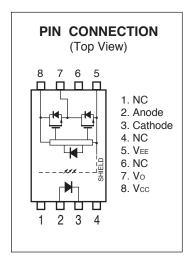
PS9905

Data Sheet

R08DS0058EJ0100 Rev.1.00 Jun 11, 2012

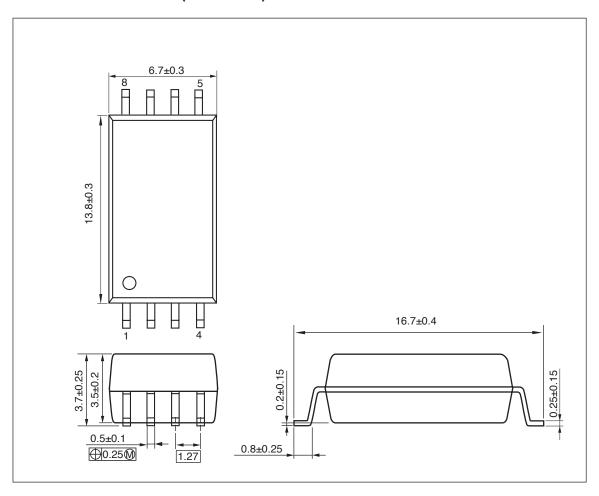

2.5 A OUTPUT CURRENT, HIGH CMR, IGBT GATE DRIVE, 8-PIN LSDIP PHOTOCOUPLER FOR CREEPAGE DISTANCE OF 14.5 mm

DESCRIPTION

The PS9905 is optically coupled isolator containing a GaAlAs LED on the input side and a photo diode, a signal processing circuit and a power output transistor on the output side on one chip.

FEATURES

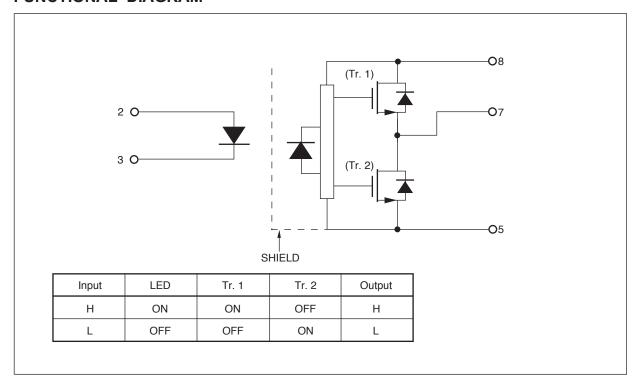
- Long creepage distance (14.5 mm MIN.)
- Large peak output current (2.5 A MAX., 2.0 A MIN.)
- High speed switching (t_{PLH} , $t_{PHL} = 0.15 \mu s MAX$.)
- UVLO (Under Voltage Lock Out) protection with hysteresis
- High common mode transient immunity (CM_H, CM_L = $\pm 25 \text{ kV}/\mu \text{s MIN.}$)
- 8-pin LSDIP (Long Creepage SDIP) type
- Embossed tape product: PS9905-F3: 1 000 pcs/reel
- Pb-Free Product
- · Safety standards
 - UL approved: No. E72422
 - CSA approved: No. CA 101391 (CA5A, CAN/CSA-C22.2 60065, 60950)
 - SEMKO approved: No. 1122994
 - DIN EN60747-5-5 (VDE0884-5): 2011-11 approved: No. 40034588 (Option)

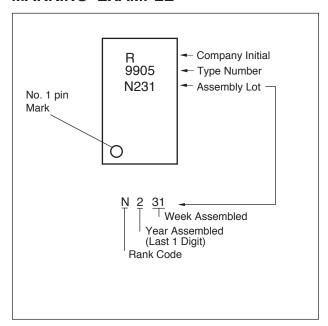


<R>

APPLICATIONS

- IGBT, Power MOS FET Gate Driver
- Industrial inverter
- Solar inverter


PACKAGE DIMENSIONS (UNIT: mm)


