> • 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)


Note Provided only in the R5F102 products.

Remarks 1. For pin identification, see 1.5 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G12 User's Manual Hardware.
- 3. It is recommended to connect an exposed die pad to Vss.

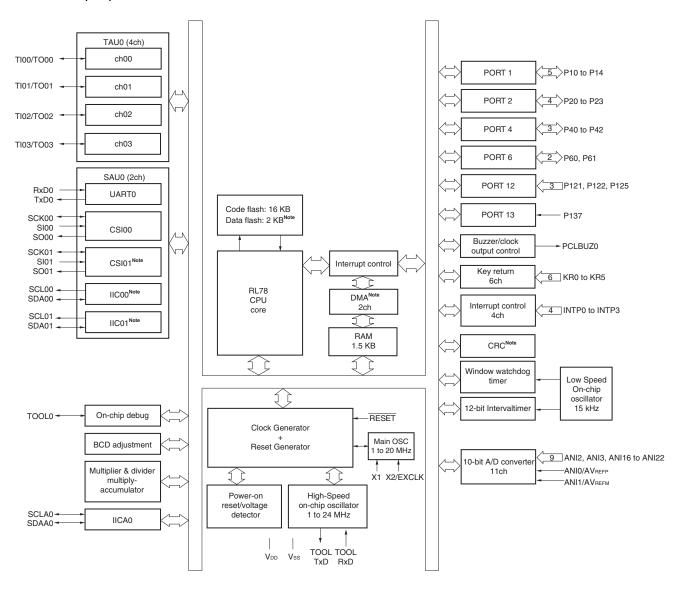
1.4.3 30-pin products

<R> • 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Note Provided only in the R5F102 products.

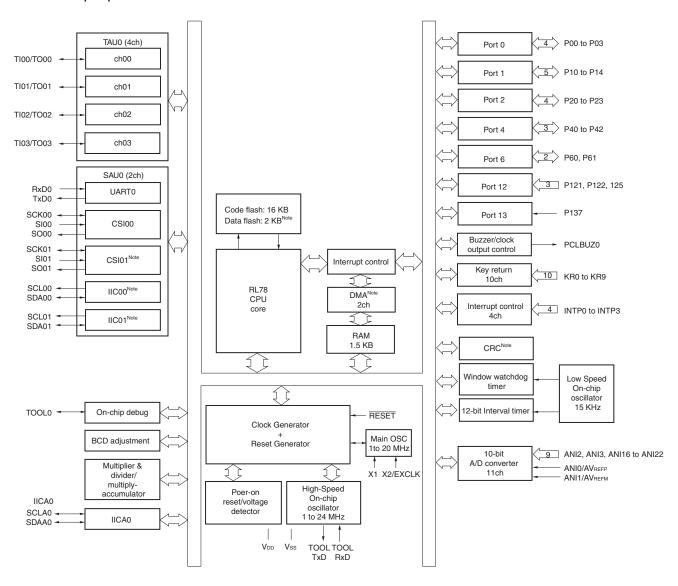
Caution Connect the REGC pin to Vss via capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.5 Pin Identification.

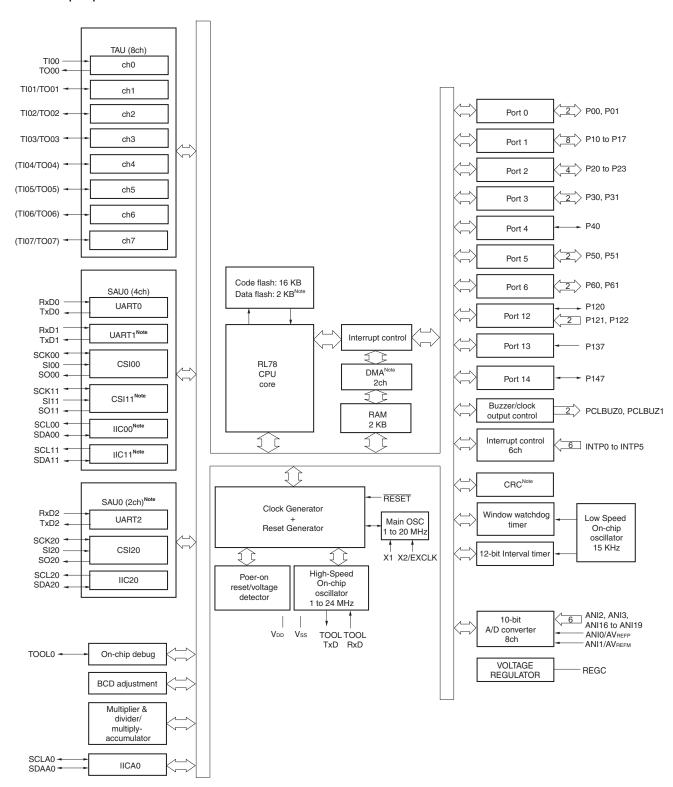

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G12 User's Manual Hardware.

1.5 Pin Identification

ANI0 to ANI3,		REGC:	Regulator Capacitance
ANI16 to ANI22:	Analog input	RESET:	Reset
AVREFM:	Analog Reference Voltage Minus	RxD0 to RxD2:	Receive Data
AVREFP:	Analog reference voltage plus	SCK00, SCK01, SCK11,	
EXCLK:	External Clock Input	SCK20:	Serial Clock Input/Output
	(Main System Clock)	SCL00, SCL01,	
INTP0 to INTP5	Interrupt Request From Peripheral	SCL11, SCL20, SCLA0:	Serial Clock Input/Output
KR0 to KR9:	Key Return	SDA00, SDA01, SDA11,	
P00 to P03:	Port 0	SDA20, SDAA0:	Serial Data Input/Output
P10 to P17:	Port 1	SI00, SI01, SI11, SI20:	Serial Data Input
P20 to P23:	Port 2	SO00, SO01, SO11,	
P30 to P31:	Port 3	SO20:	Serial Data Output
P40 to P42:	Port 4	TI00 to TI07:	Timer Input
P50, P51:	Port 5	TO00 to TO07:	Timer Output
P60, P61:	Port 6	TOOL0:	Data Input/Output for Tool
P120 to P122, P125:	Port 12	TOOLRxD, TOOLTxD:	Data Input/Output for External
P137:	Port 13		Device
P147:	Port 14	TxD0 to TxD2:	Transmit Data
PCLBUZ0, PCLBUZ1:	Programmable Clock Output/	VDD:	Power supply
	Buzzer Output	Vss:	Ground
		X1, X2:	Crystal Oscillator (Main System
			Clock)


1.6 Block Diagram

1.6.1 20-pin products


Note Provided only in the R5F102 products.

1.6.2 24-pin products

Note Provided only in the R5F102 products.

1.6.3 30-pin products

Note Provided only in the R5F102 products.

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G12 User's Manual Hardware.

RENESAS

1.7 Outline of Functions

This outline describes the function at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

	Item	20-pin		24-pin		30-pin			
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax		
Code flash memory		2 to 16		10277		16 KB	NOI 100AX		
	, , , , , , , , , , , , , , , , , , , ,	2 KB	ND .	2 KB	4 10	2 KB			
	n memory						- to 2KD		
RAM		200 B (0	1.5 KB		1.5 KB	512 B	to 2KB		
Address	T				MB				
Main system	High-speed system clock		,	ation, external market, 1 to 8 MHz: Vi	•	,			
clock	High-speed on-chip oscillator clock	,	HS (High-speed main) mode : 1 to 24 MHz (V_{DD} = 2.7 to 5.5 V), 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), LS (Low-speed main) mode : 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V)						
Low-spee	ed on-chip oscillator clock	15 kHz (TYP)							
General-p	ourpose register	(8-bit register	×8)×4 banks						
Minimum	instruction execution time	0.04167 μ s (High-speed on-chip oscillator clock: fi $_{\rm H}$ = 24 MHz operation)							
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)							
Instruction	n set	Data transfer (8/16 bits)							
		Adder and subtractor/logical operation (8/16 bits)							
		Multiplication (8 bits × 8 bits)							
		Rotate, barrel shift, and bit manipulation (set, reset, test, and Boolean operation), etc.							
I/O port	Total	1	8	2	2	2	6		
	CMOS I/O	1	2	1	6	2	1		
		`	D.D. I/O	(N-ch C		`	D.D. I/O		
		[V _{DD} withstan	id voltage]: 4)	[V _{DD} withstan	d voltage]: 5)	[V _{DD} withstan	d voltage]: 9)		
	CMOS input	4	4	4	4	;	3		
	N-ch open-drain I/O (6 V tolerance)	2							
Timer	16-bit timer		4 cha	nnels		8 cha	nnels		
	Watchdog timer			1 cha	annel				
	12-bit Interval timer			1 cha	annel				
	Timer output		4 cha (PWM outp			8 cha			

Notes 1. The self-programming function cannot be used in the R5F10266 and R5F10366.

- 2. The maximum number of channels when PIOR0 is set to 1.
- 3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). (See 6.9.3 Operation as multiple PWM output function in the RL78/G12 User's Manual Hardware.)

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

(2/2)

Item		20-	-pin	24-	-pin	30-pin			
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax		
Clock output/buzzer ou	tput		1 2						
		2.44 kHz to 10	MHz: (Peripher	al hardware cloc	ck: fmain = 20 MH	z operation)			
8/10-bit resolution A/D	converter		11 ch	annels		8 cha	nnels		
Serial interface		[R5F1026x (20)-pin), R5F1027	x (24-pin)]		•			
l		CSI: 2 chann	• CSI: 2 channels/Simplified I ² C: 2 channels/UART: 1 channel						
		[R5F102Ax (30	O-pin)]						
		CSI: 1 chann	nel/Simplified I ² C	C: 1 channel/UAF	RT: 1 channel				
		CSI: 1 chann	nel/Simplified I ² C	C: 1 channel/UAF	RT: 1 channel				
		CSI: 1 chann	nel/Simplified I ² C	C: 1 channel/UAF	RT: 1 channel				
		[R5F1036x (20)-pin), R5F1037	x (24-pin)]					
		CSI: 1 chann	nel/Simplified I ² C	C: 0 channel/UAF	RT: 1 channel				
		[R5F103Ax (30	O-pin)]						
		CSI: 1 chann	nel/Simplified I ² C	C: 0 channel/UAF	RT: 1 channel				
	I ² C bus			1 cha	annel				
Multiplier and divider/m	ultiply-	• 16 bits × 16 bits = 32 bits (unsigned or signed)							
accumulator		• 32 bits × 32 bits = 32 bits (unsigned)							
		• 16 bits × 16 bits + 32 bits = 32 bits (unsigned or signed)							
DMA controller		2 channels	_	2 channels	_	2 channels	_		
Vectored interrupt	Internal	18	16	18	16	26	19		
sources	External		;	5		(3		
Key interrupt		(6	1	0	_	_		
Reset		• Reset by RE							
			t by watchdog til						
			t by power-on-re t by voltage dete						
					Note				
		Internal reset by illegal instruction execution Note Internal reset by RAM parity error							
		Internal reset by illegal-memory access							
Power-on-reset circuit		Power-on-reset: 1.51 V (TYP) Power-down-reset: 1.50 V (TYP)							
Voltage detector		Rising edge	: 1.88 to 4.06 V	(12 stages)					
		• Falling edge : 1.84 to 3.98 V (12 stages)							
On-chip debug function		Provided							
Power supply voltage		V _{DD} = 1.8 to 5.	5 V						
Operating ambient tem	perature		$T_A = -40 \text{ to } +85^{\circ}\text{C}$ (A: Consumer applications, D: Industrial applications), $T_A = -40 \text{ to } +105^{\circ}\text{C}$ (G: Industrial applications)						

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

RENESAS

2. ELECTRICAL SPECIFICATIONS (A, D: $T_A = -40 \text{ to } +85^{\circ}\text{C}$)

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C)" and "D: Industrial applications ($T_A = -40$ to $+85^{\circ}$ C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G12 User's Manual Hardware.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

_	$\overline{}$	
<	ĸ	

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	V _{DD}			-0.5 to + 6.5	V
REGC terminal input voltage ^{Note1}	VIREGC	REGC		-0.3 to +2.8 and $-0.3 \text{ to } V_{DD} + 0.3$	V
				Note 2	
Input Voltage	VI1	Other than P60, F	P61	-0.3 to V _{DD} + 0.3 ^{Note 3}	V
	V ₁₂	P60, P61 (N-ch o	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 3}	V
Analog input voltage	Vai	20-, 24-pin produc	cts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	ANI0 to ANI3, ANI16 to ANI19	and -0.3 to AVREF(+)+0.3 Notes 3, 4	
Output current, high	І он1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	Т ОН2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	l _{OL1}	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	lo _{L2}	Per pin	P20 to P23	1	mA
		Total of all pins		5	mA
Operating ambient temperature	Та			-40 to +85	°C
Storage temperature	T _{stg}			-65 to +150	°C

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to V_{SS} via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- 4. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.
- 5. 24-pin products only.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port
 - **2.** AVREF (+): + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

2.2 Oscillator Characteristics

2.2.1 X1 oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

	11x - 40 to 100 0, 1.0 1 2 100 2 100 2 0.0 1, 100 - 0 1)							
<r></r>	Parameter Resonator		Conditions	MIN.	TYP.	MAX.	Unit	
	X1 clock oscillation	Ceramic resonator /	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz	
	frequency (fx) ^{Note}	crystal oscillator	1.8 V ≤ V _{DD} < 2.7 V	1.0		8.0		

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

<R> Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to **5.4 System Clock Oscillator in the RL78/G12 User's Manual** Hardware.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

<r></r>	Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
	High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
	High-speed on-chip oscillator		R5F102 products	$T_A = -20 \text{ to } +85^{\circ}\text{C}$	-1.0		+1.0	%
	clock frequency accuracy			$T_A = -40 \text{ to } -20^{\circ}\text{C}$	-1.5		+1.5	%
			R5F103 products		-5.0		+5.0	%
	Low-speed on-chip oscillator clock frequency	fıL				15		kHz
	Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

<R>

2.3 DC Characteristics

2.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				-10.0 Note 2	mA
		20-, 24-pin products:	4.0 V ≤ V _{DD} ≤ 5.5 V			-30.0	mA
		Total of P40 to P42	2.7 V ≤ V _{DD} < 4.0 V			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% Note 3)	1.8 V ≤ V _{DD} < 2.7 V			-4.5	mA
		20-, 24-pin products:	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			-80.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	2.7 V ≤ V _{DD} < 4.0 V			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty ≤ 70% Note 3)	1.8 V ≤ V _{DD} < 2.7 V			-10.0	mA
-		Total of all pins (When duty ≤ 70% ^{Note 3})				-100	mA
		Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

- **Notes 1**. value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor $\leq 70\%$.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins = (IoH × 0.7)/(n × 0.01)

<Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

R01DS0193EJ0200 Rev.2.00

<R>

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lo _{L1}	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				20.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			60.0	mA
		Total of P40 to P42	2.7 V ≤ V _{DD} < 4.0 V			9.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% ^{Note 3})	1.8 V ≤ V _{DD} < 2.7 V			1.8	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			80.0	mA
		Total of P00 to P03 ^{Note 4} ,	2.7 V ≤ V _{DD} < 4.0 V			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty ≤ 70% Note 3)	1.8 V ≤ V _{DD} < 2.7 V			5.4	mA
		Total of all pins (When duty ≤ 70% Note 3)				140	mA
	lo _{1.2} Per pin for P20 to P23					0.4	mA
1		Total of all pins				1.6	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - **3.** The output current value under conditions where the duty factor $\leq 70\%$.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins = (IoL × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le VDD \le 5.5 \text{ V}, Vss = 0 \text{ V})$

(3/4)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
Input voltage, high	V _{IH1}	Normal input buffer	•			V _{DD}	V
		20-, 24-pin products: P00 to P0 P40 to P42	03 ^{Note 2} , P10 to P14,				
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147	0 to P17, P30, P31,				
	V _{IH2}	TTL input buffer	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	2.2		V _{DD}	٧
		20-, 24-pin products: P10, P11	11, P13 to P17			V _{DD}	V
		30-pin products: P01, P10, P11, P13 to P17				V _{DD}	>
	V _{IH3}	P20 to P23				V _{DD}	V
	V _{IH4}	P60, P61		0.7V _{DD}		6.0	٧
	V _{IH5}	P121, P122, P125 ^{Note 1} , P137,	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14,			V _{DD}	٧
Input voltage, low	V _{IL1}	Normal input buffer				0.2V _{DD}	V
		20-, 24-pin products: P00 to P0 P40 to P42					
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147					
	V _{IL2}	TTL input buffer	4.0 V ≤ V _{DD} ≤ 5.5 V	0		0.8	V
		20-, 24-pin products: P10, P11	3.3 V ≤ V _{DD} < 4.0 V	0		0.5	V
		30-pin products: P01, P10, P11, P13 to P17	1.8 V ≤ V _{DD} < 3.3 V	0		0.32	V
	V _{IL3}	P20 to P23		0		0.3V _{DD}	V
	VIL4	P60, P61		0		0.3V _{DD}	V
	VIL5	P121, P122, P125 ^{Note 1} , P137,	EXCLK, RESET	0		0.2V _{DD}	V
Output voltage, high	V _{ОН1}	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14,	0-, 24-pin products: $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}$				V
		P40 to P42 30-pin products:	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -3.0 \text{ mA}$	V _{DD} -0.7			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120,	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -2.0 \text{ mA}$	V _{DD} -0.6			V
		P147	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$	V _{DD} -0.5			٧
	V _{OH2}	P20 to P23	I _{OH2} = -100 μA	V _{DD} -0.5			V

Notes 1. 20, 24-pin products only.

