1.5A POWER SWITCHING REGULATOR

- 1.5A OUTPUT CURRENT
- 5.1V TO 40V OUTPUT VOLTAGE RANGE
- PRECISE ($\pm 2 \%$) ON-CHIP REFERENCE
- HIGH SWITCHING FREQUENCY
- VERY HIGH EFFICIENCY (UP TO 90\%)
- VERY FEW EXTERNAL COMPONENTS
- SOFT START
- INTERNAL LIMITING CURRENT
- THERMAL SHUTDOWN

DESCRIPTION

The L4962 is a monolithic power switching regulator delivering 1.5 A at a voltage variable from 5 V to 40 V in step down configuration.
Features of the device include current limiting, soft start, thermal protection and 0 to 100% duty cycle for continuous operating mode.

POWERDIP
$(12+2+2)$
ORDERING NUMBERS: L4962/A (12 + 2 + 2 Powerdip)
L4962E/A (Heptawatt
Vertical)
L4962EH/A (Horizontal
Heptawatt)

The L4962 is mounted in a 16-lead Powerdip plastic package and Heptawatt package and requires very few external components.
Efficient operation at switching frequencies up to 150 KHz allows a reduction in the size and cost of external filter components.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{7}	Input voltage	50	V
$\mathrm{~V}_{7}-\mathrm{V}_{2}$	Input to output voltage difference	50	V
$\mathrm{~V}_{2}$	Negative output DC voltage	-1	V
	Output peak voltage at $\mathrm{t}=0.1 \mu \mathrm{~s} ; \mathrm{f}=100 \mathrm{KHz}$	-5	V
$\mathrm{~V}_{11}, \mathrm{~V}_{15}$	Voltage at pin 11,15	5.5	V
$\mathrm{~V}_{10}$	Voltage at pin 10	7	V
I_{11}	Pin 11 sink current	1	mA
I_{14}	Pin 14 source current	20	mA
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {pins }} \leq 90^{\circ} \mathrm{C}$ (Powerdip)		
$\mathrm{T}_{\text {case }} \leq 90^{\circ} \mathrm{C}$ (Heptawatt)	$\mathrm{T}_{\text {stg }}$	Junction and storage temperature	4.3

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Parameter	Heptawatt	Powerdip	
$R_{\text {th } j \text {-case }}$	Thermal resistance junction-case	\max	$4^{\circ} \mathrm{C} / \mathrm{W}$	-
$\mathrm{R}_{\text {th } j \text {-pins }}$	Thermal resistance junction-pins	\max	-	$14^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }}$	Thermal resistance junction-ambient	\max	$50^{\circ} \mathrm{C} / \mathrm{W}$	$80^{\circ} \mathrm{C} / \mathrm{W}^{*}$

* Obtained with the GND pins soldered to printed circuit with minimized copper area.

PIN FUNCTIONS

HEPTAWATT	POWERDIP	NAME	FUNCTION
1	7	SUPPLY VOLTAGE	Unregulated voltage input. An internal regulator powers the internal logic.
2	10	FEEDBACK INPUT	The feedback terminal of the regulation loop. The output is connected directly to this terminal for 5.1V operation; it is connected via a divider for higher voltages.
3	11	FREQUENCY COMPENSATION	A series RC network connected between this terminal and ground determines the regulation loop gain characteristics.

PIN FUNCTIONS (cont'd)

HEPTAWATT	POWERDIP	NAME	FUNCTION
4	$4,5,12,13$	GROUND	Common ground terminal.
5	14	OSCILLATOR	A parallel RC network connected to this terminal determines the switching frequency. This pin must be connected to pin 7 input when the internal oscillator is used.
6	15	SOFT START	Soft start time constant. A capacitor is connected between this terminal and ground to define the soft start time constant. This capacitor also determines the average short circuit output current.
7	2	OUTPUT	Regulator output.
	$1,3,6$, $8,9,16$		N.C.