PHOTOCOUPLER CONSTRUCTION

Parameter	Unit (MIN.)
Air Distance	14.5 mm
Outer Creepage Distance	14.5 mm
Isolation Distance	0.4 mm

FUNCTIONAL DIAGRAM

MARKING EXAMPLE

<R> ORDERING INFORMATION

Part Number	Order Number	Solder Plating Specification	Packing Style	Safety Standard Approval	Application Part Number*1
PS9905	PS9905-Y-AX	Pb-Free	10 pcs (Tape 10 pcs cut)	Standard products	PS9905
PS9905-F3	PS9905-Y-F3-AX	(Ni/Pd/Au)	Embossed Tape 1 000	(UL, CSA, SEMKO	
			pcs/reel	approved)	
PS9905-V	PS9905-Y-V-AX		10 pcs (Tape 10 pcs cut)	DIN EN60747-5-5	
PS9905-V-F3	PS9905-Y-V-F3-AX		Embossed Tape 1 000	(VDE0884-5):	
			pcs/reel	2011-11	
				approved (Option)	

Note: *1. For the application of the Safety Standard, following part number should be used.

<R> ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C, unless otherwise specified)

Parameter		Symbol	Ratings	Unit
Diode	Forward Current	I _F	25	mA
Peak Transient Forward Current (Pulse Width < 1 μs)		I _{F (TRAN)}	1.0	А
	Reverse Voltage	V _R	5	V
	Power Dissipation*1,*6	P _D	45	mW
Detector	High Level Peak Output Current ^{*2}	I _{OH (PEAK)}	2.5	А
Low Level Peak Output Current*2		I _{OL (PEAK)}	2.5	А
	Supply Voltage	(V _{CC} - V _{EE})	0 to 35	V
	Output Voltage	Vo	0 to V _{CC}	V
Power Dissipation*3, *6		Pc	250	mW
Isolation Voltage *4		BV	7 500	Vr.m.s.
Operating Frequency *5		f	50	kHz
Operating Ambient Temperature		T _A	-40 to +110	°C
Storage Temperature		T _{stg}	-55 to +125	°C

Notes: *1. Derating to be set after 0.8 mW/ $^{\circ}$ C at T_A = 85 $^{\circ}$ C or more.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	(V _{CC} - V _{EE})	15		30	V
Forward Current (ON)	I _{F (ON)}	10	12	14	mA
Forward Voltage (OFF)	V _{F (OFF)}	-2		0.8	V
Operating Ambient Temperature	T _A	-40		110	°C

^{*2.} Maximum pulse width = 10 μ s, Maximum duty cycle = 0.2 %

^{*3.} Reduced to 5.2 mW/°C at $T_A = 85$ °C or more

^{*4.} AC voltage for 1 minute at T_A = 25°C, RH = 60% between input and output. Pins 1-4 shorted together, 5-8 shorted together.

^{*5.} $I_{OH\,(PEAK)} \le 2.0$ A ($\le 0.3~\mu$ s), $I_{OL\,(PEAK)} \le 2.0$ A ($\le 0.3~\mu$ s)

^{*6.} Mounted on glass epoxy substrate of 75 mm \times 115 mm \times t1.5 mm

ELECTRICAL CHARACTERISTICS

(V_{EE} = GND, unless otherwise specified and refer to RECOMMENDED OPERATING CONDITIONS)