2. 24-pin products only.

Caution The maximum value of V_{IH} of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V_{DD} even in N-ch opendrain mode.

High level is not output in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le VDD \le 5.5 \text{ V}, Vss = 0 \text{ V})$

(4/4)

Parameter	Symbol		Conditions			TYP.	MAX.	Unit
Output voltage, low	Vol1	P00 to P03 ^{Note} , P1 P40 to P42	0-, 24-pin products: 00 to P03 ^{Note} , P10 to P14, 40 to P42 0-pin products: P00, P01, 10 to P17, P30, P31, P40, 50, P51, P120, P147 2.7 V ≤ lol1 = 1 1.8 V ≤ lol1 = 0				0.7	V
		P10 to P17, P30, F					0.6	V
							0.4	٧
							0.4	V
	V _{OL2}	P20 to P23		I _{OL2} = 400 μA			0.4	V
	Vol3	P60, P61		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 15.0 \text{ mA}$			2.0	V
				$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 5.0 \text{ mA}$			0.4	V
				$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 3.0 \text{ mA}$			0.4	V
				$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 2.0 \text{ mA}$			0.4	V
Input leakage current, high	Ішнт	Other than P121, P122	$V_{I} = V_{DD}$				1	μΑ
	І LІН2	P121, P122 (X1, X2/EXCLK)	$V_{I} = V_{DD}$	Input port or external clock input			1	μΑ
				When resonator connected			10	μΑ
Input leakage current, low	ILIL1	Other than P121, P122	VI = VSS				-1	μΑ
	ILIL2	P121, P122 (X1, X2/EXCLK)	Vı = Vss	Input port or external clock input			-1	μΑ
				When resonator connected			-10	μΑ
On-chip pull-up resistance	Ru	20-, 24-pin product P00 to P03 ^{Note} , P1 P40 to P42, P125,	0 to P14,	V _I = V _{SS} , input port	10	20	100	kΩ
			80-pin products: P00, P01, P10 to P17, P30, P31, P40,					

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

11	12

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit										
Supply	I _{DD1}	Operating	HS(High-speed		Basic	V _{DD} = 5.0 V		1.5		mA										
current ^{Note 1}		mode	main) mode Note 4		operation	V _{DD} = 3.0 V		1.5												
					Normal	V _{DD} = 5.0 V		3.3	5.0	mA										
					operation	V _{DD} = 3.0 V		3.3	5.0											
				f _{IH} = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.5	3.7	mA										
						V _{DD} = 3.0 V		2.5	3.7											
			LS(Low-speed	f _{IH} = 8 MHz ^{Note 3}		V _{DD} = 3.0 V		1.2	1.8	mA										
			main) mode Note 4			V _{DD} = 2.0 V		1.2	1.8											
			HS(High-speed		- 5 0 \/	Square wave input		2.8	4.4	mA										
			main) mode Note4	$V_{DD} = 5.0 \text{ V}$		Resonator connection		3.0	4.6											
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		2.8	4.4	mA										
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		3.0	4.6											
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.8	2.6	mA										
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.8	2.6											
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	*	ote 2	Square wave input		1.8	2.6	mA									
				$V_{DD} = 3.0 \text{ V}$	s = 8 MHz ^{Note 2} ,	Resonator connection		1.8	2.6											
			LS(Low-speed	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.1	1.7	mA										
			main) mode Note 4	V _{DD} = 3.0 V Resor	Resonator connection		1.1	1.7												
				$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$	Hz ^{Note 2} ,	Square wave input		1.1	1.7	mA										
				$V_{DD} = 2.0 \text{ V}$		Resonator connection		1.1	1.7											

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: V_{DD} = 2.7 V to 5.5 V @1 MHz to 24 MHz

V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V } @1 \text{ MHz to } 8 \text{ MHz}$

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(1) 20-, 24-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit				
Supply	I _{DD2} Note 2	HALT	HS (High-speed	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	1210	μΑ				
current Note 1		mode	main) mode Note 6		V _{DD} = 3.0 V		440	1210					
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	950	μА				
					V _{DD} = 3.0 V		400	950					
			LS (Low-speed	f _{IH} = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		270	542	μА				
			main) mode Note 6		V _{DD} = 2.0 V		270	542					
			HS (High-speed	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		280	1000	μА				
			main) mode Note 6	V _{DD} = 5.0 V	Resonator connection		450	1170					
			V f _M V	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μА				
				1		L'	V _{DD} = 3.0 V	Resonator connection		450	1170		
					f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		190	590	μА			
					LS (Low-speed	V _{DD} = 5.0 V	Resonator connection		260	660			
						f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		190	590	μА		
		LS (Low-speed 1	, ,			LS (Low-speed fr	LS (Low-speed fr	V _{DD} = 3.0 V	Resonator connection		260	660	
								, , ,		$f_{MX} = 8 \text{ MHz}^{\text{Note 3}},$	Square wave input		110
			main) mode Note 6	V _{DD} = 3.0 V	Resonator connection		150	416					
				$f_{MX} = 8 \text{ MHz}^{\text{Note 3}},$	Square wave input		110	360	μА				
				V _{DD} = 2.0 V	Resonator connection		150	416					
	$I_{DD3}^{Note 5}$ STOP $T_A = -40^{\circ}C$	T _A = -40°C				0.19	0.50	μА					
		mode	T _A = +25°C				0.24	0.50					
			T _A = +50°C				0.32	0.80					
		 	T _A = +70°C				0.48	1.20					
			T _A = +85°C				0.74	2.20					

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25^{\circ}C$, other than STOP mode

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit		
Supply	I _{DD1}	Operating	\ 0 '	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA		
current Note 1		mode	main) mode Note 4		operation	V _{DD} = 3.0 V		1.5				
					Normal	V _{DD} = 5.0 V		3.7	5.5	mA		
					operation	V _{DD} = 3.0 V		3.7	5.5			
				f _{IH} = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.7	4.0	mA		
						V _{DD} = 3.0 V		2.7	4.0			
			LS (Low-speed	f _{IH} = 8 MHz ^{Note 3}		V _{DD} = 3.0 V		1.2	1.8	mA		
			main) mode Note 4			V _{DD} = 2.0 V		1.2	1.8			
			HS (High-speed	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.0	4.6	mA		
			main) mode Note 4	$V_{DD} = 5.0 \text{ V}$		Resonator connection		3.2	4.8			
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.0	4.6	mA		
					$V_{DD} = 3.0 \text{ V}$	V _{DD} = 3.0 V		Resonator connection		3.2	4.8	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.9	2.7	mA		
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.9	2.7			
			1	$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	10 MHz ^{Note 2} ,	Square wave input		1.9	2.7	mA		
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.9	2.7			
			LS (Low-speed	$f_{MX} = 8 MHz^{Note 2}$		Square wave input		1.1	1.7	mA		
			main) mode Note 4	$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.1	1.7			
				$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.1	1.7	mA		
				V _{DD} = 2.0 V		Resonator connection		1.1	1.7			

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V } @1 \text{ MHz to } 8 \text{ MHz}$

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit		
Supply	I _{DD2} Note 2	HALT	HS (High-speed	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	1280	μΑ		
current Note 1		mode	main) mode Note 6		V _{DD} = 3.0 V		440	1280			
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1000	μΑ		
					V _{DD} = 3.0 V		400	1000			
			LS (Low-speed	f _{IH} = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μΑ		
			main) mode Note 6		V _{DD} = 2.0 V		260	530			
			HS (High-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μΑ		
			main) mode Note 6	V _{DD} = 5.0 V	Resonator connection		450	1170			
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μΑ		
				V _{DD} = 3.0 V	Resonator connection		450	1170			
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		190	600	μΑ		
				V _{DD} = 5.0 V Resonator	Resonator connection		260	670			
				<u> </u>	Square wave input		190	600	μΑ		
				V _{DD} = 3.0 V	Resonator connection		260	670			
		, ,			` '	$f_{MX} = 8 \text{ MHz}^{\text{Note 3}},$	Square wave input		95	330	μ A
			main) mode Note 6	V _{DD} = 3.0 V	Resonator connection		145	380			
				f _{MX} = 8 MHz ^{Note 3}	Square wave input		95	330	μ A		
				V _{DD} = 2.0 V	Resonator connection		145	380			
	I _{DD3} Note 5	STOP	T _A = -40°C				0.18	0.50	μΑ		
	mode $T_A = +25^{\circ}C$				0.23	0.50					
			T _A = +50°C				0.30	1.10	 		
			T _A = +70°C				0.46	1.90			
			T _A = +85°C				0.75	3.30			

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - **5.** Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS (Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

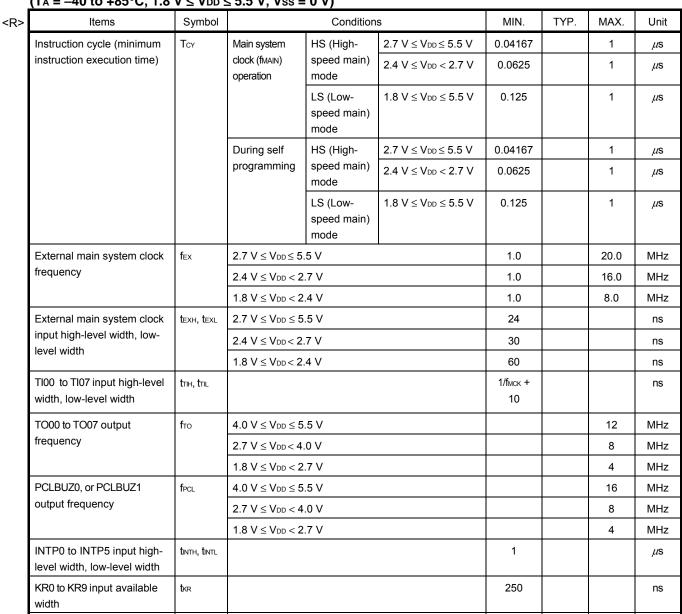
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is $T_A = 25$ °C.

<R> (3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	Note 1				0.20		μΑ
12-bit interval timer operating current	ÎTMKA Notes 1, 2, 3				0.02		μΑ
Watchdog timer operating current	WDT Notes 1, 2, 4	fı∟ = 15 kHz			0.22		μΑ
A/D converter	IADC Notes 1, 5	When conversion at	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.30	1.70	mA
operating current		maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.50	0.70	mA
A/D converter reference voltage operating current	ADREF Note 1				75.0		μΑ
Temperature sensor operating current	TMPS Note 1				75.0		μΑ
LVD operating current	I _{LVD} Notes 1, 6				0.08		μА
Self- programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	IBGO Notes 1, 7				2.00	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 9		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	1.44	mA
		CSI/UART operation			0.70	0.84	mA

Notes 1. Current flowing to the V_{DD} .


- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- **4.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- **5.** Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **6.** Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode in the RL78/G12 User's Manual Hardware.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

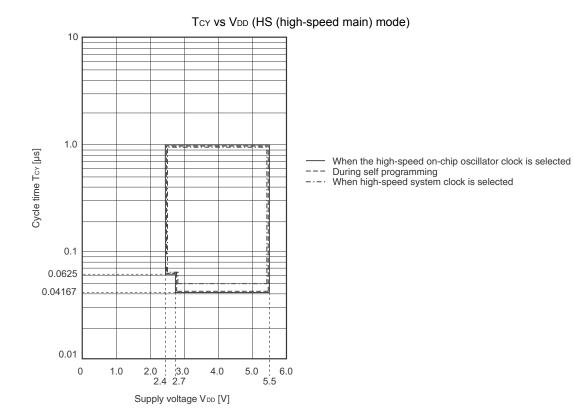
2.4 AC Characteristics

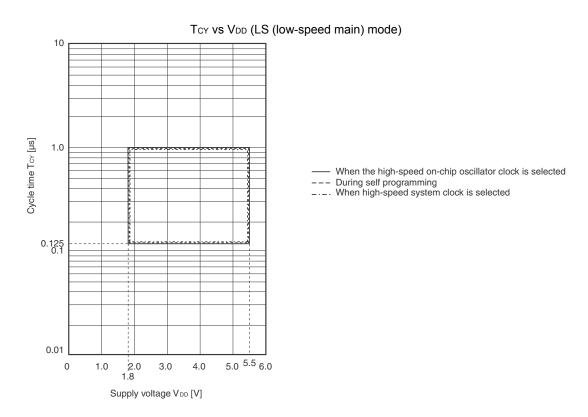
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Remark fmck: Timer array unit operation clock frequency

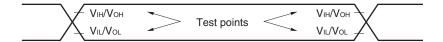
trsi

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

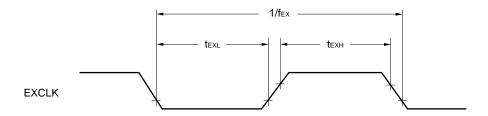

10

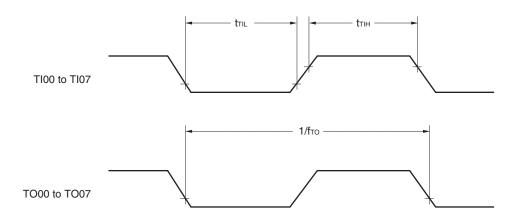


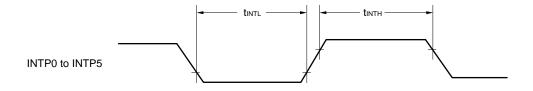
RESET low-level width

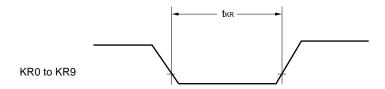

μs

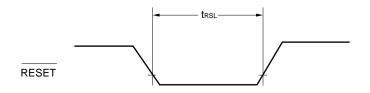
<R> Minimum Instruction Execution Time during Main System Clock Operation