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $T_{j}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{i}}=35 \mathrm{~V}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit

DYNAMIC CHARACTERISTICS

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit

DYNAMIC CHARACTERISTICS (cont'd)

f	Switching frequency		85	100	115	KHz
$\frac{\Delta f}{\Delta \mathrm{~V}_{\mathrm{i}}}$	Voltage stability of switching frequency	$\mathrm{V}_{\mathrm{i}}=9 \mathrm{~V}$ to 46 V		0.5		$\%$
$\frac{\Delta \mathrm{f}}{\Delta \mathrm{T}_{\mathrm{j}}}$	Temperature stability of switching frequency	$\mathrm{T}_{\mathrm{j}}=0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		1		$\%$
$\mathrm{f}_{\max }$	Maximum operating switching frequency	$\mathrm{V}_{0}=\mathrm{V}_{\text {ref }}$	$\mathrm{I}_{0}=1 \mathrm{~A}$	150	KHz	
$\mathrm{T}_{\text {sd }}$	Thermal shutdown junction temperature		150	${ }^{\circ} \mathrm{C}$		

DC CHARACTERISTICS

I_{7}	Quiescent drain current	100\% duty cycle pins 2 and 14 open	$\mathrm{V}_{\mathrm{i}}=46 \mathrm{~V}$	30	40	mA
		0\% duty cycle		15	20	mA
$-l_{2 L}$	Output leakage current	0\% duty cycle			1	mA

SOFT START

$\mathrm{I}_{15 s 0}$	Source current		100	140	180	$\mu \mathrm{~A}$
I_{1551}	Sink current		50	70	120	$\mu \mathrm{~A}$

ERROR AMPLIFIER

$\mathrm{V}_{11 \mathrm{H}}$	High level output voltage	$\mathrm{V}_{10}=4.7 \mathrm{~V}$	$\mathrm{I}_{11}=100 \mu \mathrm{~A}$	3.5		
$\mathrm{~V}_{11 \mathrm{~L}}$	Low level output voltage	$\mathrm{V}_{10}=5.3 \mathrm{~V}$	$\mathrm{I}_{11}=100 \mu \mathrm{~A}$			0.5
$\mathrm{I}_{11 \mathrm{SI}}$	Sink output current	$\mathrm{V}_{10}=5.3 \mathrm{~V}$	V			
$-\mathrm{I}_{1150}$	Source output current	$\mathrm{V}_{10}=4.7 \mathrm{~V}$	100	150		$\mu \mathrm{~A}$
I_{10}	Input bias current	$\mathrm{V}_{10}=5.2 \mathrm{~V}$	100	150		$\mu \mathrm{~A}$
G_{v}	DC open loop gain	$\mathrm{V}_{11}=1 \mathrm{~V}$ to 3 V		2	10	$\mu \mathrm{~A}$

OSCILLATOR

$-I_{14}$	Oscillator source current		5			mA

CIRCUIT OPERATION (refer to the block diagram)
The L4962 is a monolithic stepdown switching regulator providing output voltages from 5.1 V to 40 V and delivering 1.5A.
The regulation loop consists of a sawtooth oscillator, error amplifier, comparator and the output stage. An error signal is produced by comparing the output voltage with a precise 5.1 V on-chip reference (zener zap trimmed to $\pm 2 \%$).
This error signal is then compared with the sawtooth signal to generate the fixed frequency pulse width modulated pulses which drive the output stage.
The gain and frequency stability of the loop can be adjusted by an external RC network connected to pin 11. Closing the loop directly gives an output voltage of 5.1 V . Higher voltages are obtained by inserting a voltage divider.
Output overcurrents at switch on are prevented by the soft start function. The error amplifier output is initially clamped by the external capacitor C_{ss} and
allowed to rise, linearly, as this capacitor is charged by a constant current source. Output overload protection is provided in the form of a current limiter. The load current is sensed by an internal metal resistor connected to a comparator. When the load current exceeds a preset threshold this comparator sets a flip flop which disables the output stage and discharges the soft start capacitor. A second comparator resets the flip flop when the voltage across the soft start capacitor has fallen to 0.4 V .
The output stage is thus re-enabled and the output voltage rises under control of the soft start network. If the overload condition is still present the limiter will trigger again when the threshold current is reached. The average short circuit current is limited to a safe value by the dead time introduced by the soft start network. The thermal overload circuit disables circuit operation when the junction temperature reaches about $150^{\circ} \mathrm{C}$ and has hysteresis to prevent unstable conditions.

