

APPROVAL SHEET

WW08P, WW06P

 $\pm 1\%$, $\pm 5\%$ 47m Ω ~976m Ω

High Power Low Ohmic Chip Resistors

Size 0805 1/3W; 0603 1/4W

*Contents in this sheet are subject to change without prior notice.

FEATURE

- 1. Small size and light weight
- 2. High reliability and stability
- 3. Reduced size of final equipment
- 4. High precision
- 5. RoHS compliant and Lead free products

APPLICATION

- High accuracy dc-power supply
- Digital multi-meter
- Telecommunication
- Computer
- Automotive industry
- Medical and military equipment

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is Tin (lead free) alloy.

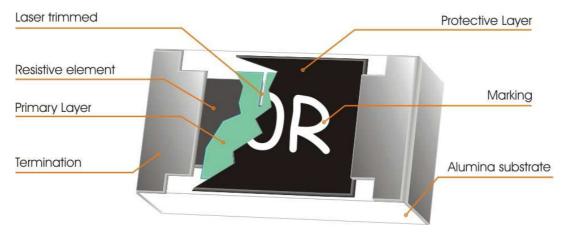
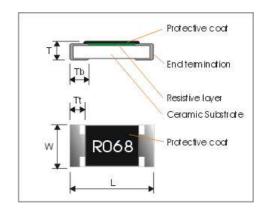


Fig 1. Consctruction of Chip-R

QUICK REFERENCE DATA


Item	General Specification				
Series No.	WW08P	WW06P			
Size code	0805 (2012)	0603(1608)			
Resistance Tolerance	±1%, ±5%				
Resistance Range	0.047Ω~0.976Ω(E96+E24 series)				
TCR (ppm/°C) -55°C ~ +155°C 0.047Ω~0.091Ω 0.100Ω~0.976Ω	≤ ± 200 ppm/°C ≤ ± 150 ppm/°C	≤ ± 250 ppm/°C ≤ ± 200 ppm/°C			
Max. dissipation at T _{amb} =70°C	1/3 W	1/4 W			
Max. Operation Voltage (DC or RMS)	150V	50V			
Max. Overload Voltage (DC or RMS)	300V	100V			
Climatic category (IEC 60068)	55/155.	/56			
Basic specification JIS C 5201-1:1998 / IEC 60068-2-58:2004					

Note:

- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by $RCWV = \sqrt{Rated \, Power \times Resistance \, Value} \, \, \text{or Max. RCWV listed above, whichever is lower.}$

DIMENSIONS(unit:mm)

Part No	WW08P	WW06P
L	2.00 ± 0.10	1.60 ± 0.10
W	1.25 ± 0.10	0.80 ± 0.10
Т	0.50 ± 0.15	0.45 ± 0.15
Tb	0.40 ± 0.20	0.30 ± 0.15
Tt	0.40 ± 0.20	0.30 ± 0.10

MARKING

Each resistor is marked with a three-digit(WW06P $\pm 1\%;\pm 5\%$) or four-digit(WW08P $\pm 1\%;\pm 5\%$) code on the protective coating to designate the nominal resistance value.

- * Remark : 0603 resistor value from 0.1Ω to 0.976Ω E48/E96 series use 2 significant digits followed by letter.(Example R560 = R56 ; R402= 59Z)
- ** Remark : 0603 resistor value from 0.047Ω to 0.091Ω use the last Two-digits followed by "M" equals "m", means 1/1000(Example R047 = 47M ; R050= 50M)

Rated Resistance

Resistance	Code	Code	Resistance	Code	Code	Resistance	Code	Code	Resistance	Code	Code
Resistance	0805	0603	Resistance	0805	0603	Resistance	0805	0805 0603 Resistance	0805	0603	
47mΩ	R047	47M	56mΩ	R056	56M	68mΩ	R068	68M	82mΩ	R082	82M
50mΩ	R050	50M	60mΩ	R060	60M	70mΩ	R070	70M	85mΩ	R085	85M
51mΩ	R051	51M	62mΩ	R062	62M	75mΩ	R075	75M	90mΩ	R090	90M
55mΩ	R055	55M	65mΩ	R065	65M	80mΩ	R080	80M	91mΩ	R091	91M

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E96&E24 series for resistors with a tolerance of $\pm 1\%, \pm 5\%$. The values of the E96/E24 series are in accordance with "IEC publication 60063".