<R> AC Timing Test Point


<R> External Main System Clock Timing


TI/TO Timing


Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

2.5 Peripheral Functions Characteristics

<R> AC Timing Test Point

2.5.1 Serial array unit

<R> (1) During communication at same potential (UART mode)

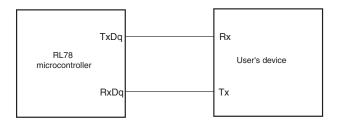
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate				fмск/6		fмск/6	bps
Note 1		Theoretical value of the maximum transfer rate $f_{CLK} = f_{MCK}^{Note2}$		4.0		1.3	Mbps

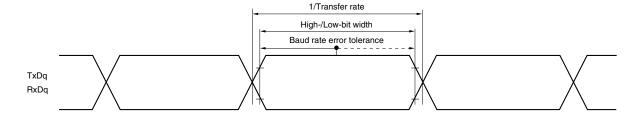
Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

<R>

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:


HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)


LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

<R> (2) During communication at same potential (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	` .	HS (high-speed main) Mode		LS (low-speed main) Mode	
			MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	t KCY1	tkcy1 ≥ 2/fclk	83.3		250		ns
SCK00 high-/low- level width	tkH1, tkL1	4.0 V ≤ V _{DD} ≤ 5.5 V	tkcy1/2-7		tkcy1/2-50		ns
		2.7 V ≤ V _{DD} ≤ 5.5 V	tксү1/2-10		tkcy1/2-50		ns
SI00 setup time (to SCK00↑) Note 1	tsıĸ1	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	23		110		ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	33		110		ns
SI00 hold time (from SCK00 [↑]) Note2	t KSI1		10		10		ns
Delay time from SCK00↓ to SO00 output Note 3	tkso1	C = 20 pF Note 4		10		10	ns

- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 setup time becomes "to $SCK00\downarrow$ " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 2. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 hold time becomes "from SCK00 \downarrow " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 3. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The delay time to SO00 output becomes "from SCK001" when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 4. C is the load capacitance of the SCK00 and SO00 output lines.

Caution Select the normal input buffer for the SI00 pin and the normal output mode for the SO00 and SCK00 pins by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).

Remarks 1. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

 fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)

<R> (3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

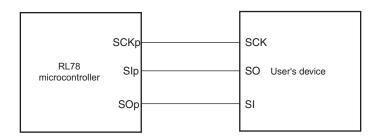
Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$2.7~V \leq V_{DD} \leq 5.5~V$	167		500		ns
			2.4 V ≤ V _{DD} ≤ 5.5 V	250		500		ns
			1.8 V ≤ V _{DD} ≤ 5.5 V	_		500		ns
SCKp high-/low-level width	t кн1,	4.0 V ≤ V _{DD} ≤ 5.5 V		tксү1/2-12		tkcy1/2-50		ns
	t _{KL1}	2.7 V ≤ V _{DD} ≤ 5.5 V		tксү1/2-18		tkcy1/2-50		ns
		$2.4~V \le V_{DD} \le 5.5~V$		tkcy1/2-38		tkcy1/2-50		ns
		1.8 V ≤ V _{DD} ≤	5.5 V	_		tkcy1/2-50		ns
SIp setup time (to SCKp↑) Note 1	t sıĸı	4.0 V ≤ V _{DD} ≤	5.5 V	44		110		ns
		2.7 V ≤ V _{DD} ≤	5.5 V	44		110		ns
		$2.4~V \le V_{DD} \le 5.5~V$		75		110		ns
		1.8 V ≤ V _{DD} ≤	5.5 V	_		110		ns
SIp hold time (from SCKp↑) Note 2	t ksi1			19		19		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note	4		25		25	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

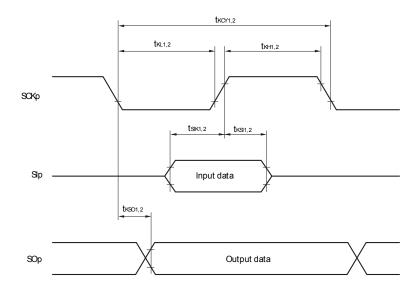
Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

- Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
 - 2. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

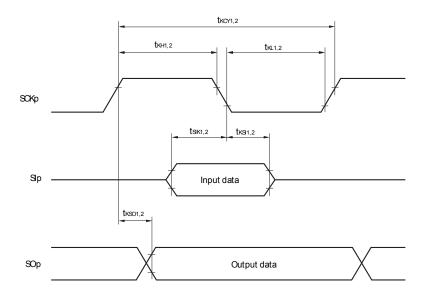
<R> (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note4	tkcy2	4.0 V ≤ V _{DD} ≤ 5.5 V	20 MHz < fmck	8/fмск		-		ns
			fмcк ≤ 20 MHz	6/fмск		6/fмск		ns
		$2.7~V \leq V_{DD} \leq 5.5~V$	16 MHz < fмск	8/fмск		_		ns
			fмcк ≤ 16 MHz	6/ƒмск		6/ƒмск		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		6/ƒмск		6/ƒмск		ns
				and 500		and 500		
		1.8 V ≤ V _{DD} ≤ 5.5 V		_		6/ƒмск		ns
						and 750		
SCKp high-/low-level width	t кн2,	$4.0~V \leq V_{DD} \leq 5.5~V$		tkcy2/2-7		tkcy2/2-7		ns
	t _{KL2}	$2.7~V \leq V_{DD} \leq 5.5~V$		tkcy2/2-8		tkcy2/2-8		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		tkcy2/2-18		tkcy2/2-18		ns
		$1.8 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		_		tkcy2/2-18		ns
SIp setup time	tsık2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/fмск +		1/fмск +		ns
(to SCKp↑) Note 1				20		30		
		$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		1/fмск +		1/fмск +		ns
		407/27/2557/		30		30		
		1.8 V ≤ V _{DD} ≤ 5.5 V		_		1/fмск + 30		ns
Slp hold time	t _{KSI2}			1/f _{MCK} +		1/f _{MCK} +		ns
(from SCKp↑) Note 2				31		31		
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso2	C = 30 pF Note4	$2.7~V \le V_{DD} \le 5.5~V$		2/f _{MCK} + 44		2/f _{MCK} + 110	ns
			2.4 V ≤ V _{DD} ≤ 5.5 V		2/fмск + 75		2/f _{MCK} + 110	ns
			1.8 V ≤ V _{DD} ≤ 5.5 V		=		2/fмcк + 110	ns


- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

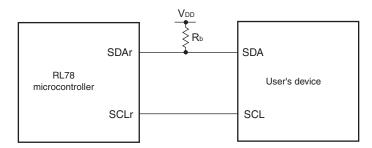
(Remarks are listed on the next page.)

- Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

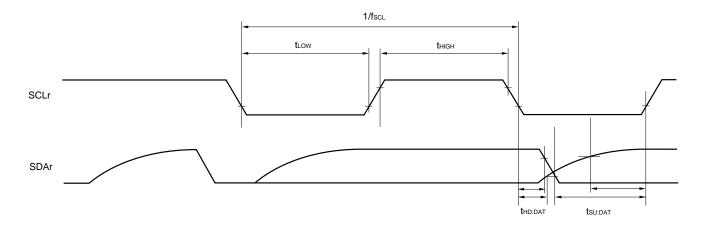
<R> (5) During communication at same potential (simplified I²C mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed	Unit	
			LS (low-speed		
			MIN.	MAX.	
SCLr clock frequency	fscL	1.8 V ≤ V _{DD} ≤ 5.5 V,		400 Note 1	kHz
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
		1.8 V ≤ V _{DD} < 2.7 V,		300 Note 1	kHz
		C_b = 100 pF, R_b = 5 k Ω			
Hold time when SCLr = "L"	tLOW	1.8 V ≤ V _{DD} ≤ 5.5 V,	1150		ns
		C_b = 100 pF, R_b = 3 k Ω			
		$1.8 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V},$	1550		ns
		C_b = 100 pF, R_b = 5 k Ω			
Hold time when SCLr = "H"	tнісн	1.8 V ≤ V _{DD} ≤ 5.5 V,	1150		ns
		C_b = 100 pF, R_b = 3 k Ω			
		$1.8 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V},$	1550		ns
		$C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$			
Data setup time (reception)	tsu:dat	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$	1/f _{MCK} + 145 Note		ns
		C_b = 100 pF, R_b = 3 k Ω	2		
		$1.8 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V},$	1/f _{MCK} + 230 Note		ns
		C_b = 100 pF, R_b = 5 k Ω	2		
Data hold time (transmission)	thd:dat	1.8 V ≤ V _{DD} ≤ 5.5 V,	0	355	ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
		$1.8 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V},$	0	405	ns
		$C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$			


Notes 1. The value must also be equal to or less than fmck/4.

2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".


Caution Select the N-ch open drain output (VDD tolerance) mode for SDAr by using port output mode register h (POMh).

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- Remarks 1. R_b [Ω]:Communication line (SDAr) pull-up resistance C_b [F]: Communication line (SCLr, SDAr) load capacitance
 - 2. r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4, 5)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (0, 1, 3))
 - **4.** Simplified I²C mode is supported only by the R5F102 products.

<R> (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		С	onditions		igh-speed n) Mode		ow-speed n) Mode	Unit										
				MIN.	MAX.	MIN.	MAX.												
Transfer rate Note4		Reception	$4.0 \text{ V} \leq \text{V}_{DD} \leq$ $2.7 \text{ V} \leq \text{V}_{b} \leq 4$			fмск/6 Note1		fмск/6 Note1	bps										
				Theoretical value of the maximum transfer rate Note3		4.0		1.3	Mbps										
			$2.7 \text{ V} \le \text{V}_{DD} \le 2.3 \text{ V} \le \text{V}_{b} \le 2.3 \text{ V} \le 2.3 \text$,		fмск/6 Note1		fмск/6 Note1	bps										
		18 V < Vo		Theoretical value of the maximum transfer rate fmck = fclk Note3		4.0		1.3	Mbps										
		$1.8 \text{ V} \le \text{V}_{DD} < 3$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0$				fmck/6 Notes1, 2		fмск/6 Notes1, 2	bps										
				Theoretical value of the maximum transfer rate fmck = fclk Note3		4.0		1.3	Mbps										
		Transmission	$4.0 \text{ V} \le \text{V}_{DD} \le$ $2.7 \text{ V} \le \text{V}_{b} \le 4$			Note4		Note4	bps										
														Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 1.4$ k Ω , $V_b = 2.7$ V		2.8 Note5		2.8 Note5	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} \le 2.3 \text{ V} \le \text{V}_{b} \le 2.3 \text{ V} \le 2.3 \text$	·		Note6		Note6	bps										
				Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 2.7$ k Ω , $V_b = 2.3$ V		1.2 Note7		1.2 Note7	Mbps										
		$1.8 \text{ V} \le \text{V}_{DD} \le 1.6 \text{ V} \le \text{V}_{b} \le 2$	•		Notes 2, 8		Notes 2, 8	bps											
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}$, $R_b = 5.5 \text{ k}\Omega$, $V_b = 1.6 \text{ V}$		0.43 Note9		0.43 Note9	Mbps										

- <R> Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
- <R> **2.** Use it with $V_{DD} \ge V_b$.

<R>

The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V)

4. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \ln{(1-\frac{2.2}{V_b})}\} \times 3} \text{ [bps]}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \text{ [%]}$$

^{*} This value is the theoretical value of the relative difference between the transmission and reception sides.

- <R>
- **5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 4** above to calculate the maximum transfer rate under conditions of the customer.
- <R>

<R>

<R>

6. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \ln{(1-\frac{2.0}{V_b})}\} \times 3} \text{ [bps]}$$

Baud rate error (theoretical value) =

$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- **8.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

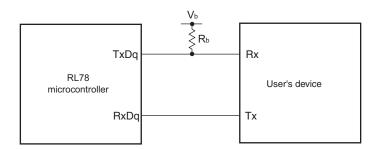
Expression for calculating the transfer rate when 1.8 V \leq VDD < 3.3 V, 1.6 V \leq Vb \leq 2.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{1.5}{V_b})\} \times 3} \text{ [bps]}$$

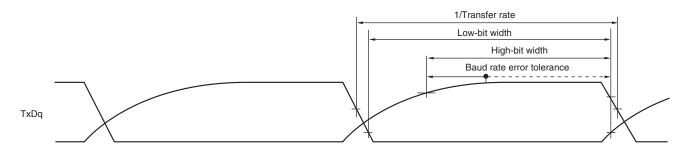
$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}$$

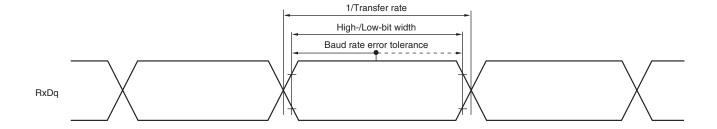
$$\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **9.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 8** above to calculate the maximum transfer rate under conditions of the customer.


<R>

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).


For VIH and VIL, see the DC characteristics with TTL input buffer selected.



UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- Remarks 1. R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

<R> <R>

<R> (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conditions	HS (higl main)	•	LS (low main)	/-speed Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tkcy1	tkcy1 ≥ 2/fcLK	$ \begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} & = 20 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega \end{aligned} $	200		1150		ns
			$\begin{aligned} 2.7 & \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \\ 2.3 & \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} & = 20 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	300		1150		ns
SCK00 high-level width	t _{KH1}	$4.0 \text{ V} \le V_{DD} \le 5.5$ $C_b = 20 \text{ pF}, R_b = 0.5$	$5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$: 1.4 kΩ	tксү1/2 — 50		tксү1/2- 50		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 20 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		tксу1/2 — 120		tксү1/2 – 120		ns
SCK00 low-level width	t _{KL1}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.9$ $C_b = 20 \text{ pF}, R_b = 10.0$	$5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$: 1.4 kΩ	tксү1/2 — 7		tксү1/2 — 50		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	$0~V,~2.3~V \leq V_b \leq 2.7~V,$ $2.7~k\Omega$	tксу1/2 — 10		tксү1/2 — 50		ns
SI00 setup time (to SCK00↑) Note 1	tsıĸ1	$4.0 \text{ V} \le V_{DD} \le 5.9$ $C_b = 20 \text{ pF}, R_b = 10.0$	$5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$: 1.4 kΩ	58		479		ns
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V},$ $C_{b} = 20 \text{ pF}, \ R_{b} = 2.7 \text{ k}\Omega$		121		479		ns
SI00 hold time (from SCK00↑) Note 1	tksi1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.9$ $C_b = 20 \text{ pF}, R_b = 10.0$	$5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ = 1.4 kΩ	10		10		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	$0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $2.7 \text{ k}Ω$	10		10		ns
Delay time from SCK00↓ to SO00 output Note 1	tkso1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.9$ $C_b = 20 \text{ pF}, R_b = 10.0$	$5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ = 1.4 kΩ		60		60	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	$0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $2.7 \text{ k}\Omega$		130		130	ns
SI00 setup time (to SCK00↓) Note 2	tsıĸ1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5$ $C_b = 20 \text{ pF}, R_b =$	$5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$: 1.4 kΩ	23		110		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	0 V, 2.3 V \leq V _b \leq 2.7 V, \leq 2.7 k Ω	33		110		ns
SI00 hold time (from SCK00↓) Note 2	t _{KSI1}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.9$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, 1.4 kΩ	10		10		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	0 V, 2.3 V \leq V _b \leq 2.7 V, : 2.7 k Ω	10		10		ns
Delay time from SCK00↑ to SO00 output Note 2	t _{KSO1}	$4.0 \text{ V} \le V_{DD} \le 5.5$ $C_b = 20 \text{ pF}, R_b =$	$5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$: 1.4 kΩ		10		10	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	$0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $2.7 \text{ k}\Omega$		10		10	ns

(Notes, Caution, and Remarks are listed on the next page.)