Figure 1. Soft start waveforms

Figure 2. Current limiter waveforms

Figure 3. Test and application circuit (Powerdip)

1) D_{1} : BYW98 or $3 A$ Schottky diode, 45 V of VRRM;
2) L_{1} : CORE TYPE - MAGNETICS 58120 - A2 MPP N° TURNS 45, WIRE GAUGE: 0.8mm (20 AWG)
3) $\mathrm{C}_{6}, \mathrm{C}_{7}$: ROE, EKR $220 \mu \mathrm{~F} 40 \mathrm{~V}$

Figure 4. Quiescent drain current vs. supply voltage (0\% duty cycle)

Figure 5. Quiescent drain current vs. supply voltage (100\% duty cycle)

Figure 6. Quiescent drain current vs. junction temperature (0% duty cycle)

Figure 7. Quiescent drain current vs. junction temperature (100% duty cycle)

$\begin{array}{llllll}-25 & 0 & 25 & 50 & 75 & 100\end{array}$
$\mathrm{T}_{\mathrm{i}}\left({ }^{(C)}\right.$

Figure 8. Reference voltage (pin 10) vs. V_{i} rdip) vs. V_{i}

Figure 11. Switching frequency vs. input voltage

Figure 14. Line transient response

Figure 9. Reference voltage (pin 10) vs. junction temperature

Figure 12. Switching frequency vs. junction temperature

Figure 15. Load transient response

Figure 16. Supply voltage ripple rejection vs. frequency

Figure 19. Efficiency vs. output current

Figure 22. Efficiency vs. output voltage

Figure 17. Dropout voltage between pin 7 and pin 2 vs. current at pin 2

Figure 20. Efficiency vs. output current

Figure 23. Efficiency vs. output voltage

Figure 18. Dropout voltage between pin 7 and 2 vs. junction temperature

Figure 21. Efficiency vs. output current

Figure 24. Maximum allowable power dissipation vs. ambient temperature (Powerdip)

APPLICATION INFORMATION

Figure 25. Typical application circuit

$\mathrm{C}_{1}, \mathrm{C}_{6}, \mathrm{C}_{7}$: EKR (ROE)
D 1 : BYW98 OR VISK340 (SCHOTTKY)
SUGGESTED INDUCTORS: $\left(\mathrm{L}_{1}\right)=$ MAGNETICS 58120 - A2MPP - 45 TURNS - WIRE GAUGE 0.8mm (20AWG) COGEMA 946043
OR U15, GUP15, 60 TURNS 1mm, AIR GAP 0.8mm (20 AWG) - COGEMA 969051.

Figure 26. P.C. board and component layout of the circuit of Fig. 25 (1:1 scale)

APPLICATION INFORMATION (continued)

Figure 27. - A minimal 5.1V fixed regulator; Very few component are required

Figure 28. Programmable power supply

$\mathrm{V}_{0}=5.1 \mathrm{~V}$ to 15 V

$\mathrm{I}_{0}=1.5 \mathrm{~A}$ max
Load regulation (0.5 A to 1.5 A$)=10 \mathrm{mV}\left(\mathrm{V}_{0}=5.1 \mathrm{~V}\right)$
Line regulation $\left(220 \mathrm{~V} \pm 15 \%\right.$ and to $\left.\mathrm{I}_{0}=1 \mathrm{~A}\right)=15 \mathrm{mV}\left(\mathrm{V}_{0}=5.1 \mathrm{~V}\right)$

APPLICATION INFORMATION (continued)

Figure 29. DC-DC converter $5.1 \mathrm{~V} / 4 \mathrm{~A}, \pm 12 \mathrm{~V} / 1 \mathrm{~A}$. A suggestion how to synchronize a negative output

L1, L3 = COGEMA 946043 (969051)
L2 = COGEMA 946044 (946045)

Figure 30. In multiple supplies several L4962s can be synchronized as shown

Figure 31. Preregulator for distributed supplies

* L2 and C2 are necessary to reduce the switching frequency spikes when linear regulators are remote from L4962

MOUNTING INSTRUCTION

The Rth-j-amb of the L4962 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board (Fig. 32).
The diagram of figure 33 shows the $R_{\text {th-j-amb }}$ as a function of the side "I" of two equal square copper areas having the thickness of 35μ (1.4 mils). During
soldering the pins temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.
The external heatsink or printed circuit copper are must be connected to electrical ground.

