

APPROVAL SHEET

WW25Q

±1%, ±5%

Metal low ohm power chip resistors

Size 2512 (6432), 1W

Sensing Type

FEATURE

- 1. Ultra low and stable TCR performance
- 2. High power rating and compact size
- 3. High reliability and stability
- 4. Reduced size of final equipment
- 5. RoHS compliant & Lead free
- 6. Excellent Heat dissipation and inrush withstand

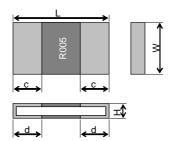
APPLICATION

- Power supply
- PDA
- Digital meter
- Computer
- Automotives
- · Battery charger
- DC-DC power converter

DESCRIPTION

The resistors are constructed in a high grade low resistive metal body. The structure applies no trimming configuration to provide excellent heat dissipation and inrush withstand capability. The resistive layer is covered with a protective coat and printed a resistance marking code over it. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Lead free terminations.

Fig 1. Construction of Chip-R



QUICK REFERENCE DATA

Item	General Specification		
Series No.	WW25Q		
Size code	2512 (6432)		
Resistance Tolerance	±5%, ±1%		
Resistance Range	1mΩ	2mΩ ~ 15mΩ	
TCR (ppm/°C)	±75 ppm/°C ±100 ppm/°C		
Max. power at T _{amb} =70°C	1 W		
Max. Operation Current (DC or RMS)	31.6A ~ 8.16A		
Climatic category (IEC 60068)	55/155/56		

Note: Max. Operation Current: So called RCWC (Rated Continuous Working Current) is determined by

 $RCWC = \sqrt{Rated Power / Resistance Value}$ listed above.

MECHANICAL DATA (unit: mm)

Туре	Size (inch)	Resistance	L (mm)	W (mm)	H (mm)	C (mm)	D (mm)
		1mΩ	6.3±0.25	3.2±0.25	0.38±0.15	2.20	<u>+</u> 0.25
		2mΩ				1.10:	<u>+</u> 0.25
		3mΩ			0.48±0.15	1.10:	<u>+</u> 0.25
		4mΩ			0.37±0.15	2.20	<u>+</u> 0.25
		5mΩ				1.95	<u></u> ±0.25
		6mΩ				1.75:	<u>+</u> 0.25
WW25Q	0540	7mΩ			0.34±0.15	1.40:	<u></u> ±0.25
	2512	8mΩ				1.10:	<u>+</u> 0.25
		9mΩ		3.1±0.25		0.90	<u>+</u> 0.25
		10mΩ				1.75:	<u>+</u> 0.25
		11mΩ				1.55:	<u>+</u> 0.25
		12mΩ			0.23±0.15	1.35:	<u>+</u> 0.25
		13mΩ				1.25	<u></u> ±0.25
		14mΩ				1.05	<u>+</u> 0.25
		15mΩ				0.95	±0.25

MARKING

Each resistor is marked with a four-digit code on the protective coating to designate the nominal resistance value.

Example:

 $R005 = 0.005\Omega$ $R010 = 0.010\Omega$

FUNCTIONAL DESCRIPTION

Derating curve

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

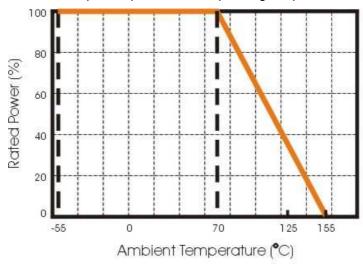


Fig.2 Maximum dissipation in percentage of rated power As a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

SOLDERING CONDITIONS

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds within lead-free solder bath. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig



Fig 3. Infrared soldering profile for Chip Resistors WW25Q

CATALOGUE NUMBERS

The resistors have a catalogue number starting with .

WW25	Q	R005	J	Т	L
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code
WW25 : 2512	Q : 1W	R is first digit followed by 3 significant digits. $0.010\Omega = R010$ $0.005\Omega = R005$	J : ±5% F : ±1%	T:7" reeled in tape	L = Sn base (lead free)

Reeled tape packaging : 12mm width embossed taping 4,000pcs per reel.