- Notes 1. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1
 - **2.** When DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
- <R> Caution Select the TTL input buffer for the Sl00 pin and the N-ch open drain output (VDD tolerance) mode for the SO00 pin and SCK00 pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VH and VIL, see the DC characteristics with TTL input buffer selected.
 - Remarks 1. Rb [Ω]:Communication line (SCK00, SO00) pull-up resistance, Cb [F]: Communication line (SCK00, SO00) load capacitance, Vb [V]: Communication line voltage
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)

<R> (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-spe Mode	,	LS (low-spee Mode	,	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V},$	300		1150		ns
			$2.7 \text{ V} \le V_b \le 4.0 \text{ V},$					
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$						
			$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V},$	500		1150		ns
			$2.3 \text{ V} \le V_b \le 2.7 \text{ V},$					
			$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$					
			$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	1150		1150		ns
			$1.6~V \leq V_b \leq 2.0~V^{\text{ Note}},$					
			$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$					
SCKp high-level width	t _{KH1}	$\begin{split} &4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, \\ &C_b = 30 \text{ pF}, \ R_b = 1.4 \text{ k}\Omega \\ \\ &2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}, \\ &C_b = 30 \text{ pF}, \ R_b = 2.7 \text{ k}\Omega \end{split}$		tkcy1/2 -75		tксү1/2-75		ns
				tксү1/2 -170		tксү1/2-170		ns
		1.8 V ≤ V _{DD} <	$3.3~V,~1.6~V \leq V_b \leq 2.0~V$ Note,	tkcy1/2 -458		tkcy1/2-458		ns
		C _b = 30 pF, R	$k_b = 5.5 \text{ k}\Omega$					
SCKp low-level width	t KL1	4.0 V ≤ V _{DD} ≤	$5.5~V,~2.7~V \leq V_b \leq 4.0~V,$	tkcy1/2-12		tkcy1/2-50		ns
		C _b = 30 pF, R	$k_b = 1.4 \text{ k}\Omega$					
		2.7 V ≤ V _{DD} <	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	tkcy1/2-18		tkcy1/2-50		ns
		C _b = 30 pF, R	$k_b = 2.7 \text{ k}\Omega$					
	-	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}},$		tkcy1/2 -50		tксү1/2-50		ns
		C _b = 30 pF, R	$k_b = 5.5 \text{ k}\Omega$					

Note Use it with $V_{DD} \ge V_b$.

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

<R> (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

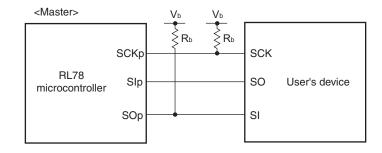
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode	
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) Note 1	tsıĸı	$ \begin{aligned} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	81		479		ns
			177		479		ns
			479		479		ns
SIp hold time (from SCKp↑) Note 1	tksıı	$ \begin{aligned} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	19		19		ns
			19		19		ns
			19		19		ns
Delay time from SCKp↓ to	tkso1	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega $		100		100	ns
SOp output Note 1				195		195	ns
				483		483	ns

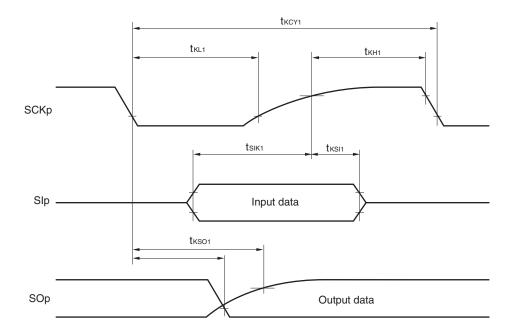
<R> Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

<R> 2. Use it with $V_{DD} \ge V_b$.

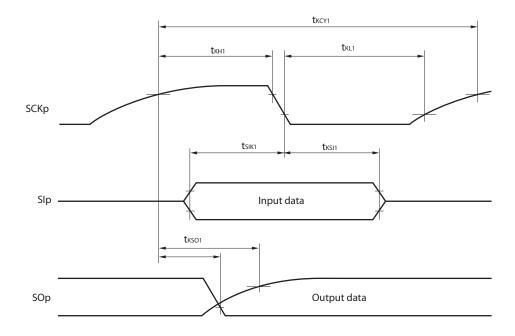
(Cautions and Remarks are listed on the next page.)


<R> (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

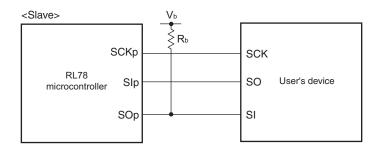

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode	
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) Note 1	tsıĸ1	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	44		110		ns
			44		110		ns
			110		110		ns
SIp hold time (from SCKp↓) Note 1	t _{KSI1}	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	19		19		ns
			19		19		ns
			19		19		ns
Delay time from SCKp↑ to	tkso1	$ \begin{aligned} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		25		25	ns
SOp output Note 1				25		25	ns
				25		25	ns

- Notes 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. Use it with $V_{DD} \ge V_b$.
- <R> Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
 - **Remarks 1.** Rb [Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb [F]: Communication line (SCKp, SOp) load capacitance, Vb [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)


CSI mode connection diagram (during communication at different potential)

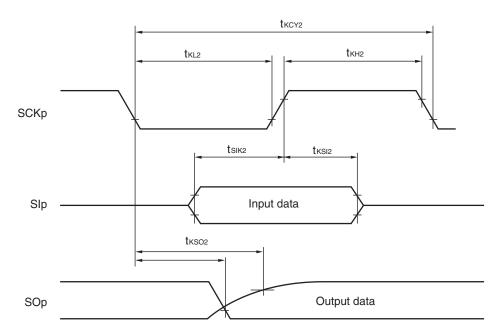
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

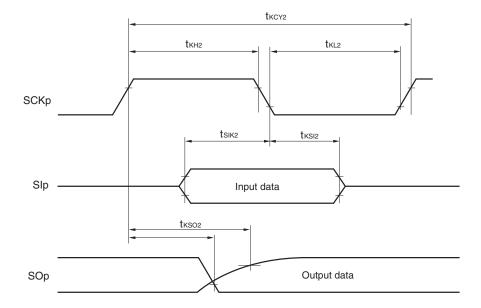

<R> (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Co	onditions	HS (high-spe		LS (low-spe		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	12/fмск		-		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < f _{MCK} ≤ 20 MHz	10/ƒмск		=		ns
			4 MHz < f _{MCK} ≤ 8 MHz	8/fмск		16/ƒмск		ns
			fmck ≤ 4 MHz	6/fмск		10/ƒмск		ns
		2.7 V ≤ V _{DD} < 4.0 V,	20 MHz < fмcк ≤ 24 MHz	16/ƒмск		=		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмcк ≤ 20 MHz	14/fмск		=		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		_		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	6/fмск		10/fмск		ns
		1.8 V ≤ V _{DD} < 3.3 V,	20 MHz < fмcк ≤ 24 MHz	36/ƒмск		_		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмcк ≤ 20 MHz	32/ƒмск		_		ns
		Note 2	8 MHz < fмcк ≤ 16 MHz	26/fмск		-		ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/ƒмск		16/ƒмск		ns
			fmck ≤ 4 MHz	10/ƒмск		10/ƒмск		ns
SCKp high-/low-level	tĸн2,	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V}$		tkcy2/2 - 12		tkcy2/2 - 50		ns
width	t _{KL2}	$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V},$	$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$	tkcy2/2 - 18		tkcy2/2 - 50		ns
		$1.8 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V},$	$1.6~V \leq V_b \leq 2.0~V^{\textrm{Note 2}}$	tkcy2/2 - 50		tkcy2/2 - 50		ns
SIp setup time	tsık2	$4.0~V \leq V_{DD} \leq 5.5~V,$	$2.7 \text{ V} \leq V_{DD} \leq 4.0 \text{ V}$	1/fmck + 20		1/fмск + 30		ns
(to SCKp↑) Note 3		$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V},$	$2.3~V \leq V_b \leq 2.7~V$	1/fmck + 20		1/fmck + 30		ns
		$1.8 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V},$	$1.6~V \leq V_{DD} \leq 2.0~V^{\text{Note 2}}$	1/fmck + 30		1/fмcк + 30		ns
SIp hold time (from SCKp↑) Note 4	t _{KSI2}			1/f _{MCK} + 31		1/fмск + 31		ns
Delay time from	tkso2	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V},$	2.7 V ≤ V _b ≤ 4.0 V,		2/fмск +		2/fмск +	ns
SCKp↓ to SOp		C _b = 30 pF, R _b = 1.4	$k\Omega$		120		573	
output Note 5		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V},$	$2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 2.7	kΩ		214		573	
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	$1.6 \text{ V} \le V_b \le 2.0 \text{ V}^{\text{Note 2}},$		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 5.5	$k\Omega$		573		573	


- Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - 2. Use it with $V_{DD} \ge V_b$.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

CSI mode connection diagram (during communication at different potential)



- **Remarks 1.** R_b [Ω]: Communication line (SOp) pull-up resistance, C_b [F]: Communication line (SOp) load capacitance, V_b [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 10))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

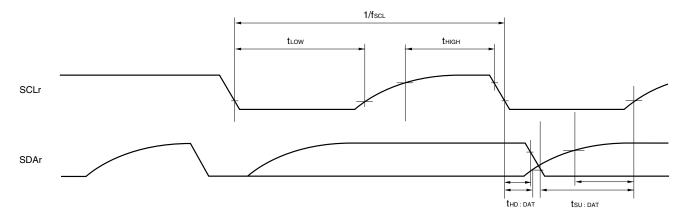
CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

<R> (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		h-speed Mode	LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$ 4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, $ $ C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.8 \text{ k}\Omega $		400 ^{Note1}		300 ^{Note1}	kHz
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		400 ^{Note1}		300 ^{Note1}	kHz
		1.8 V \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V, Note2 C _b = 100 pF, R _b = 5.5 kΩ		300 ^{Note1}		300 ^{Note1}	kHz
Hold time when SCLr = "L"	tLOW	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.8 \text{ k}\Omega$	1150		1550		ns
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, \ R_{b} = 2.7 \text{ k}\Omega$	1150		1550		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	1550		1550		ns
Hold time when SCLr = "H"	tніgн	$ 4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, $ $ C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 2.8 \text{ k}\Omega $	675		610		ns
		$ 2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 2.7 \text{ k}\Omega $	600		610		ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \ \text{R}_{\text{b}} = 5.5 \text{ k}\Omega$	610		610		ns
Data setup time (reception)	tsu:dat	$\label{eq:continuous} \begin{split} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{split}$	1/fmck + 190 Note3		1/f _{MCK} + 190 Note3		ns
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, \ R_{b} = 2.7 \text{ k}\Omega$	1/fмск + 190 Note3		1/f _{MCK} + 190 Note3		ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ \text{Note2} \\ \text{C}_{\text{b}} = 100 \text{ pF}, \ \text{R}_{\text{b}} = 5.5 \text{ k}\Omega$	1/fмск + 190 Note3		1/f _{MCK} + 190 Note3		ns
Data hold time (transmission)	thd:dat	$ 4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, $ $C_b = 100 \text{ pF}, \ R_b = 2.8 \text{ k}\Omega $	0	355	0	355	ns
		$ 2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, $ $ C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 2.7 \text{ k}\Omega $	0	355	0	355	ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \ \text{R}_{\text{b}} = 5.5 \text{ k}\Omega$	0	405	0	405	ns


- <R> Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Use it with $V_{DD} \ge V_b$.
 - 3. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".
- <R> Cautions 1. Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

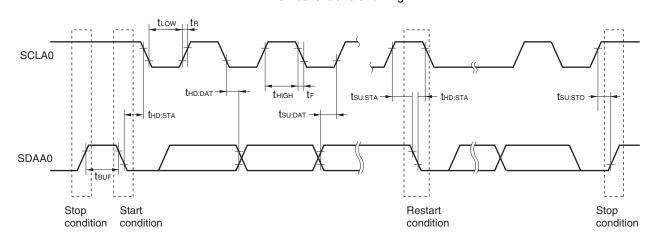
Simplified I²C mode serial transfer timing (during communication at different potential)

- Remarks 1. Rb [Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
 - 2. r: IIC Number (r = 00, 20)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number (m = 0,1), n: Channel number (n = 0))
 - **4.** Simplified I²C mode is supported only by the R5F102 products.

2.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS	(high-spee	ed main) n	node	Unit
			LS	(low-spee	d main) m	ode	
			Standa	rd Mode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fclk≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μs
Hold time ^{Note 1}	thd:STA		4.0		0.6		μs
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	t HIGH		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs


- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the \overline{ACK} (acknowledge) timing.

Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode: $C_b = 400 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, \text{ Rb} = 1.1 \text{ k}\Omega$

IICA serial transfer timing

2.6 Analog Characteristics

<R> 2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Classification of Arb Converter characteristics										
Input channel	Reference Voltage									
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = Vbgr Reference voltage (-) = AVREFM							
ANI0 to ANI3	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).							
ANI16 to ANI22	Refer to 2.6.1 (2).									
Internal reference voltage	Refer to 2.6.1 (1).		-							
Temperature sensor output voltage										

<R> (1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.8 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±3.5	LSB
		AV _{REFP} = V _{DD} Note 3		1.2	±7.0 Note 4	LSB	
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	2.125		39	μs
		Target pin: ANI2, ANI3	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	17		39	μs
				57		95	μs
		10-bit resolution	$3.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		reference voltage, and temperature sensor	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	17		39	μs
	output voltage (HS (high-speed main) mode)						
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution				±0.25	%FSR
		AV _{REFP} = V _{DD} Note 3				±0.50 Note 4	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution				±0.25	%FSR
		AV _{REFP} = V _{DD} Note 3				±0.50 Note 4	%FSR
Integral linearity error Note 1	ILE	10-bit resolution				±2.5	LSB
		AV _{REFP} = V _{DD} Note 3				±5.0 Note 4	LSB
Differential linearity error	DLE	10-bit resolution				±1.5	LSB
Note 1		AV _{REFP} = V _{DD} Note 3				±2.0 Note 4	LSB
Analog input voltage	Vain	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)			V _{BGR} Note 5		V
		Temperature sensor outp (2.4 V \leq VDD \leq 5.5 V, HS	out voltage (high-speed main) mode)	,	VTMPS25 Note	5	V

(Notes are listed on the next page.)

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- <R> 3. When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD} .