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

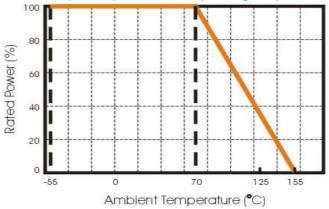


Fig. 2 Maximum dissipation in percentage of rated power As a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

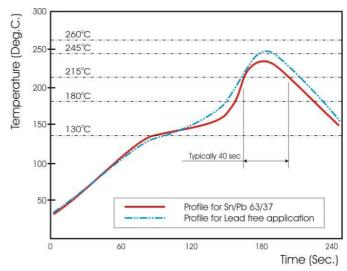


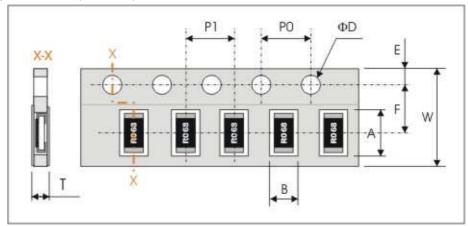
Fig 3. Infrared soldering profile for Chip Resistors

CATALOGUE NUMBERS

The resistors have a catalogue number starting with.

WW08	Р	R050	F	Т	L	
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code	
WW08: 0805	P :Power	E96+E24:	J : ±5%	T: 7" Reeled taping	L = Sn base	
WW06: 0603	0805 size=0.33W 0603 size=0.25W	"R" is first digit followed by 3 significant digits.(0805)	F : ±1%	paper taping 5Kpcs/reel.	(lead free)	
		$50m\Omega$ =R050		011p00/1001.		
		$510m\Omega$ =R510				
		"R" is first digit followed by 2				
		Significant digit.(0603)				
		$100m\Omega = R10$				
		510mΩ =R51				
		0603 0.1Ω~0.976Ω E48/E96				
		2 significant digits followed by letter				
		0603 0.047Ω~0.091Ω E24				
		2 significant digits followed by M $(M=milli\ \Omega)$.				
		(R047=47m)				

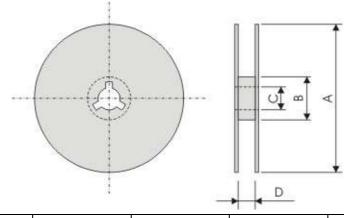
■ Reeled tape packaging : 8mm width paper taping 5000pcs per 7" reel.