	Parameter		Conditions	MIN.	TYP.*1	MAX.	Unit
Diode	Forward Voltage	V _F	I _F = 10 mA, T _A = 25°C	1.3	1.56	1.8	V
	Reverse Current	I _R	V _R = 3 V, T _A = 25°C			10	μΑ
	Terminal Capacitance	Ct	$f = 1 \text{ MHz}, V_F = 0 \text{ V}, T_A = 25^{\circ}\text{C}$		30		рF
Detector	High Level Output Current	I _{OH}	$V_{O} = (V_{CC} - 4 V)^{*2}$	0.5	2.0		Α
			$V_0 = (V_{CC} - 15 \text{ V})^{*3}$	2.0			
	Low Level Output Current	l _{OL}	$V_O = (V_{EE} + 2.5 \text{ V})^{*2}$	0.5	2.0		Α
			$V_{O} = (V_{EE} + 15 \text{ V})^{*3}$	2.0			
	High Level Output Voltage	V _{OH}	$I_0 = -100 \text{ mA}^{*4}$	V _{CC} – 3.0	V _{CC} – 1.5		V
	Low Level Output Voltage		I _O = 100 mA		0.1	0.5	V
	High Level Supply Current I _{CCH}		V _O = open, I _F = 12 mA		1.4	3.0	mA
	Low Level Supply Current Icc		$V_{\rm O}$ = open, $V_{\rm F}$ = -2 to +0.8 V		1.3	3.0	mA
	UVLO Threshold	V _{UVLO+}	V _O > 5 V, I _F = 12 mA	10.8	12.3	13.4	V
				9.5	11.0	12.5	
	UVLO Hysteresis		V _O > 5 V, I _F = 12 mA	0.4	1.3		V
Coupled Threshold Input Current		I _{FLH}	$I_0 = 0 \text{ mA}, V_0 > 5 \text{ V}$		2.9	6.0	mA
	(L → H)						
	Threshold Input Voltage	V_{FHL}	$I_0 = 0 \text{ mA}, V_0 < 5 \text{ V}$	8.0		·	V
	$(H \rightarrow L)$						