TEST & REQUIREMENTS (JIS C 5201-1: 1998)

Table- 4(1)

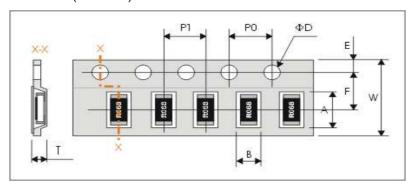
No.	Test items	Condition of test (JIS C 5201–1)	Performance requirements
1	Visual examination	Sub-clause 4.4.1	As in 4.4.1
		Checked by visual examination.	The marking shall be legible, as
			checked by visual examination.
2	Dimension	Sub-clause 4.4.2	As specified in Table-3 of this
	Danistanas	D : ()	specification.
	Resistance	Resistance value shall be measured by mounting	As in 4.5.2
		the substrate of the following condition.	The resistance value shall correspond with the rated resistance
		Current Current	taking into account the specified
		terminal terminal	tolerance
		:Copper dad	
		Voltage terminal :Solder resist	
		a: 3mm (1m Ω), 2.6mm (5m Ω),	
		1.8mm (10m Ω ,15m Ω)	
		Thickness of copper clad: 0.035mm	
		4-Terminal method	
		Measurement current: 1(A)	
		Note: The measuring apparatus corresponding to	
		DC Low-ohm Mater (1A) of AX-1152D for ADEX CORPORATION.	
3	Voltage proof	Sub-clause 4.7	
ľ	voltage proof	Method: 4.6.1.4(See Figure–5)	No breakdown or flash over
		Test voltage: Alternating voltage with a peak value	
		of 1.42 times the insulation voltage.	
		Duration: 60 s±5 s	
		Insulation resistance	
		Test voltage: Insulation voltage	R≥1GΩ
4	Coldonal III.	Duration: 1 min.	A - :- A 47 A F
4	Solderability	Sub-clause 4.17	As in 4.17.4.5 The terminations shall be covered
		Without aging Flux: The resistors shall be immersed in a	with a smooth and bright solder
		non-activated soldering flux for 2 s.	coating.
		Bath temperature: 235 °C±5 °C	g
		Immersion time: 2 s±0.5 s	
5	Mounting	Sub-clause 4.31	
		Substrate material: Epoxide woven glass	
		Test substrate: Figure-3	
	Overload	Sub-clause 4.13	
	(in the mounted state)	The applied voltage shall be 2.5 times the rated	
		voltage or the current corresponding to.	
		Duration: 2 s Visual examination	
		Resistance	No visible damage
		Sub-clause 4.30	ΔR≤±1%
	Solvent resistance of the	Solvent: 2–propanol	Legible marking
	marking	Solvent temperature: 23 °C±5 °C	
		Method 1	
		Rubbing material: cotton wool	
		Without recovery	

Table-4(2)

No	Test items	Condition of test (JIS C 5201–1)	Performance requirements
6	Mounting	Sub-clause 4.31	'
		Substrate material: Epoxide woven glass	
		Test substrate: Figure-4	
	Bound strength of the end	Sub-clause 4.33	
	face plating	Bent value: 1 mm	
		Resistance	ΔR≤±1%
	Final measurements	Sub-clause 4.33.6	
		Visual examination	No visible damage
7	Resistance to soldering heat	Sub-clause 4.18	
		Solder temperature: 260 °C±5 °C	
		Immersion time: 10 s±0.5 s	
		Visual examination	As in 4.18.3.4
			No sign of damage such as cracks.
	Commonant column	Baristana	ΔR≤±1%
	Component solvent resistance		
	resisiance	Sub-clause 4.29	
		Solvent: 2-propanol	
		Solvent temperature: 23 °C±5 °C Method 2	
		Recovery: 48 h	No visible damage
		Visual examination	ΔR≤±1%
		Resistance	LIN 2 2 1 70
8	Mounting	Sub-clause 4.31	
ľ	Widahang	Substrate material: Epoxide woven glass	
		Test substrate: Figure–3	
	Adhesion	Sub-clause 4.32	
		Force: 5 N	
		Duration: 10 s±1 s	
		Visual examination	No visible damage
	Rapid change temperature	Sub-clause 4.19	
		Lower category temperature:-55 °C	
		Upper category temperature:+155 °C	
		Duration of exposure at each temperature: 30	
		min.	
		Number of cycles: 5 cycles.	No visible demage
		Visual examination	No visible damage ∆R≤±1%
		Resistance	ΔK≥±1%

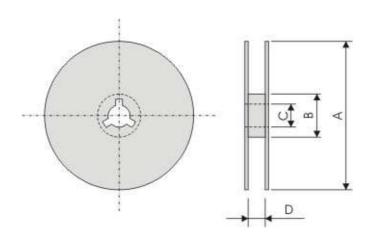
Table-4(3)