Figure 32. Example of P.C. board copper area which is used as heatsink

Figure 33. Maximum dissipable power and junction to ambient thermal resistance vs. side "I"

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.85		1.40	0.033		0.055
b		0.50			0.020	
b1	0.38		0.50	0.015		0.020
D			20.0			0.787
E		8.80			0.346	
e		2.54			0.100	
e3		17.78			0.700	
F			7.10			0.280
I			5.10			0.201
L		3.30			0.130	
Z			1.27			0.050

OUTLINE AND
MECHANICAL DATA

DIM.	mm			inch					
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
A			4.8			0.189			
C			1.37			0.054			
D	2.4		2.8	0.094		0.110			
D1	1.2		1.35	0.047		0.053			
E	0.35		0.55	0.014		0.022			
E1	0.7		0.97	0.028		0.038			
F	0.6		0.8	0.024		0.031			
F1			0.9			0.035			
G	2.34	2.54	2.74	0.095	0.100	0.105			
G1	4.88	5.08	5.28	0.193	0.200	0.205			
G2	7.42	7.62	7.82	0.295	0.300	0.307			
H2			10.4			0.409			
H3	10.05		10.4	0.396		0.409			
L	16.7	16.9	17.1	0.657	0.668	0.673			
L1		14.92			0.587				
L2	21.24	21.54	21.84	0.386	0.848	0.860			
L3	22.27	22.52	22.77	0.877	0.891	0.896			
L4			1.29			0.051			
L5	2.6	2.8	3	0.102	0.110	0.118			
L6	15.1	15.5	15.8	0.594	0.610	0.622			
L7	6	6.35	6.6	0.236	0.250	0.260			
L9		0.2			0.008				
M	2.55	2.8	3.05	0.100	0.110	0.120			
M1	4.83	5.08	5.33	0.190	0.200	0.210			
V4	40							typ.)	
Dia	3.65		3.85	0.144		0.152			

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			4.8			0.189
C			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.6		0.8	0.024		0.031
F1			0.9			0.035
G	2.41	2.54	2.67	0.095	0.100	0.105
G1	4.91	5.08	5.21	0.193	0.200	0.205
G2	7.49	7.62	7.8	0.295	0.300	0.307
H2			10.4			0.409
H3	10.05		10.4	0.396		0.409
L		14.2			0.559	
L1		4.4			0.173	
L2		15.8			0.622	
L3		5.1			0.201	
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
L9		4.44			0.175	
Dia	3.65		3.85	0.144		0.152

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Voltage Regulators - Switching Regulators category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
LX7186A 622616F 632259F FAN53610AUC33X MP2148GQD-33-P MP2374DS-LF-Z EN6310QA NCP81108MNTXG NCP81109BMNTXG L79M05TL-E FAN48610BUC45X R3 LV5710GP-TE-L-H 430464BB 455605G AZ7500BMTR-E1 MIC23156-0YML-T5 MIC4930YFL-T5 MP8763GLE-P KE177614 418569H 455596X 511087D 030908C 063375FB 067501FB 099508GB EP5358LUA NCP81102MNTXG 715715H FAN48611UC53X FAN53611AUC12X MAX809TTR MAX77596ETBC+T $\underline{\text { MAX77596ETBB+T MAX16905AUE/V }+ \text { NCP6332CMTAATBG NCV890203MWTXG LX7176A MP2162AGQH-Z MAX17544ATP+T }}$ EN6360QI MCP1623T-IMC MCP1642B-18IMC MCP1642BT-30I/MS MCP1642D-50IMC MCP1642D-50IMS MCP1642D-ADJIMC MC34063LBBGEVB MCP1252T-33X50IMS