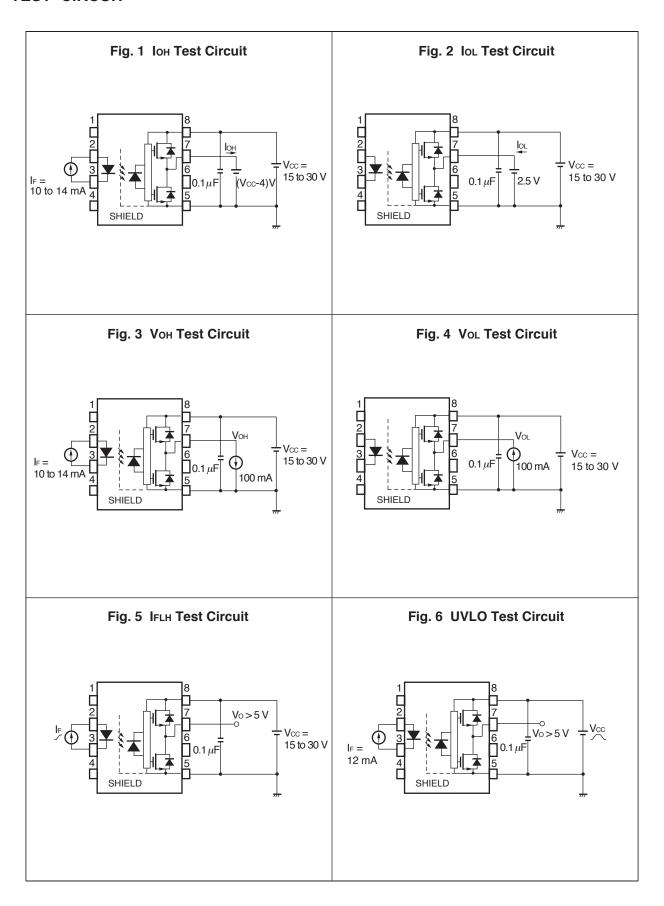
Notes: *1. Typical values at T_A = 25°C

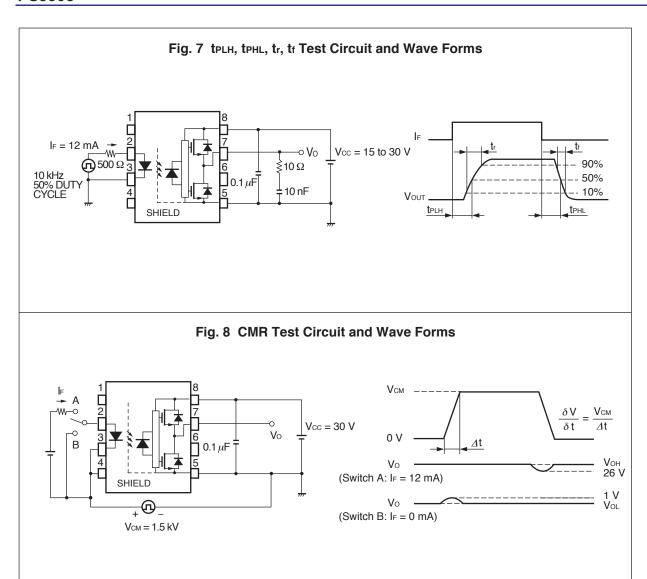
^{*2.} Maximum pulse width = 50 μ s, Maximum duty cycle = 0.5%.

^{*3.} Maximum pulse width = 10 μ s, Maximum duty cycle = 0.2%.

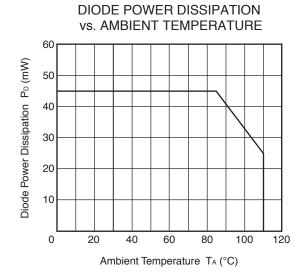
^{*4.} V_{OH} is measured with the DC load current in this testing (Maximum pulse width = 2 ms, Maximum duty cycle = 20%).

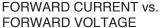
<R> SWITCHING CHARACTERISTICS

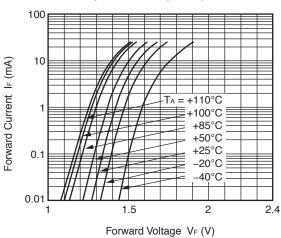

(V_{EE} = GND, unless otherwise specified and refer to RECOMMENDED OPERATING CONDITIONS)

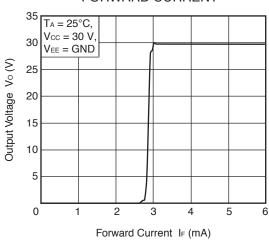

Parameter	Symbol	Conditions	MIN.	TYP.*1	MAX.	Unit
Propagation Delay Time (L → H)	t _{PLH}	$R_g = 10 \Omega$, $C_g = 10 nF^{*2}$, $f = 10 kHz$,		0.09	0.15	μS
Propagation Delay Time (H → L)	t _{PHL}	Duty Cycle = 50%, I _F = 12 mA		0.1	0.15	μS
Pulse Width Distortion (PWD)	t _{PHL} -t _{PLH}			0.01	0.075	μS
Propagation Delay Time	t _{PHL} -t _{PLH}		-0.1		0.1	μ s
(Difference Between Any Two						
Products)						
Rise Time	t _r			50		ns
Fall Time	t _f			50		ns
UVLO (Turn On Delay)	t _{UVLO ON}	$V_0 > 5 V$, $I_F = 12 mA$		0.8		μS
UVLO (Turn Off Delay)	t _{UVLO} OFF	$V_0 < 5 \text{ V}, I_F = 12 \text{ mA}$		0.6		μs
Common Mode Transient	CM _H	$T_A = 25$ °C, $I_F = 12$ mA, $V_{CC} = 30$ V,	25			kV/ <i>μ</i> s
Immunity at High Level Output		$V_{O (MIN.)} = 26 \text{ V}, V_{CM} = 1.5 \text{ kV}$				
Common Mode Transient	CM _L	$T_A = 25^{\circ}C$, $I_F = 0$ mA, $V_{CC} = 30$ V,	25			kV/ <i>μ</i> s
Immunity at Low Level Output		$V_{O (MAX.)} = 1 V, V_{CM} = 1.5 kV$				

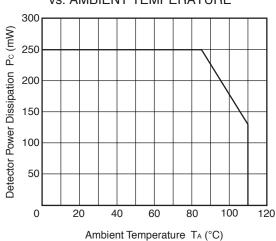
Notes: *1. Typical values at $T_A = 25$ °C

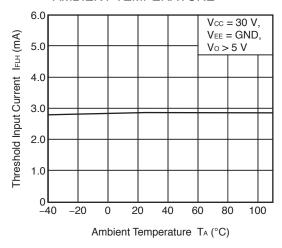

 $^{^{\}ast}2.$ This load condition is equivalent to the IGBT load at 1 200 V / 75 A.