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

- <R> 4. Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- <R> 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

<R> (2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution	10-bit resolution AV _{REFP} = V _{DD} Note 3		1.2	±5.0	LSB
		$AV_{REFP} = V_{DD}^{\text{Note 3}}$			1.2	±8.5 Note 4	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	2.125		39	μs
		arget ANI pin: ANI16 to ANI22 2.7	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			1.8 V ≤ VDD ≤ 5.5 V	17		39	μs
				57		95	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution				±0.35	%FSR
		AV _{REFP} = V _{DD} Note 3				±0.60 Note 4	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution				±0.35	%FSR
		AV _{REFP} = V _{DD} Note 3				±0.60 Note 4	%FSR
Integral linearity error Note	ILE	10-bit resolution				±3.5	LSB
1		AV _{REFP} = V _{DD} Note 3				±6.0 Note 4	LSB
Differential linearity	DLE	10-bit resolution				±2.0	LSB
error Note 1		AV _{REFP} = V _{DD} Note 3				±2.5 Note 4	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP	V
						and V _{DD}	

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
- <R> 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} \le V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX, value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

<R> 4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

<R>

<R> (3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = V_{DD}, \text{ Reference voltage (-)} = V_{SS})$

Parameter	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit	
Resolution	Res			8		10	bit	
Overall error Note 1	AINL	10-bit resolution			1.2	±7.0	LSB	
					1.2	±10.5 Note 3	LSB	
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	2.125		39	μs	
		Target pin: ANI0 to ANI3,	$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	3.1875		39	μs	
		ANI16 to ANI22	1.8 V ≤ V _{DD} ≤ 5.5 V	17		39	μs	
				57		95	μs	
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	2.375		39	μs	
		Target pin: internal reference	Itage, and temperature			39	μs	
		voltage, and temperature sensor output voltage (HS	2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs	
		(high-speed main) mode)						
Zero-scale error ^{Notes 1, 2}	EZS	0-bit resolution				±0.60	%FSR	
						±0.85	%FSR	
						Note 3		
Full-scale error Notes 1, 2	EFS	10-bit resolution				±0.60	%FSR	
						±0.85	%FSR	
						Note 3		
Integral linearity error Note 1	ILE	10-bit resolution				±4.0	LSB	
						± 6.5 Note 3	LSB	
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB	
						±2.5 Note 3	LSB	
Analog input voltage	Vain	ANI0 to ANI3, ANI16 to ANI2	2	0		V _{DD}	V	
		Internal reference voltage			V _{BGR} Note 4		V	
		$(2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, HS (high$						
		· ·	Temperature sensor output voltage			V _{TMPS25} Note 4		
		$(2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, HS (high$	n-speed main) mode)					

Notes 1. Excludes quantization error (±1/2 LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

<R> 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

<R> 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

<R> (4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM (ADREFM = 1), target pin: ANIO, ANIO

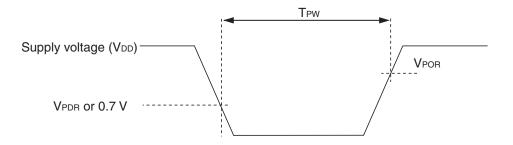
(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM Note 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tconv	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	Vain		0		V _{BGR} Note 3	V

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- <R> 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
- 4. When reference voltage (–) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (–) = AVREFM.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (–) = AVREFM.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (–) = AVREFM.

2.6.2 Temperature sensor/internal reference voltage characteristics

(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode


<r></r>	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, T _A = +25°C		1.05		V
	Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.50	V
	Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
	Operation stabilization wait time	tamp		5			μs

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

	(1A = - 1 0 to 1 03 C, v 35 = 0 v)						
<r></r>	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
		V _{PDR}	Power supply fall time	1.46	1.50	1.54	V
	Minimum pulse width Note	T _{PW}		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{PDR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	V _{LVD0}	Power supply rise time	3.98	4.06	4.14	V
		Power supply fall time	3.90	3.98	4.06	>
	V _{LVD1}	Power supply rise time	3.68	3.75	3.82	V
		Power supply fall time	3.60	3.67	3.74	٧
	V _{LVD2}	Power supply rise time	3.07	3.13	3.19	V
		Power supply fall time	3.00	3.06	3.12	٧
	V _{LVD3}	Power supply rise time	2.96	3.02	3.08	>
		Power supply fall time	2.90	2.96	3.02	V
	V _{LVD4}	Power supply rise time	2.86	2.92	2.97	V
		Power supply fall time	2.80	2.86	2.91	>
	V _{LVD5}	Power supply rise time	2.76	2.81	2.87	V
		Power supply fall time	2.70	2.75	2.81	V
	V _{LVD6}	Power supply rise time	2.66	2.71	2.76	>
		Power supply fall time	2.60	2.65	2.70	V
	V _{LVD7}	Power supply rise time	2.56	2.61	2.66	٧
		Power supply fall time	2.50	2.55	2.60	V
	V _{LVD8}	Power supply rise time	2.45	2.50	2.55	V
		Power supply fall time	2.40	2.45	2.50	٧
	V _{LVD9}	Power supply rise time	2.05	2.09	2.13	>
		Power supply fall time	2.00	2.04	2.08	V
	VLVD10	Power supply rise time	1.94	1.98	2.02	٧
		Power supply fall time	1.90	1.94	1.98	V
	V _{LVD11}	Power supply rise time	1.84	1.88	1.91	V
		Power supply fall time	1.80	1.84	1.87	V
Minimum pulse width	tuw		300			μs
Detection delay time					300	μs

<R> LVD detection voltage of interrupt & reset mode

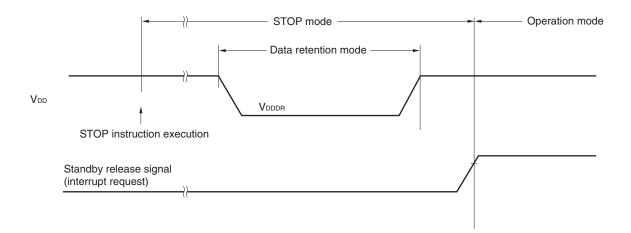
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol		Con	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVDB0}	VPOC2,	V _{POC1} , V _{POC0} = 0, 0, 1, fa	ling reset voltage	1.80	1.84	1.87	V
mode	V _{LVDB1}		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	V _{LVDB2}		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	V _{LVDB3}		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	V _{LVDC0}	VPOC2,	V _{POC1} , V _{POC0} = 0, 1, 0, fa	2.40	2.45	2.50	V	
	V _{LVDC1}		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	V _{LVDC2}		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	V _{LVDC3}		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	V _{LVDD0}	VPOC2,	V _{POC1} , V _{POC1} = 0, 1, 1, fa	ling reset voltage	2.70	2.75	2.81	V
	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVDD2}		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	V _{LVDD3}		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

<R> 2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is affected, but data is not retained when a POR reset is affected.

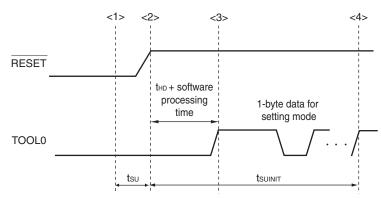
2.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

1A = -+0 to +05 C, 1.0 V 2 VD	V 2 3.3 V	, vss – u v)					
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
System clock frequency	fclk			1		24	MHz
Code flash memory rewritable times Notes 1, 2, 3	Cerwr	Retained for 20 years	T _A = 85°C	1,000			Times
Data flash memory rewritable times		Retained for 1 year	T _A = 25°C		1,000,000		
Notes 1, 2, 3		Retained for 5 years	T _A = 85°C	100,000			
		Retained for 20 years	T _A = 85°C	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

>	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	me to complete the communication for the initial titing after the external reset is released	tsuinit	POR and LVD reset are released before external reset release			100	ms
	me to release the external reset after the TOOL0 n is set to the low level	tsu	POR and LVD reset are released before external reset release	10			μs
the (ex	me to hold the TOOL0 pin at the low level after e external reset is released xcluding the processing time of the firmware to introl the flash memory)	tно	POR and LVD reset are released before external reset release	1			ms

<R>

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <R> <4> Setting of the flash memory programming mode by UART reception and complete the baud

rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

<R> 3. ELECTRICAL SPECIFICATIONS (G: T_A = -40 to +105°C)

This chapter describes the electrical specifications for the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G12 User's Manual Hardware.
 - 3. Please contact Renesas Electronics sales office for derating of operation under T_A = +85°C to +105°C.

 Derating is the systematic reduction of load for the sake of improved reliability.

There are following differences between the products "G: Industrial applications ($T_A = -40$ to +105°C)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Ар	plication
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	2.7 V ≤ V _{DD} ≤ 5.5 V@1 MHz to 24 MHz	2.7 V ≤ V _{DD} ≤ 5.5 V@1 MHz to 24 MHz
	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 16 MHz	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 16 MHz
	LS (low-speed main) mode:	
	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 8 MHz	
High-speed on-chip oscillator clock	R5F102 products, 1.8 V ≤ V _{DD} ≤ 5.5 V:	R5F102 products, 2.4 V ≤ V _{DD} ≤ 5.5 V:
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	R5F103 products, 1.8 V ≤ V _{DD} ≤ 5.5 V:	±1.5%@ T _A = -40 to -20°C
	±5.0%@ T _A = -40 to +85°C	
Serial array unit	UART	UART
	CSI: fcLk/2 (supporting 12 Mbps), fcLk/4	CSI: fcLk/4
	Simplified I ² C communication	Simplified I ² C communication
Voltage detector	Rise detection voltage: 1.88 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(12 levels)	(8 levels)
	Fall detection voltage: 1.84 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(12 levels)	(8 levels)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to **3.1** to **3.10**.

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	V _{DD}			-0.5 to + 6.5	V
REGC terminal input voltage Note1	Virego	REGC		-0.3 to +2.8 and -0.3 to V _{DD} + 0.3 Note 2	V
Input Voltage	Vıı	Other than P60, F	P61	-0.3 to V _{DD} + 0.3 ^{Note 3}	V
	V _{I2}	P60, P61 (N-ch o	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 3}	V
Analog input voltage	VAI	20, 24-pin produc	ets: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	ANI0 to ANI3, ANI16 to ANI19	and -0.3 to AVREF(+)+0.3 Notes 3, 4	
Output current, high	Іон1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	Іон2	Per pin	P20 to P23	-0.5	mA
		Total of all pins	7	-2	mA
Output current, low	I _{OL1}	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 Note 5, P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	lo _{L2}	Per pin	Per pin P20 to P23		mA
		Total of all pins		5	mA
Operating ambient temperature	Та			-40 to +105	°C
Storage temperature	T _{stg}			-65 to +150	°C

- Notes 1. 30-pin product only.
 - 2. Connect the REGC pin to V_{SS} via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
 - 3. Must be 6.5 V or lower.
 - 4. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.
 - **5.** 24-pin products only.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port
 - 2. AVREF (+): + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

3.2 Oscillator Characteristics

3.2.1 X1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le V_{DD} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator /	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal oscillator	2.4 V ≤ V _{DD} < 2.7 V	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to **5.4 System Clock Oscillator in the RL78/G12 User's Manual** Hardware.

3.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Cond	litions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	T _A = -20 to +85°C	-1.0		+1.0	%
clock frequency accuracy			T _A = -40 to -20°C	-1.5		+1.5	%
			T _A = +85 to +105°C	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fiL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.
 - 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				-3.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-9.0	mA
		Total of P40 to P42	2.7 V ≤ V _{DD} < 4.0 V			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-27.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			-10.0	mA
		Total of all pins (When duty ≤ 70% Note 3)				-36.0	mA
	Іон2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

- **Notes 1**. value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor ≤ 70%.
 If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.

(2/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	IOL1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				8.5 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			25.5	mA
		20 pin producto:	2.7 V ≤ V _{DD} < 4.0 V			9.0	mA
			2.4 V ≤ V _{DD} < 2.7 V			1.8	mA
		20-, 24-pin products:	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			40.0	mA
		Total of P00 to P03 ^{Note 4} ,	2.7 V ≤ V _{DD} < 4.0 V			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			5.4	mA
		Total of all pins (When duty ≤ 70% Note 3)				65.5	mA
	lol2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor ≤ 70%.
 If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = (IoL × 0.7)/(n × 0.01)
 - <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(3/4)

Parameter	Symbol	Condition	ıs	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	Normal input buffer 20-, 24-pin products: P00 to P0 P40 to P42	0.8V _{DD}		V _{DD}	V	
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147					
	V _{IH2}	TTL input buffer	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	2.2		V _{DD}	V
		20-, 24-pin products: P10, P11	$3.3 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	2.0		V _{DD}	V
		30-pin products: P01, P10, P11, P13 to P17	2.4 V ≤ V _{DD} < 3.3 V	1.5		V _{DD}	V
	V _{IH3}	Normal input buffer P20 to P23	0.7V _{DD}		V _{DD}	V	
	V _{IH4}	P60, P61	0.7V _{DD}		6.0	V	
	V _{IH5}	P121, P122, P125 ^{Note 1} , P137,	0.8V _{DD}		V _{DD}	V	
Input voltage, low	V _{IL1}	Normal input buffer 20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14,		0		0.2V _{DD}	V
		P40 to P42 30-pin products: P00, P01, P10 P40, P50, P51, P120, P147	ducts: P00, P01, P10 to P17, P30, P31,				
	V _{IL2}	TTL input buffer	4.0 V ≤ V _{DD} ≤ 5.5 V	0		0.8	V
		20-, 24-pin products: P10, P11	$3.3 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$	0		0.5	V
		30-pin products: P01, P10, P11, P13 to P17	2.4 V ≤ V _{DD} < 3.3 V	0		0.32	V
	V _{IL3}	P20 to P23		0		0.3V _{DD}	V
	VIL4	P60, P61		0		0.3V _{DD}	V
	VIL5	P121, P122, P125 ^{Note 1} , P137,	EXCLK, RESET	0		0.2V _{DD}	V
Output voltage, high	V _{OH1}	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -3.0 \text{ mA}$	V _{DD} -0.7			V
		P40 to P42 30-pin products:	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -2.0 \text{ mA}$	V _{DD} -0.6			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$	V _{DD} -0.5			V
	V _{OH2}	P20 to P23	I _{OH2} = -100 μA	V _{DD} -0.5			V

Notes 1. 20, 24-pin products only.

2. 24-pin products only.

Caution The maximum value of V_{IH} of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V_{DD} even in N-ch opendrain mode.

High level is not output in the N-ch open-drain mode.

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(4/4)

		JD 3 0.0 V, V33 =	MINI	TVD	MAY	Linit		
Parameter	Symbol		Conditio	ns 4.0 V ≤ V _{DD} ≤ 5.5 V,	MIN.	TYP.	MAX.	Unit
Output voltage, low	V _{OL1}		P00 to P03 ^{Note} , P10 to P14,				0.7	V
		30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147		$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 3.0 \text{ mA}$			0.6	V
				2.7 V ≤ V _{DD} ≤ 5.5 V, I _{OL1} = 1.5 mA			0.4	V
		$2.4 \text{ V} \le \text{V}_{DD} \le 5.$ $I_{OL1} = 0.6 \text{ mA}$					0.4	V
	V _{OL2}	P20 to P23		I _{OL2} = 400 μA			0.4	V
	Vol3	P60, P61		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 15.0 \text{ mA}$			2.0	>
				$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 5.0 \text{ mA}$			0.4	V
		2 10		$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 3.0 \text{ mA}$			0.4	V
				$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 2.0 \text{ mA}$			0.4	V
Input leakage current, high	Ішн1	Other than P121, V _I = V _{DD} P122					1	μА
	Ішн2	P121, P122 (X1, X2/EXCLK)	$V_{I} = V_{DD}$	Input port or external clock input			1	μА
				When resonator connected			10	μΑ
Input leakage current, low	ILIL1	Other than P121, P122	Vı = Vss				-1	μΑ
	ILIL2	P121, P122 (X1, X2/EXCLK)	VI = VSS	Input port or external clock input			-1	μА
				When resonator connected			-10	μΑ
On-chip pull-up resistance	Ru	20-, 24-pin product P00 to P03 ^{Note} , P1 P40 to P42, P125,	0 to P14,	V _I = V _{SS} , input port	10	20	100	kΩ
		30-pin products: P0 P10 to P17, P30, F P50, P51, P120, P	P31, P40,					

Note 24-pin products only.