Test items	Condition of test (JIS C 5201-1)	Performance requirements
	Sub-clause 4.23	,
-Dry heat	Sub-clause 4.23.2	
	Test temperature: +155 °C	
	Duration: 16 h	
–Damp heat, cycle	Sub-clause 4.23.3	
	Test method: 2	
First cycle	Test temperature: 55 °C	
	[Severity(2)]	
-Cold	Sub-clause 4.23.4	
	Test temperature –55 °C	
	100111101101112	
Remaining cycle		
501.		
-D.C. load		
		No visible damage
	Resistance	ΔR≤±5%
Mounting	Sub-clause 4.31	
	Test substrate: Figure-3	
F 1 170.00		
Endurance at 70 °C		
	10001	
		No visible damage
	Resistance	ΔR≤±5%
	Climatic sequence -Dry heat -Damp heat, cycle (12+12hour cycle) First cycle -Cold -Damp heat, cycle (12+12hour cycle) Remaining cycle -D.C. load	Climatic sequence -Dry heat Sub-clause 4.23 Sub-clause 4.23.2 Test temperature: +155 °C Duration: 16 h Sub-clause 4.23.3 (12+12hour cycle) First cycle -Cold -Cold -Cold -Damp heat, cycle (12+12hour cycle) -Damp heat, cycle (12+12hour cycle) Remaining cycle -Damp heat, cycle (12+12hour cycle) Remaining cycle -D.C. load -D.C. load Sub-clause 4.23.6 Test method: 2 Test method: 1 Test method: 2 Test method: 1 Test method: 2 Test method: 1 Sub-clause 4.23.6 Test method: 2 Test me


Table-4(4)

	T 12		I D
No	Test items	Condition of test (JIS C 5201–1)	Performance requirements
11	Mounting	Sub-clause 4.31 Substrate material: Epoxide woven glass Test substrate: Figure–3	
	Variation of resistance with temperature	Sub-clause 4.8 +20 °C / +155 °C	As in Table–1
12	Mounting	Sub-clause 4.31 Substrate material: Epoxide woven glass Test substrate: Figure–3	
	Damp heat, steady state	Sub-clause 4.24 Ambient temperature: 40 °C±2 °C Relative humidity: 93 ½ % Without current applied. Visual examination Resistance	No visible damage Legible marking Δ R ≤ ±5%
13	Dimensions (detail)	Sub-clause 4.4.3	As in Table–4
	Mounting	Sub-clause 4.31 Substrate material: Epoxide woven glass Test substrate: Figure-3	
	Endurance at upper category temperature	Sub-clause 4.25.3 Ambient temperature:155 °C±2 °C Duration: 1000 h Examination at 48 h, 500 h and 1000 h: Visual examination Resistance	No visible damage Δ R ≤ ±5%

PACKAGING


Plastic Tape specifications (unit :mm)

Symbol	A	В	W	F	E
Dimensions	6.90±0.20	3.60±0.20	12.00±0.30	5.50±0.05	1.75±0.10

Symbol	P1	P0	ΦD	Т
Dimensions	4.00±0.10	4.00±0.10	Φ 1.50 $^{+0.1}_{-0.0}$	1.10±0.15

Reel dimensions

Symbol	А	В	С	D
(unit : mm)	Ф180.0 -1.5	Φ60.0±1.0	13.0±0.2	13.0±1.0

Taping quantity

- Chip resistors 4,000 pcs per reel.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thick Film Resistors - SMD category:

Click to view products by Walsin manufacturer:

Other Similar products are found below:

CRCW04028R20JNEE CRCW06036K80FKEE CRG1206F1K58 CRL0603-FW-R700ELF M55342K06B6E19RWL RC1005F1072CS

RC1005F471CS RC1005F4751CS RCP0603W100RGED ERJ-1GMF1R00C ERJ-1GMF1R20C ERJ-1GMF2R55C ERJ-1GMF8R66C

25121WF1003T4E 25.501.3653.0 290-1.0M-RC 292-1.0M-RC 292-2.2K-RC 292-4.7K-RC 25121WF4700T4E 292-470K-RC 302-1.0M-RC CPG1206F10KC CRCW02011R00FXED CRCW060315K0FKEE CRCW060320K5FKEE CRG0201F10K RCP2512B100RGWB

RCWP12061K00FKS2 3520510RJT 352075KJT M55342K11B9E53RUL RMC16-102JT RMC1JPTE TR0603MR-075K1L 5-2176094-4

35202K7JT WF06Q1000FTL ERJ-S14J4R7U CHP2512L4R30GNT WR12X1621FTL RCWP11001K00FKS3 LRC-LRF3W-01-R050-FTR1800 9-2176088-6 NRC06F1002TR20F CRCW02013M30FNED CRCW060343K0FKEE WR04X5360FTL RCA060345K3FKEA LTR100JZPF33R0