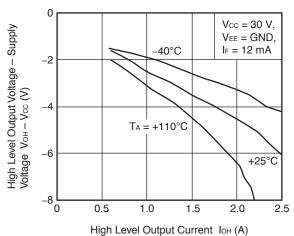

<R> TEST CIRCUIT




TYPICAL CHARACTERISTICS (T_A = 25°C, unless otherwise specified)



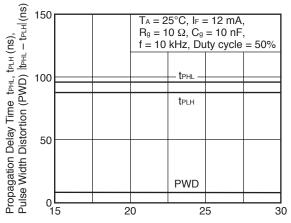

OUTPUT VOLTAGE vs. FORWARD CURRENT


DETECTOR POWER DISSIPATION vs. AMBIENT TEMPERATURE

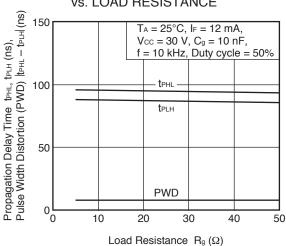
THRESHOLD INPUT CURRENT vs. AMBIENT TEMPERATURE



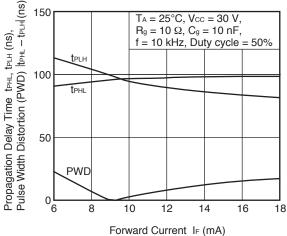
HIGH LEVEL OUTPUT VOLTAGE – SUPPLY VOLTAGE vs. HIGH LEVEL OUTPUT CURRENT


Remark The graphs indicate nominal characteristics.

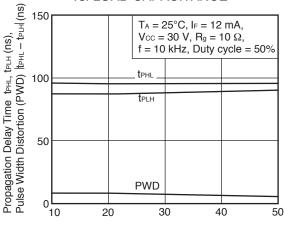
LOW LEVEL OUTPUT VOLTAGE vs. LOW LEVEL OUTPUT CURRENT


Low Level Output Current lol (A)

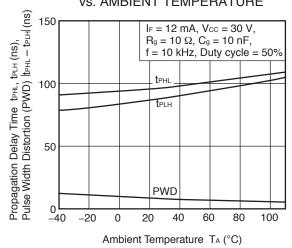
PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. SUPPLY VOLTAGE



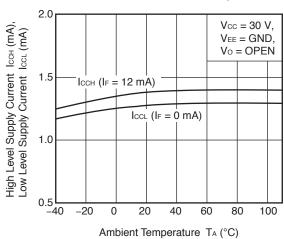
Supply Voltage Vcc (V)


PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. LOAD RESISTANCE

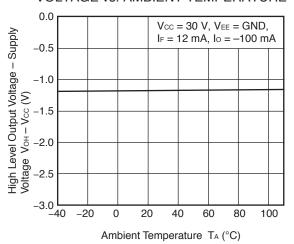
PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. FORWARD CURRENT



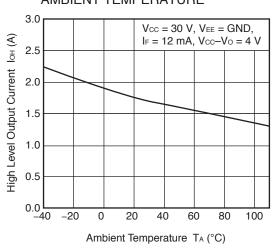
PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. LOAD CAPACITANCE


PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. AMBIENT TEMPERATURE

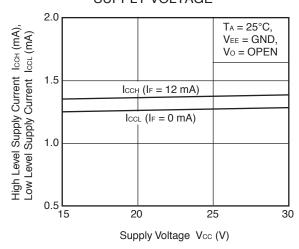
Load Capacitance Cg (nF)



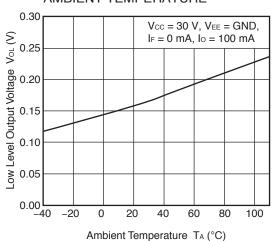
Remark The graphs indicate nominal characteristics.