3.3.2 Supply current characteristics

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (High-speed	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
current ^{Note 1}		mode	main) mode Note 4		operation	V _{DD} = 3.0 V		1.5		
					Normal	V _{DD} = 5.0 V		3.3	5.3	mA
					operation	V _{DD} = 3.0 V		3.3	5.3	
				f _{IH} = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.5	3.9	mA
						V _{DD} = 3.0 V		2.5	3.9	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		2.8	4.7	mA
				V _{DD} = 5.0 V		Resonator connection		3.0	4.8	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		2.8	4.7	mA
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		3.0	4.8	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.8	2.8	mA
				V _{DD} = 5.0 V		Resonator connection		1.8	2.8	
				f _{MX} = 10 MHz ^{Note 2} ,		Square wave input		1.8	2.8	mA
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.8	2.8	

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: V_{DD} = 2.7 V to 5.5 V @1 MHz to 24 MHz V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2} Note 2	HALT	HS (High-speed	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	2230	μΑ
current ^{Note 1}		mode	main) mode Note 6		V _{DD} = 3.0 V		440	2230	
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1650	μΑ
					V _{DD} = 3.0 V		400	1650	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		280	1900	μΑ
			V _{DD} = 5.0 V	Resonator connection		450	2000		
			f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μΑ	
				$V_{DD} = 3.0 V$	Resonator connection		450	2000	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 5.0 \text{ V}$	Square wave input		190	1010	μΑ
					Resonator connection		260	1090	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		190	1010	μΑ
				V _{DD} = 3.0 V	Resonator connection		260	1090	
	I _{DD3} Note 5	STOP	T _A = -40°C				0.19	0.50	μΑ
		mode	T _A = +25°C				0.24	0.50	
	T _A = +50°C T _A = +70°C T _A = +85°C				0.32	0.80			
					0.48	1.20			
					0.74	2.20			
			T _A = +105°C				1.50	10.20	

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: V_{DD} = 2.7 V to 5.5 V @1 MHz to 24 MHz V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25$ °C, other than STOP mode

(2) 30-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (High-speed	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
current ^{Note 1}		mode	main) mode Note 4		operation	V _{DD} = 3.0 V		1.5		
				operation	Normal	V _{DD} = 5.0 V		3.7	5.8	mA
					operation	V _{DD} = 3.0 V		3.7	5.8	
				f _{IH} = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.7	4.2	mA
						V _{DD} = 3.0 V		2.7	4.2	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.0	4.9	mA
				V _{DD} = 5.0 V		Resonator connection		3.2	5.0	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.0	4.9	mA
				V _{DD} = 3.0 V		Resonator connection		3.2	5.0	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.9	2.9	mA
				V _{DD} = 5.0 V		Resonator connection		1.9	2.9	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.9	2.9	mA
				V _{DD} = 3.0 V		Resonator connection		1.9	2.9	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: V_{DD} = 2.7 V to 5.5 V @1 MHz to 24 MHz V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(2) 30-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2} Note 2	HALT	HS (High-speed	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	2300	μΑ
current Note 1		mode	main) mode Note 6		V _{DD} = 3.0 V		440	2300	
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1700	μΑ
					V _{DD} = 3.0 V		400	1700	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μΑ
				V _{DD} = 5.0 V	Resonator connection		450	2000	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μΑ
				V _{DD} = 3.0 V	Resonator connection		450	2000	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		190	1020	μΑ
				V _{DD} = 5.0 V	Resonator connection		260	1100	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		190	1020	μΑ
				V _{DD} = 3.0 V	Resonator connection		260	1100	
	I _{DD3} Note 5	STOP	T _A = -40°C				0.18	0.50	μΑ
		mode	T _A = +25°C				0.23	0.50	
			T _A = +50°C				0.30	1.10	
			T _A = +70°C				0.46	1.90	
			T _A = +85°C				0.75	3.30	
			T _A = +105°C				2.94	15.30	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: V_{DD} = 2.7 V to 5.5 V @1 MHz to 24 MHz V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is $T_A = 25$ °C.

(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	I _{FIL} Note 1				0.20		μΑ
12-bit interval timer operating current	ÎTMKA Notes 1, 2, 3				0.02		μΑ
Watchdog timer operating current	I _{WDT}	fı∟ = 15 kHz			0.22		μΑ
A/D converter	IADC	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.30	1.70	mA
operating current	Notes 1, 5	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.50	0.70	mA
A/D converter reference voltage operating current	ladref Note 1				75.0		μΑ
Temperature sensor operating current	ITMPS Note 1				75.0		μА
LVD operating current	ILVD Notes 1, 6				0.08		μΑ
Self-programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	BGO Notes 1, 7				2.00	12.20	mA
SNOOZE operating	Isnoz	ADC operation	The mode is performed Note 9		0.50	1.10	mA
current	current Note 1		The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V		1.20	2.04	mA
		CSI/UART operation	1		0.70	1.54	mA

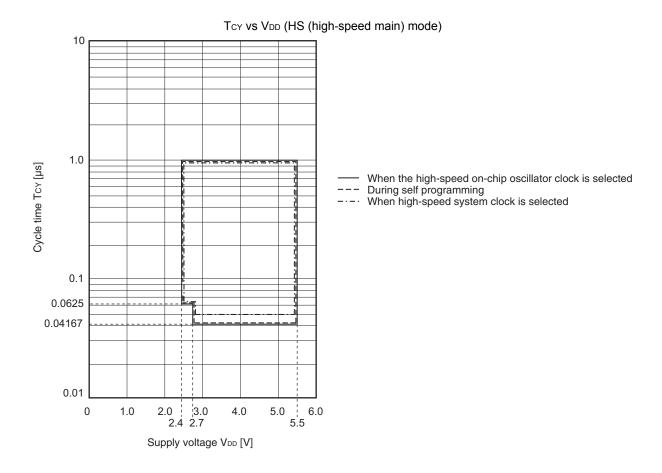
Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- **5.** Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **6.** Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode in the RL78/G12 User's Manual Hardware.

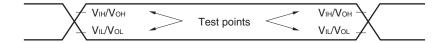
Remarks 1. fil: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is TA = 25°C

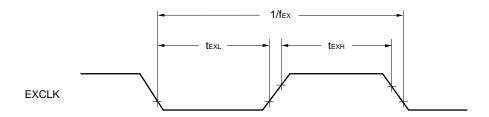
3.4 AC Characteristics

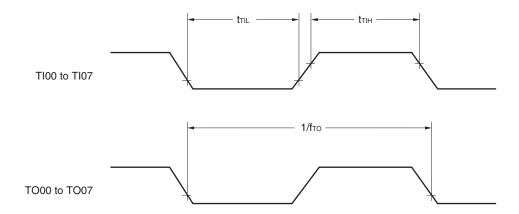

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

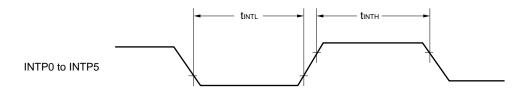
Items	Symbol		Condition	s	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Tcy	Main system	HS (High-	$2.7~V \leq V_{DD} \leq 5.5~V$	0.04167		1	μs
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} < 2.7~\textrm{V}$	0.0625		1	μs
		During self programming		$2.7~V \leq V_{DD} \leq 5.5~V$	0.04167		1	μs
				$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} < 2.7~\textrm{V}$	0.0625		1	μs
External main system clock	fex	2.7 V ≤ V _{DD} ≤ 5	.5 V		1.0		20.0	MHz
frequency		$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$			1.0		16.0	MHz
External main system clock	texh, texl	2.7 V ≤ V _{DD} ≤ 5.5 V			24			ns
input high-level width, low- level width		2.4 V ≤ V _{DD} < 2.7 V			30			ns
TI00 to TI07 input high-level width, low-level width	ttiH, ttiL				1/fмск + 10			ns
TO00 to TO07 output	f _{TO}	4.0 V ≤ V _{DD} ≤ 5	.5 V				12	MHz
frequency		2.7 V ≤ V _{DD} < 4.	.0 V				8	MHz
		2.4 V ≤ V _{DD} < 2.7 V					4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	4.0 V ≤ V _{DD} ≤ 5	.5 V				16	MHz
output frequency		$2.7 \text{ V} \leq V_{DD} < 4$.0 V				8	MHz
		2.4 V ≤ V _{DD} < 2	.7 V				4	MHz
INTP0 to INTP5 input high- level width, low-level width	tinth, tintl				1			μs
KR0 to KR9 input available width	t kr				250			ns
RESET low-level width	trsL				10			μs

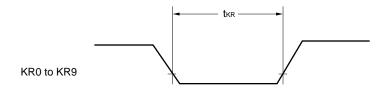

Remark fmck: Timer array unit operation clock frequency

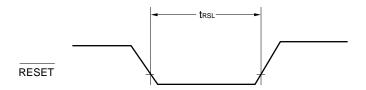
(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0 (TMR0n). n: Channel number (n = 0 to 7))


Minimum Instruction Execution Time during Main System Clock Operation

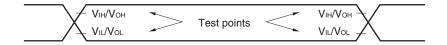

AC Timing Test Point


External Main System Clock Timing


TI/TO Timing


Interrupt Request Input Timing

Key Interrupt Input Timing



RESET Input Timing

3.5 Peripheral Functions Characteristics

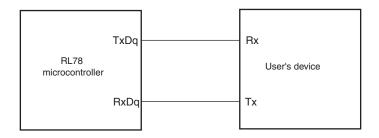
AC Timing Test Point

3.5.1 Serial array unit

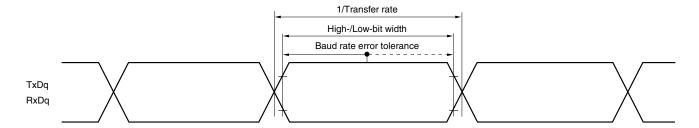
(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate				fмск/12	bps
Note 1		Theoretical value of the maximum transfer rate $f_{CLK} = f_{MCK}^{Note2}$		2.0	Mbps


- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V ≤ VDD ≤ 5.5 V)


16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

- **Remarks 1.** q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-spee	d main) Mode	Unit	
				MIN.	MAX.		
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fcLk	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	334		ns	
			$2.4~V \leq V_{DD} \leq 5.5~V$	500		ns	
SCKp high-/low-level width	t кн1,	t_{KH1} , $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ t_{KL1} $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		tkcy1/2-24		ns	
	t _{KL1}			tkcy1/2-36		ns	
		$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		tkcy1/2-76		ns	
SIp setup time (to SCKp↑) Note 1	tsiĸ1	4.0 V ≤ V _{DD} ≤ 5	4.0 V ≤ V _{DD} ≤ 5.5 V			ns	
		2.7 V ≤ V _{DD} ≤ 5	.5 V	66		ns	
		2.4 V ≤ V _{DD} ≤ 5	.5 V	113		ns	
SIp hold time (from SCKp↑) Note 2	t ksı1		_	38		ns	
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note4			50	ns	

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

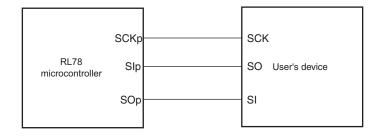
Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)

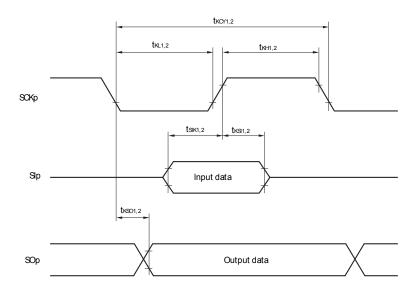
2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))

RENESAS

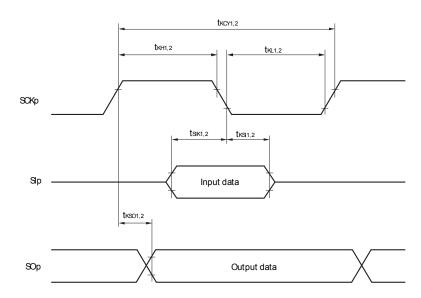
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Con	Conditions		main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note4	tkcy2	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	20 MHz < fmck	16/fмск		ns
			fмcк≤ 20 MHz	12/fмск		ns
		$2.7~V \leq V_{DD} \leq 5.5~V$	16 MHz < fмск	16/fмск		ns
			fмcк ≤ 16 MHz	12/fмск		ns
		$2.4~V \le V_{DD} \le 5.5~V$		12/fмск		ns
				and 1000		
SCKp high-/low-level width	tĸH2,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		tксү2/2-14		ns
	t _{KL2}			tксү2/2-16		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		tkcy2/2-36		ns
SIp setup time (to SCKp↑)	tsık2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/fmck + 40		ns
Note 1		$2.4~V \leq V_{DD} \leq 5.5~V$	2.4 V ≤ V _{DD} ≤ 5.5 V			ns
SIp hold time (from SCKp↑) Note 2	t _{KSI2}			1/fмск + 62		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note4	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмcк + 66	ns
SOp output Note 3			2.4 V ≤ V _{DD} ≤ 5.5 V		2/fмcк + 113	ns


- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).


CSI mode connection diagram (during communication at same potential)

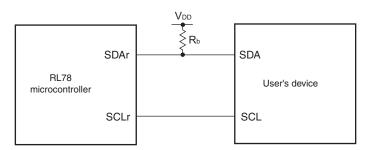
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

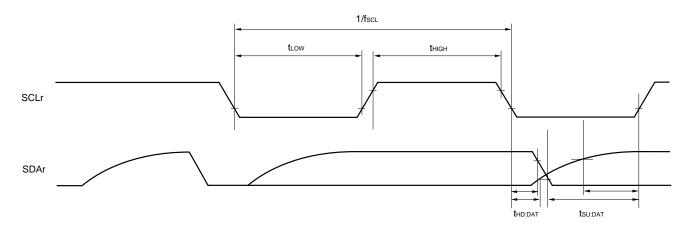
Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0,1), n: Channel number (n = 0, 1, 3))

(4) During communication at same potential (simplified I²C mode)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	C_b = 100 pF, R_b = 3 k Ω		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	4600		ns
Hold time when SCLr = "H"	t HIGH	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	4600		ns
Data setup time (reception)	tsu:dat	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	1/f _{MCK} + 580 Note 2		ns
Data hold time (transmission)	thd:dat	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	0	1420	ns


- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".

Caution Select the N-ch open drain output (VDD tolerance) mode for SDAr by using port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b $[\Omega]$:Communication line (SDAr) pull-up resistance
 - C_b [F]: Communication line (SCLr, SDAr) load capacitance
 - 2. r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4, 5)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number (m = 0, 1), n: Channel number (0, 1, 3)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	` `	speed main) ode	Unit
				MIN.	MAX.	
Transfer rate Note4		Reception	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$		f _{MCK} /12 Note 1	bps
			Theoretical value of the maximum transfer rate Note 2 fmck = fclk		2.0	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$		f _{MCK} /12 Note 1	bps
		Theoretical value of the maximum transfer rate fmck = fclk Note 2		2.0	Mbps	
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		fмск/12 Note 1	bps	
	Theoretical value of the maximum transfer rate fmck = fclk Note 2		2.0	Mbps		
		Transmission	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$		Note 3	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.0 Note 4	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		Note 5	bps
	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 6	Mbps		
		2.4 V ≤ V _{DD} < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V		Notes 2, 7	bps	
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 8	Mbps

- **Notes 1.** Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V)

3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq VDD \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\frac{1}{(\text{Transfer rate}) \times \text{Number of transferred bits}}} \times 100 \, [\%]$$

^{*} This value is the theoretical value of the relative difference between the transmission and reception sides.

- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- **5.** The smaller maximum transfer rate derived by using f_{MCK}/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

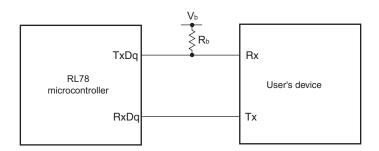
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.
- 7. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

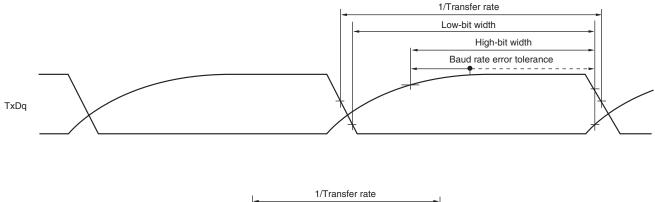
Expression for calculating the transfer rate when 2.4 V \leq V_{DD} < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

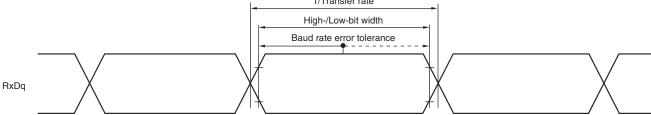
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{\frac{1}{(\text{Transfer rate}) \times \text{Number of transferred bits}}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **8.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 7** above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).


For VIH and VIL, see the DC characteristics with TTL input buffer selected.



UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Symbol		Conditions	HS (high-speed	d main) Mode	Unit
		MIN. MAX.			
tkcy1	tксү1 ≥ 4/fclк	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$	600		ns
		$2.7 \text{ V} \le V_b \le 4.0 \text{ V},$			
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V},$	1000		ns
		$2.3 \text{ V} \le V_b \le 2.7 \text{ V},$			
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		2.4 V ≤ V _{DD} < 3.3 V,	2300		ns
		$1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$			
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
t _{KH1}	$4.0 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $t_{\text{KCY1}/2} - 150$				ns
	C _b = 30 pF, R _b	= 1.4 kΩ			
	2.7 V ≤ V _{DD} < 4	4.0 V, 2.3 V ≤ V _b ≤ 2.7 V,	tксү1/2 -340		ns
	C _b = 30 pF, R _b	= 2.7 kΩ			
	2.4 V ≤ V _{DD} < 3	3.3 V, 1.6 V ≤ V _b ≤ 2.0 V,	tkcy1/2 -916		ns
	C _b = 30 pF, R _b	= 5.5 kΩ			
t _{KL1}	4.0 V ≤ V _{DD} ≤ 5	5.5 V, 2.7 V ≤ V _b ≤ 4.0 V,	tkcy1/2 -24		ns
	C _b = 30 pF, R _b	= 1.4 kΩ			
	2.7 V ≤ V _{DD} < 4	4.0 V, 2.3 V ≤ V _b ≤ 2.7 V,	tkcy1/2 -36		ns
	Сь = 30 pF, Rь	= 2.7 kΩ			
	•		tkcy1/2 -100		ns
		,			
_	tkcy1	tkcy1 $t (CY) = \frac{1}{2} \frac{1}{$	$t_{KCY1} \qquad t_{KCY1} \geq 4/f_{CLK} \qquad 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \\ 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \\ 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \\ \end{cases}$ $t_{KH1} \qquad 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \\ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \\ 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega$	$\label{eq:key1} \begin{array}{c} \text{MIN.} \\ \text{tkcy1} \\ $	$t_{KCY1} = t_{KCY1} \ge 4/f_{GLK} = t_{KCY1} $

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** Rb [Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb [F]: Communication line (SCKp, SOp) load capacitance, Vb [V]: Communication line voltage

RENESAS

2. p: CSI number (p = 00, 20)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

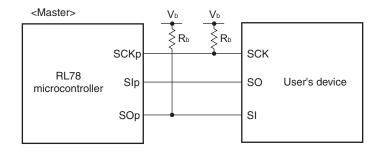
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑)	tsıĸı	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	162		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}, \\ C_b = 30 \text{ pF}, \ R_b = 2.7 \text{ k}\Omega $	354		ns
		$ 2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}, \\ C_{b} = 30 \text{ pF}, \ R_{b} = 5.5 \text{ k}\Omega $	958		ns
SIp hold time (from SCKp↑) Note	tksi1	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	38		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}, \\ C_{b} = 30 \text{ pF}, \ R_{b} = 2.7 \text{ k}\Omega $	38		ns
		$ 2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}, \\ C_{b} = 30 \text{ pF}, \ R_{b} = 5.5 \text{ k}\Omega $	38		ns
Delay time from SCKp↓ to SOp output Note	tkso1	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		200	ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}, \\ C_{b} = 30 \text{ pF}, \ R_{b} = 2.7 \text{ k}\Omega $		390	ns
		$ 2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}, \\ C_{b} = 30 \text{ pF}, \ R_{b} = 5.5 \text{ k}\Omega $		966	ns

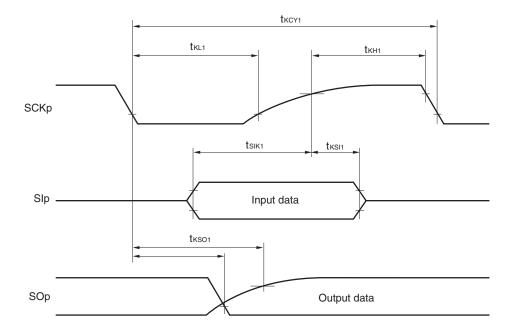
Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

($\pmb{\mathsf{Cautions}}$ and $\pmb{\mathsf{Remarks}}$ are listed on the next page.)

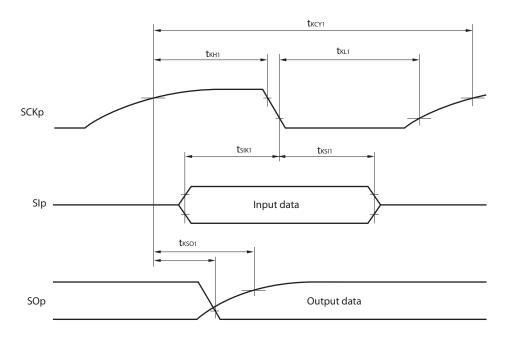
(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed	main) Mode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↓)	tsıĸı	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	88		ns
			88		ns
			220		ns
SIp hold time (from SCKp↓) ^{Note}	tksi1	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	38		ns
			38		ns
			38		ns
Delay time from SCKp↑ to SOp output Note	tkso1	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		50	ns
				50	ns
		$ 2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}, \\ C_{b} = 30 \text{ pF}, \ R_{b} = 5.5 \text{ k}\Omega $		50	ns


Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)


CSI mode connection diagram (during communication at different potential)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

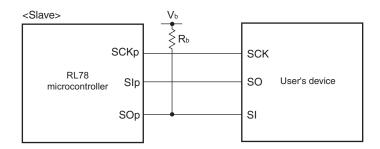
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

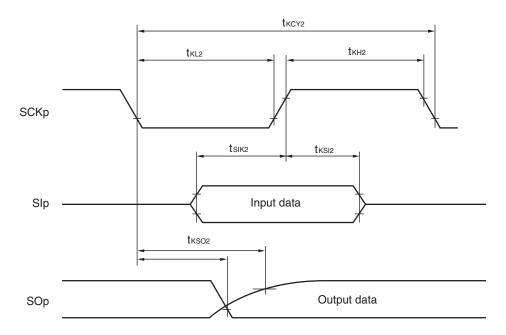
(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-spe		Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	24/fмск		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < f _{MCK} ≤ 20 MHz	20/fмск		ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/fмск		ns
			f _{MCK} ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмcк ≤ 20 MHz	28/fмск		ns
			8 MHz < f _{MCK} ≤ 16 MHz	24/fмск		ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/fмск		ns
			fmck ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	72/fмск		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < f _{MCK} ≤ 20 MHz	64/fмск		ns
			8 MHz < f _{MCK} ≤ 16 MHz	52/f мск		ns
			4 MHz < f _{MCK} ≤ 8 MHz	32/fмск		ns
			fmck ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level	t кн2,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.0 $	$7~V \leq V_b \leq 4.0~V$	tkcy2/2 - 24		ns
width	t _{KL2}	$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2$	$3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}$	tkcy2/2 - 36		ns
		2.4 V ≤ V _{DD} < 3.3 V, 1	$.6~V \leq V_b \leq 2.0~V$	tkcy2/2 - 100		ns
SIp setup time	tsık2	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.0$	$7 \text{ V} \leq V_{DD} \leq 4.0 \text{ V}$	1/fmck + 40		ns
(to SCKp↑) Note 2		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2$	$3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}$	1/fmck + 40		ns
		2.4 V ≤ V _{DD} < 3.3 V, 1	$6 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.0 \text{ V}$	1/f _{MCK} + 60		ns
SIp hold time (from SCKp↑) Note 3	tksi2			1/f _{MCK} + 62		ns
Delay time from SCKp↓ to	t KSO2	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.00 \le 5.5 \text{ V}$	$7 \text{ V} \le V_b \le 4.0 \text{ V},$		2/f _{MCK} +	ns
SOp output Note 4		C _b = 30 pF, R _b = 1.4 k	Ω		240	
		2.7 V ≤ V _{DD} < 4.0 V, 2	.3 V ≤ V _b ≤ 2.7 V,		2/fмcк +	ns
		C _b = 30 pF, R _b = 2.7 k	Ω		428	
		2.4 V ≤ V _{DD} < 3.3 V, 1	$.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$		2/fмск +	ns
		C _b = 30 pF, R _b = 5.5 k	Ω		1146	

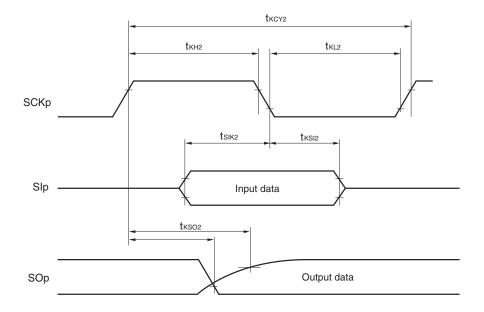

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

2. CSI01 and CSI11 cannot communicate at different potential.

CSI mode connection diagram (during communication at different potential)


CSI mode serial transfer timing (slave mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remarks 1. R_b [Ω]: Communication line (SOp) pull-up resistance, C_b [F]: Communication line (SOp) load capacitance, V_b [V]: Communication line voltage

- 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)
- fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

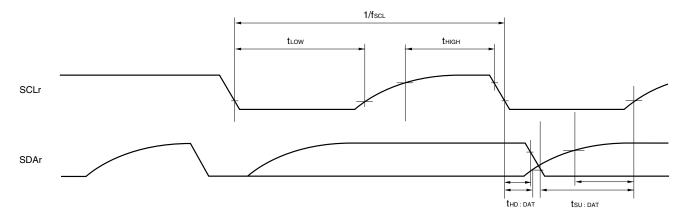
Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions	HS (high-sp Mo	•	Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $		100 ^{Note1}	kHz
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}, \\ C_{b} = 100 \text{ pF}, \ R_{b} = 2.7 \text{ k}\Omega $		100 ^{Note1}	kHz
		$ 2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}, $ $ C_{b} = 100 \text{ pF}, \ R_{b} = 5.5 \text{ k}\Omega $		100 ^{Note1}	kHz
Hold time when SCLr = "L"	tLOW	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.8 \text{ k}\Omega$	4600		ns
			4600		ns
		$2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V},$ $C_{b} = 100 \text{ pF}, \ R_{b} = 5.5 \text{ k}\Omega$	4650		ns
Hold time when SCLr = "H"	thigh	$ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $	2700		ns
			2400		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega$	1830		ns
Data setup time (reception)	tsu:dat	$ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $	1/f _{MCK} + 760 Note3		ns
			1/f _{MCK} + 760 Note3		ns
		$2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V},$ $C_{b} = 100 \text{ pF}, \ R_{b} = 5.5 \text{ k}\Omega$	1/f _{MCK} + 570 Note3		ns
Data hold time (transmission)	thd:dat	$ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $	0	1420	ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}, \\ C_{b} = 100 \text{ pF}, \ R_{b} = 2.7 \text{ k}\Omega $	0	1420	ns
			0	1215	ns

- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".
- Cautions 1. Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.


(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

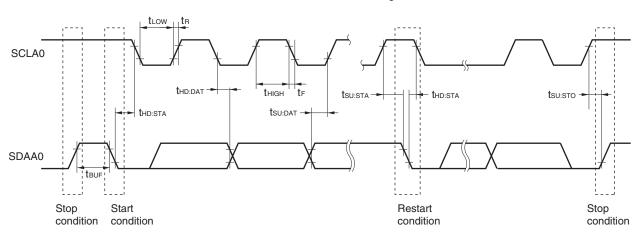
- Remarks 1. Rb [Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number (m = 0,1), n: Channel number (n = 0))

3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS	(high-spee	ed main) n	node	Unit
			Standa	rd Mode	Fast		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fclk≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μs
Hold time ^{Note 1}	thd:STA		4.0		0.6		μs
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	t HIGH		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs


- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode: C_b = 400 pF, Rb = 2.7 k Ω Fast mode: C_b = 320 pF, Rb = 1.1 k Ω

IICA serial transfer timing

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel		Reference Voltage	
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = Vbgr Reference voltage (-) = AVREFM
ANI0 to ANI3	Refer to 3.6.1 (1).	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).
ANI16 to ANI22	Refer to 3.6.1 (2).		
Internal reference voltage	Refer to 3.6.1 (1).		-
Temperature sensor output voltage			

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3			1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	2.125		39	μs
		Target pin: ANI2, ANI3	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	3.1875		39	μs
			$2.4 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	17		39	μs
		10-bit resolution	$3.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: Internal reference voltage, and	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	3.5625		39	μs
		temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AV _{REFP} = V _{DD} Note 3				±0.25	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AV _{REFP} = V _{DD} Note 3				±0.25	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AV _{REFP} = V _{DD} Note 3				±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3				±1.5	LSB
Analog input voltage	VAIN	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage (HS (high-speed main) m		V _{BGR} Note 4			
		Temperature sensor outp	-	\	V _{TMPS25} Note 4		V

(Notes are listed on the next page.)

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3		1.2	±5.0	LSB	
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	2.125		39	μS
		Target ANI pin: ANI16 to ANI22	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	3.1875		39	μs
			2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution AV _{REFP} = V _{DD} Note 3			±0.35	%FSR	
Full-scale error Notes 1, 2	EFS	10-bit resolution AV _{REFP} = V _{DD} Note 3					%FSR
Integral linearity error Note 1	ILE	10-bit resolution AV _{REFP} = V _{DD} Note 3				±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3				±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AV _{REFP} and V _{DD}	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When $AV_{REFP} \le V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = V_{DD}, \text{ Reference voltage (-)} = V_{SS})$

Parameter	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI0 to ANI3,	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
		ANI16 to ANI22	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	17		39	μs
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: internal reference	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution	, , ,				%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution				±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution				±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB
Analog input voltage	Vain	ANI0 to ANI3, ANI16 to ANI2	2	0		V _{DD}	V
	Internal reference voltage (HS (high-speed main) mode			V _{BGR} Note 3			V
		Temperature sensor output v (HS (high-speed main) mode)	-	V _{TMPS25} Note 3			V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM Note 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tconv	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity errorNote 1	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	Vain		0		V _{BGR} Note 3	V

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.
 - **4.** When reference voltage (–) = Vss, the MAX. values are as follows.