TEST AND REQUIREMENTS

Basic specification: JIS C 5201-1: 1998

TEST	PROCEDURE	REQUIREMENT
Clause 4.8 Temperature Coefficient of Resistance (TCR)	Natural resistance change per change in degree centigrade. $\frac{R_2-R_1}{R_1(t_2-t_1)}\!\!\times\!10^6 \text{ (ppm/°C)}$ $R_1: \text{Resistance at reference temperature}$ $R_2: \text{Resistance at test temperature}$ $t_1: 20^\circ\!\text{C}+5^\circ\!\text{C}-1^\circ\!\text{C}.$	Refer to quick reference data for T.C.R specification
Clause 4.13 Short time overload	5.0x Rated power or Max. Overload Voltage for 5 sec. Measure resistance after 30 minutes.	Δ R/R max. J: \leq ±(2%+0.5m Ω) F: \leq ±(1%+0.5m Ω)
Clause 4.18 Resistance to soldering heat(R.S.H)	Un-mounted chips completely immersed for 10±1second in a SAC solder bath at 260°C±5°C.	No visible damage $ \Delta R/R \text{ max. J:} \leq \pm (1\% + 0.5 \text{m}\Omega) $ $ F: \leq \pm (0.5\% + 0.5 \text{m}\Omega) $
Clause4.17 Solderability	Un-mounted chips completely immersed for 2±0.5 second in a SAC solder bath at 235 $^\circ\!$	Good tinning (>95% covered) No visible damage
Clause 4.19 Temperature cycling	 30 minutes at -55°C±3°C, 2~3 minutes at 20℃+5℃-1℃, 30 minutes at +155°±3°C, 2~3 minutes at 20℃+5℃-1℃, Total 5 continuous cycles. 	No visible damage $ \Delta R/R \text{ max. } J \leqq \pm (1\% + 1 m\Omega) $ $ F \leqq \pm (0.5\% + 1 m\Omega) $
Clause 4.25 Load life (endurance)	1000 +48/-0 hours, loaded with RCWV or Vmax in chamber controller 70±2°C, 1.5 hours on and 0.5 hours off.	No visible damage $ \Delta R/R \text{ max. } J \leqq \pm (3\% + 0.5 \text{m}\Omega) $ $ F \leqq \pm (1\% + 0.5 \text{m}\Omega) $
Clause 4.24 Load life in Humidity	1000 +48/-0 hours, loaded with RCWV or Vmax in humidity chamber controller at 40°C±2°C and 90~95% relative humidity, 1.5hours on and 0.5 hours off.	No visible damage $ \Delta R/R \text{ max. } J \leqq \pm (3\% + 0.5 \text{m}\Omega) $ $ F \leqq \pm (1\% + 0.5 \text{m}\Omega) $
Clause 4.33 Bending strength	Resistors mounted on a 90mm glass epoxy resin PCB(FR4); bending : 3 mm, once for 10 seconds.	No visible damage $ \Delta R/R \text{ max. } J \leqq \pm (1\% + 1 m\Omega) $ $ F \leqq \pm (0.5\% + 1 m\Omega) $
Clause 4.32 Adhesion	Pressurizing force: 5N, Test time: 10±1sec.	No remarkable damage or removal of the terminations
Clause 4.6 Insulation Resistance	Apply the maximum overload voltage (DC) for 1minute.	R≥10GΩ
Clause 4.7 Dielectric Withstand Voltage	Apply the maximum overload voltage (AC) for 1 minute.	No breakdown or flashover

PACKAGING


Paper Tape specifications (unit:mm)

Series No.	А	В	W	F	E
WW06P	1.90±0.20	1.10±0.20	8.00±0.30	3.50±0.20	1.75±0.10
WW08P	2.40±0.20	1.65±0.20	8.00±0.30	3.50±0.20	1.75±0.10

Series No.	P1	P0	ΦD	Т
WW06P	4.00±0.10	4.00±0.10	Φ 1.50 $^{+0.1}_{-0.0}$	0.65±0.05
WW08P	4.00±0.10			Max. 1.0

Reel dimensions

Symbol	Α	В	С	D
(unit : mm)	Φ178.0±2.0	Φ60.0±1.0	13.0±0.2	9.0±0.5

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for walsin manufacturer:

Other Similar products are found below:

WR04X3320FTL 1210F476M100CT 1206B221K102CT 0603N4R7C101CT WF08W2211BTL DF18141950B102T DB18142140B102T

SF14112450A03T RFLPF06050G9D0T WW25RR007FTL WF08U1002BTL 1206N392J500CT RFCBA040310IM6B301 WF06U1002BTL

WF25P1001FTL WF08P8202FTL WK12V105 JTL WR04X1130FTR WW25WR025FTL 1206B564K500CT WF08U4121BTL

WF08U8251BTL 1206N222J631CT RFBLN06051G8D1T 0603B683K101CT 0603N102F500CT WR02X2202FAL 1812B225K500CT

WR12X100JTL 1812B824K251CT 1210F107Z6R3CT 0603B394K250CT 0402N2R0B500CT YU0AS102M080DAMD0B

0603B563J500CT WLPN303015M470PB 1206B683K201 WR25X361JTL WR25X1R8JTL YP1AH471K070BAMD0H 1206B473K251CT

WK12V155 JTL 0603N8R0D500CT 1206B184K101CT SH32B225K101CT RFCBA100607SA6B701 0603N510J500CT 1812N680G202CT

0805N152J201CT WLPN303015M560PB