SUPPLY CURRENT vs. AMBIENT TEMPERATURE

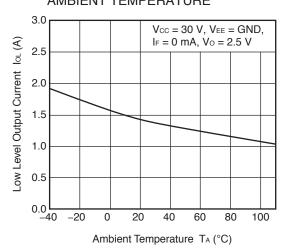
HIGH LEVEL OUTPUT VOLTAGE – SUPPLY VOLTAGE vs. AMBIENT TEMPERATURE

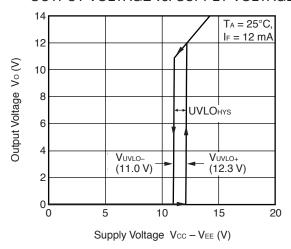


HIGH LEVEL OUTPUT CURRENT vs. AMBIENT TEMPERATURE

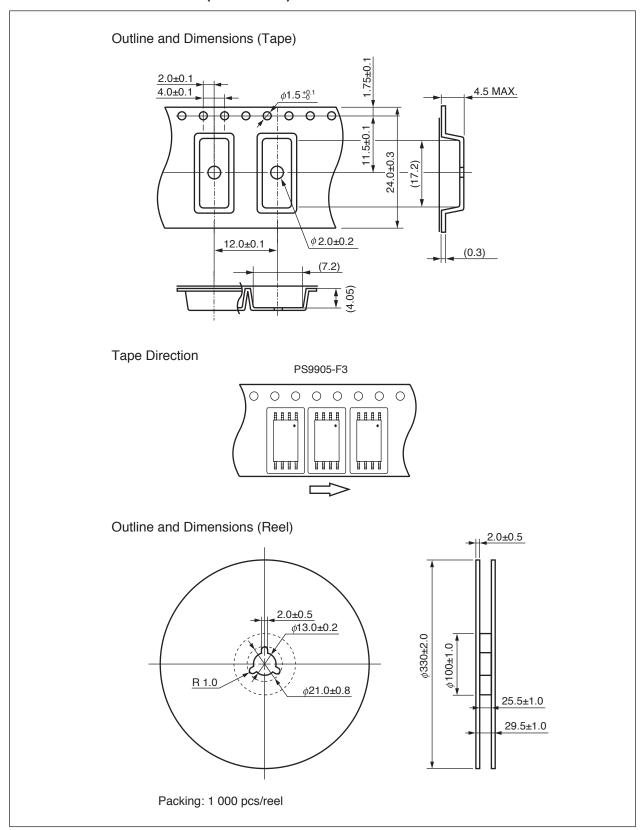


Remark The graphs indicate nominal characteristics.

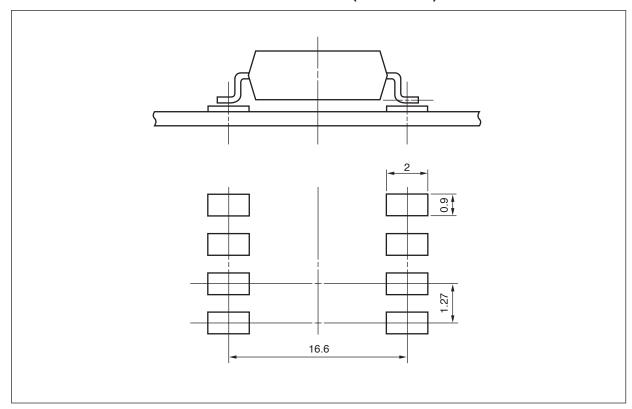

SUPPLY CURRENT vs. SUPPLY VOLTAGE


LOW LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE

LOW LEVEL OUTPUT CURRENT vs. AMBIENT TEMPERATURE



OUTPUT VOLTAGE vs. SUPPLY VOLTAGE



Remark The graphs indicate nominal characteristics.