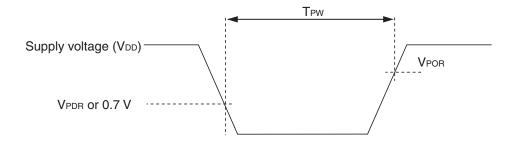
Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.

Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AVREFM.

Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.6.2 Temperature sensor/internal reference voltage characteristics

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode


,		, (<u> </u>				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

3.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{POR}	Power supply rise time	1.45	1.51	1.57	V
	V _{PDR}	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width Note	T _{PW}		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	V _{LVD0}	Power supply rise time	3.90	4.06	4.22	V
		Power supply fall time	3.83	3.98	4.13	V
	V _{LVD1}	Power supply rise time	3.60	3.75	3.90	V
		Power supply fall time	3.53	3.67	3.81	V
	V _{LVD2}	Power supply rise time	3.01	3.13	3.25	V
		Power supply fall time	2.94	3.06	3.18	V
	V _{LVD3}	Power supply rise time	2.90	3.02	3.14	V
		Power supply fall time	2.85	2.96	3.07	V
	V _{LVD4}	Power supply rise time	2.81	2.92	3.03	V
		Power supply fall time	2.75	2.86	2.97	V
	V _{LVD5}	Power supply rise time	2.70	2.81	2.92	V
		Power supply fall time	2.64	2.75	2.86	V
	V _{LVD6}	Power supply rise time	2.61	2.71	2.81	V
		Power supply fall time	2.55	2.65	2.75	V
	V _{LVD7}	Power supply rise time	2.51	2.61	2.71	V
		Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width	t _{LW}		300			μs
Detection delay time					300	μs

LVD detection voltage of interrupt & reset mode

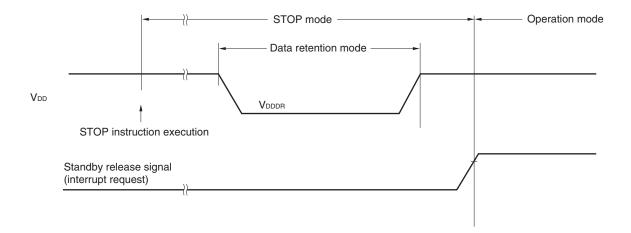
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol		Cond	itions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVDD0}	VPOC2,	V _{POC1} , V _{POC1} = 0, 1, 1, falli	ng reset voltage	2.64	2.75	2.86	٧
mode	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	٧
	V _{LVDD2}		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.90	3.02	3.14	٧
				Falling interrupt voltage	2.85	2.96	3.07	٧
	V _{LVDD3}		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	٧

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is affected, but data is not retained when a POR reset is affected.

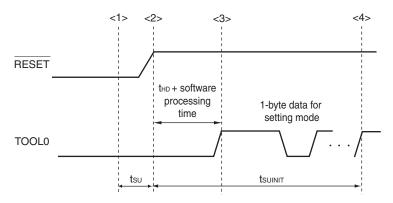
3.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
System clock frequency	fclk			1		24	MHz
Code flash memory rewritable times Notes 1, 2, 3	Cerwr	Retained for 20 years	T _A = 85°C	1,000			Times
Data flash memory rewritable times		Retained for 1 year	T _A = 25°C		1,000,000		
Notes 1, 2, 3		Retained for 5 years	T _A = 85°C	100,000			
		Retained for 20 years	T _A = 85°C	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

3.9 Dedicated Flash Memory Programmer Communication (UART)


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3.10 Timing of Entry to Flash Memory Programming Modes

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

<u>(1) 10 10 1100 0, 211 1 2 122 2 010 1, 1</u>	,					
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	t suinit	POR and LVD reset are released before external release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	t su	POR and LVD reset are released before external release	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released	t HD	POR and LVD reset are released before external release	1			ms
(excluding the processing time of the firmware to control the flash memory)						

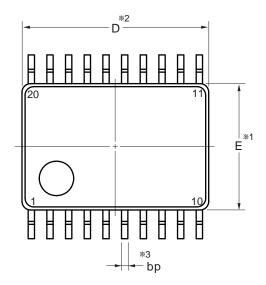
- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

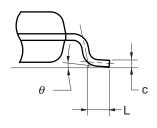
tsu: Time to release the external reset after the TOOL0 pin is set to the low level

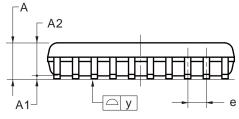
thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

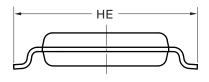
<R>


<R>

4. PACKAGE DRAWINGS


4.1 20-pin products


R5F1026AASP, R5F10269ASP, R5F10268ASP, R5F10267ASP, R5F10266ASP R5F1036AASP, R5F10369ASP, R5F10368ASP, R5F10367ASP, R5F10366ASP R5F1026ADSP, R5F10269DSP, R5F10268DSP, R5F10267DSP, R5F10366DSP R5F1036ADSP, R5F10369DSP, R5F10368DSP, R5F10367DSP, R5F10266GSP R5F1036AGSP, R5F10369GSP, R5F10368GSP, R5F10367GSP, R5F10366GSP R5F1036AGSP, R5F10369GSP, R5F10368GSP, R5F10367GSP, R5F10366GSP


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1

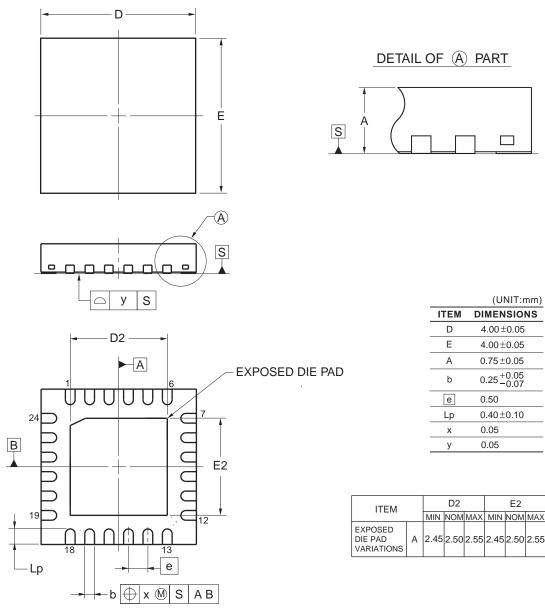
detail of lead end

NOTE

- 1. Dimensions " $\mbox{\%}$ 1" and " $\mbox{\%}$ 2" do not include mold flash.
- 2. Dimension " $\mbox{\ensuremath{\%}}3$ " does not include trim offset.

	(UNII:mm)
ITEM	DIMENSIONS
D	6.50±0.10
E	4.40±0.10
HE	6.40±0.20
Α	1.45 MAX.
A1	0.10±0.10
A2	1.15
е	0.65±0.12
bp	$0.22 + 0.10 \\ -0.05$
С	$0.15 + 0.05 \\ -0.02$
L	0.50±0.20
У	0.10
θ	0° to 10°

© 2012 Renesas Electronics Corporation. All rights reserved.


<R>

<R>

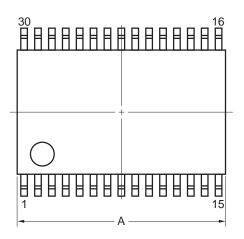
4.2 24-pin products

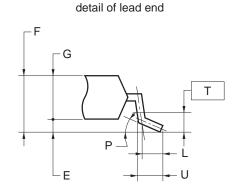
R5F1027AANA, R5F10279ANA, R5F10278ANA, R5F10277ANA R5F1037AANA, R5F10379ANA, R5F10378ANA, R5F10377ANA R5F1027ADNA, R5F10279DNA, R5F10278DNA, R5F10277DNA R5F1037ADNA, R5F10379DNA, R5F10378DNA, R5F10377DNA R5F1027AGNA, R5F10279GNA, R5F10278GNA, R5F10277GNA R5F1037AGNA, R5F10379GNA, R5F10378GNA, R5F10377GNA

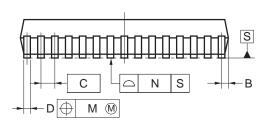
JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-1	0.04

©2012 Renesas Electronics Corporation. All rights reserved.

<R>

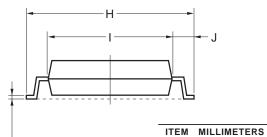

4.3 30-pin products


R5F102AAASP, R5F102A9ASP, R5F102A8ASP, R5F102A7ASP R5F103AAASP, R5F103A9ASP, R5F103A8ASP, R5F103A7ASP R5F102AADSP, R5F102A9DSP, R5F102A8DSP, R5F102A7DSP R5F103AADSP, R5F103A9DSP, R5F103A8DSP, R5F103A7DSP


<R> R5F102AAGSP, R5F102A9GSP, R5F102A8GSP, R5F102A7GSP

R5F103AAGSP, R5F103A9GSP, R5F103A8GSP, R5F103A7GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

	MILE LIMIT I LIKE
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24_{-0.07}^{+0.08}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
Ν	0.10
Р	3°+5°
Т	0.25
U	0.6±0.15

© 2012 Renesas Electronics Corporation. All rights reserved.

RL78/G12 Data Sheet

		Description		
Rev.	Date	Page	Summary	
1.00	Dec 10, 2012	-	First Edition issued	
2.00	Sep 06, 2013	1	Modification of 1.1 Features	
		3	Modification of 1.2 List of Part Numbers	
		4	Modification of Table 1-1. List of Ordering Part Numbers, Note, and Caution	
		7 to 9	Modification of package name in 1.4.1 to 1.4.3	
		14	Modification of tables in 1.7 Outline of Functions	
		17	Modification of description of table in 2.1 Absolute Maximum Ratings (Ta = 25°C)	
		18	Modification of table, Note, and Caution in 2.2.1 X1 oscillator characteristics	
		18	Modification of table in 2.2.2 On-chip oscillator characteristics	
		19	Modification of Note 3 in 2.3.1 Pin characteristics (1/4)	
		20	Modification of Note 3 in 2.3.1 Pin characteristics (2/4)	
		23	Modification of Notes 1 and 2 in (1) 20-, 24-pin products (1/2)	
		24	Modification of Notes 1 and 3 in (1) 20-, 24-pin products (2/2)	
		25	Modification of Notes 1 and 2 in (2) 30-pin products (1/2)	
		26	Modification of Notes 1 and 3 in (2) 30-pin products (2/2)	
		27	Modification of (3) Peripheral functions (Common to all products)	
		28	Modification of table in 2.4 AC Characteristics	
		29	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		30	Modification of figures of AC Timing Test Point and External Main System Clock Timing	
		31	Modification of figure of AC Timing Test Point	
		31	Modification of description and Note 2 in (1) During communication at same	
			potential (UART mode)	
		32	Modification of description in (2) During communication at same potential (CSI mode)	
		33	Modification of description in (3) During communication at same potential (CSI mode)	
		34	Modification of description in (4) During communication at same potential (CSI mode)	
		36	Modification of table and Note 2 in (5) During communication at same potential	
			(simplified I ² C mode)	
		38, 39	Modification of table and Notes 1 to 9 in (6) Communication at different potential	
			(1.8 V, 2.5 V, 3 V) (UART mode)	
		40	Modification of Remarks 1 to 3 in (6) Communication at different potential (1.8 V,	
			2.5 V, 3 V) (UART mode)	
		41	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)	
		42	Modification of Caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)	
		43	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V)	
			(CSI mode) (1/3)	
		44	Modification of table and Notes 1 and 2 in (8) Communication at different potential	
			(1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)	
		45	Modification of table, Note 1, and Caution 1 in (8) Communication at different	
			potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)	
		47	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V)	
			(CSI mode)	
		50	Modification of table, Note 1, and Caution 1 in (10) Communication at different	
			potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode)	
		52	Modification of Remark in 2.5.2 Serial interface IICA	
		53	Addition of table to 2.6.1 A/D converter characteristics	
		53	Modification of description in 2.6.1 (1)	
		54	Modification of Notes 3 to 5 in 2.6.1 (1)	
		54	Modification of description and Notes 2 to 4 in 2.6.1 (2)	

			Description
Rev.	Date	Page	Summary
2.00	Sep 06, 2013	55	Modification of description and Notes 3 and 4 in 2.6.1 (3)
		56	Modification of description and Notes 3 and 4 in 2.6.1 (4)
		57	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics
		57	Modification of table and Note in 2.6.3 POR circuit characteristics
		58	Modification of table in 2.6.4 LVD circuit characteristics
		59	Modification of table of LVD detection voltage of interrupt & reset mode
		59	Modification of number and title to 2.6.5 Power supply voltage rising slope characteristics
		61	Modification of table, figure, and Remark in 2.10 Timing of Entry to Flash Memory
			Programming Modes
		62 to 103	Addition of products of industrial applications (G: $T_A = -40 \text{ to } +105^{\circ}\text{C}$)
		104 to 106	Addition of products of industrial applications (G: T _A = -40 to +105°C)

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information,
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries, (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Milliboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Ha Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 i. nunLu Haidian District. Beiiing 100083. P.R.China

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2868-9318, Fax: +852 2869-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: 482-2-558-3737, Fax: 482-2-558-5141

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 16-bit Microcontrollers - MCU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MB90F36APMC-GSE1 MB90F342CASPMC-GSE1 MB90F345CESPMC-GE1 MB90F349CAPFR-GSE1 MB90F428GCPFR-GSE1 MB90F462APFM-GE1 MB90F462APMC-G-SNE1 MB90F497GPF-GE1 MB90F546GSPFR-GE1 MB90F947APFR-GS-SPE1 MB96F346RSBPMC-GS-N2E2 MB96F683RBPMC-GSAE1 R5F11BGEAFB#30 DF3026XBL25V S912ZVFP64F1VLL R4F24268NVRFQV R5F107DEGSP#X0 R5F11B7EANA#U0 R5F21172DSP#U0 M30622F8PGP#U3C MB90092PF-G-BNDE1 MB90F335APMC1-G-SPE1 MB90F342CASPFR-GS-N2E1 MB90F345CAPFR-GSE1 MB90F543GPF-GE1 MB90F546GSPF-GE1 MB90F568PMCR-GE1 MB90F594APFR-GE1 MB90F882ASPMC-GE1 MB96F346RSAPQCR-GS-N2E2 MB96F387RSBPMC-GSE2 MB96F387RSBPMC-GSE2 MB96F387RSBPMC-GSE1 MB96F646RBPMC-GSE1 XE167F96F66LACFXUMA1 MB96F696RBPMC-GSAE1 MB96F018RBPMC-GSE1 MB90F962SPMCR-GE1 MB90F867ASPFR-GE1 MB90F543GPF-G-FLE1 MB90F345CESPF-GE1 M30290FCHP#U3A DF2239FA20IV HD64F3672FPV R5F104AEASP#V0 R5F100BCANA#U0 R5F100BFANA#U0 S9S12H256J2VFVER R5F100ACASP#V0