TAPING SPECIFICATIONS (UNIT: mm)

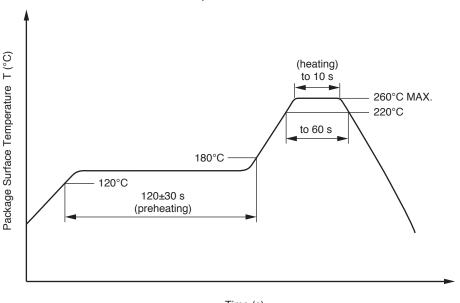
RECOMMENDED MOUNT PAD DIMENSIONS (UNIT: mm)

NOTES ON HANDLING

1. Recommended soldering conditions

(1) Infrared reflow soldering

• Peak reflow temperature 260°C or below (package surface temperature)


Time of peak reflow temperature
 Time of temperature higher than 220°C
 60 seconds or less

Time to preheat temperature from 120 to 180°C
 Number of reflows
 Three

• Flux Rosin flux containing small amount of chlorine (The flux with a

maximum chlorine content of 0.2 Wt% is recommended.)

Recommended Temperature Profile of Infrared Reflow

Time (s)

(2) Wave soldering

• Temperature 260°C or below (molten solder temperature)

• Time 10 seconds or less

• Preheating conditions 120°C or below (package surface temperature)

• Number of times One (Allowed to be dipped in solder including plastic mold portion.)

• Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2

Wt% is recommended.)

(3) Soldering by Soldering Iron

Peak Temperature (lead part temperature)
 Time (each pins)
 350°C or below
 3 seconds or less

• Flux Rosin flux containing small amount of chlorine (The flux with a maximum

chlorine content of 0.2 Wt% is recommended.)

(a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead

(4) Cautions

Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output at startup, the output transistor may enter the on state, even if the voltage is within the absolute maximum ratings.

USAGE CAUTIONS

- 1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
- 2. Board designing
 - (1) By-pass capacitor of more than 0.1 μ F is used between V_{CC} and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm.
 - (2) When designing the printed wiring board, ensure that the pattern of the IGBT collectors/emitters is not too close to the input block pattern of the photocoupler.
 - If the pattern is too close to the input block and coupling occurs, a sudden fluctuation in the voltage on the IGBT output side might affect the photocoupler's LED input, leading to malfunction or degradation of characteristics.
 - (If the pattern needs to be close to the input block, to prevent the LED from lighting during the off state due to the abovementioned coupling, design the input-side circuit so that the bias of the LED is reversed, within the range of the recommended operating conditions, and be sure to thoroughly evaluate operation.)
 - (3) Pin 1, 4 (which is an NC*1 pin) can either be connected directly to the GND pin on the LED side or left open. Also, Pin 6 (which is an NC*1 pin) can either be connected directly to the GND pin on the detector side or left open. Unconnected pins should not be used as a bypass for signals or for any other similar purpose because this may degrade the internal noise environment of the device.
 - Note: *1. NC: Non-Connection (No Connection)
- 3. Make sure the rise/fall time of the forward current is 0.5 μ s or less.
- 4. In order to avoid malfunctions, make sure the rise/fall slope of the supply voltage is 3 V/ μ s or less.
- 5. Avoid storage at a high temperature and high humidity.

<R> SPECIFICATION OF VDE MARKS LICENSE DOCUMENT

Parameter	Symbol	Spec.	Unit
Climatic test class (IEC 60068-1/DIN EN 60068-1)		40/110/21	
Dielectric strength			
maximum operating isolation voltage	U_IORM	1 600	V_{peak}
Test voltage (partial discharge test, procedure a for type test and random test)	U_pr	2 560	V_{peak}
$U_{pr} = 1.6 \times U_{IORM.}, P_d < 5 pC$			
Test voltage (partial discharge test, procedure b for all devices)	U_pr	3 000	V_{peak}
$U_{pr} = 1.875 \times U_{IORM.}, P_d < 5 pC$			
Highest permissible overvoltage	U_TR	12 000	V_{peak}
Degree of pollution (DIN EN 60664-1 VDE0110 Part 1)		2	
Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303 Part 11))	CTI	175	
Material group (DIN EN 60664-1 VDE0110 Part 1)		III a	
Storage temperature range	T _{stg}	-55 to +125	°C
Operating temperature range	T _A	-40 to +110	°C
Isolation resistance, minimum value			
$V_{IO} = 500 \text{ V dc at T}_{A} = 25^{\circ}\text{C}$	Ris MIN.	10 ¹²	Ω
V _{IO} = 500 V dc at T _A MAX. at least 100°C	Ris MIN.	10 ¹¹	Ω
Safety maximum ratings (maximum permissible in case of fault, see thermal			
derating curve)			
Package temperature	Tsi	175	°C
Current (input current I _F , Psi = 0)	Isi	400	mA
Power (output or total power dissipation)	Psi	700	mW
Isolation resistance			
V_{IO} = 500 V dc at T_A = Tsi	Ris MIN.	10 ⁹	Ω

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

Revision History

PS9905 Data Sheet

		Description		
Rev.	Date	Page	Summary	
0.01	Apr 06, 2012	_	First edition issued	
1.00	Jun 11, 2012	Throughout	Preliminary Data Sheet → Data Sheet	
		p.1	Modification of FEATURES	
		p.4	Modification of ORDERING INFORMATION	
		p.5	Modification of ABSOLUTE MAXIMUM RATINGS	
		p.6	Modification of SWITCHING CHARACTERISTICS	
		pp.7, 8	Modification of TEST CIRCUIT	
		pp.9 to 12	Addition of TYPICAL CHARACTERISTICS	
		p.17	Addition of SPECIFICATION OF VDE MARKS LICENSE DOCUMENT	

NOTICE

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. California Eastern Laboratories and Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software or information.
- 2. California Eastern Laboratories has used reasonable care in preparing the information included in this document, but California Eastern Laboratories does not warrant that such information is error free. California Eastern Laboratories and Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. California Eastern Laboratories and Renesas Electronics do not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of California Eastern Laboratories or Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. California Eastern Laboratories and Renesas Electronics assume no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. California Eastern Laboratories and Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by California Eastern Laboratories or Renesas Electronics.
- 6. You should use the Renesas Electronics products described in this document within the range specified by California Eastern Laboratories, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. California Eastern Laboratories shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a California Eastern Laboratories sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. California Eastern Laboratories and Renesas Electronics assume no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of California Eastern Laboratories, who distributes, disposes of, or otherwise places the Renesas Electronics product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, California Eastern Laboratories and Renesas Electronics assume no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of California Eastern Laboratories.
- 12. Please contact a California Eastern Laboratories sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- NOTE 1: "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- NOTE 2: "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.
- **NOTE 3:** Products and product information are subject to change without notice.

CEL Headquarters • 4590 Patrick Henry Drive, Santa Clara, CA 95054 • Phone (408) 919-2500 • www.cel.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Output Optocouplers category:

Click to view products by CEL manufacturer:

Other Similar products are found below:

ACPL-K370-500E ACPL-P340-500E ACPL-P341-500E ACPL-36JV-000E H11L1S(TA)-V CPC1590P TLP700H(F) TLP705A(F)

TLP152(E TLP700A(F) FOD3150 ACPL-K376-500E ACPL-K376-560E VO3120-X001 ACPL-M483-500E TLP705A(TP,F) ACNW3410000E VO3120-X019T TLP700A(TP,F) ACPL-32JT-500E ACPL-W483-500E ACPL-W483-560E TLP701H(TP,F) ACPL-W340-560E

H11L2S(TA)-V H11L3SR2M HCNW4506 HCPL-315J HCPL3700SD HCPL-4200-500E HCPL-5301 HCPL-5700#300 HCPL-5701

HCPL-6731 HCPL-6750 HCPL-T251-000E TLP151A(E) TLP2345(E(T TLP2348(E(T TLP350H(F) TLP5214(E(O TLP701AF(F) MID400 6N140A 8302401EA 8302401EC FOD8333 5962-8947701PA 5962-89785022A TLP351H(TP1,F)