

N-channel 60 V 14.8 mΩ standard level MOSFET in D2PAK Rev. 2 — 1 March 2012 Product data s

Product data sheet

Product profile 1.

1.1 General description

Standard level N-channel MOSFET in D2PAK package qualified to 175 °C. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment.

1.2 Features and benefits

- High efficiency due to low switching and conduction losses
- Suitable for standard level gate drive sources

1.3 Applications

Quick reference date

Table 1

- DC-to-DC converters
- Load switching

- Motor control
- Server power supplies

1.4 Quick reference data

Parameter drain-source voltage	Conditions	Min	Turn		
drain source voltage			Тур	Max	Unit
urani-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	-	60	V
drain current	T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 1</u>	-	-	50	А
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	-	86	W
junction temperature		-55	-	175	°C
aracteristics					
R _{DSon} drain-source on-state resistance	V _{GS} = 10 V; I _D = 15 A; T _j = 100 °C; see <u>Figure 12</u>	-	-	23.7	mΩ
	V _{GS} = 10 V; I _D = 15 A; T _j = 25 °C; see <u>Figure 13</u>	-	12.6	14.8	mΩ
characteristics					
gate-drain charge	V_{GS} = 10 V; I_{D} = 25 A; V_{DS} = 30 V;	-	4.7	-	nC
total gate charge	see Figure 14; see Figure 15	-	20.9	-	nC
e ruggedness					
non-repetitive drain-source avalanche energy	V_{GS} = 10 V; T _{j(init)} = 25 °C; I _D = 50 A; V _{sup} ≤ 60 V; R _{GS} = 50 Ω; unclamped	-	-	44	mJ
	drain current total power dissipation junction temperature aracteristics drain-source on-state resistance characteristics gate-drain charge total gate charge e ruggedness non-repetitive drain-source	$\begin{array}{c} \mbox{drain current} & T_{mb} = 25 \ {}^\circ\mbox{C}; \ V_{GS} = 10 \ V; \ see \ Figure 1} \\ \mbox{total power dissipation} & T_{mb} = 25 \ {}^\circ\mbox{C}; \ see \ Figure 2} \\ \mbox{junction temperature} \\ \mbox{aracteristics} & \\ \mbox{drain-source on-state} & V_{GS} = 10 \ V; \ I_D = 15 \ A; \ T_j = 100 \ {}^\circ\mbox{C}; \\ \ see \ Figure 12} \\ \ V_{GS} = 10 \ V; \ I_D = 15 \ A; \ T_j = 25 \ {}^\circ\mbox{C}; \\ \ see \ Figure 12} \\ \ V_{GS} = 10 \ V; \ I_D = 15 \ A; \ T_j = 25 \ {}^\circ\mbox{C}; \\ \ see \ Figure 13} \\ \mbox{characteristics} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{c c} \mbox{drain current} & T_{mb} = 25 \ {}^\circ\mbox{C}; \ V_{GS} = 10 \ V; \ see \ Figure 1 & - \\ \hline total \ power \ dissipation & T_{mb} = 25 \ {}^\circ\mbox{C}; \ see \ Figure 2 & - \\ \hline junction \ temperature & -55 \\ \hline aracteristics & & \\ \ drain-source \ on-state \ resistance & V_{GS} = 10 \ V; \ I_D = 15 \ A; \ T_j = 100 \ {}^\circ\mbox{C}; & - \\ \hline see \ Figure 12 & \\ \hline V_{GS} = 10 \ V; \ I_D = 15 \ A; \ T_j = 25 \ {}^\circ\mbox{C}; & - \\ \hline see \ Figure 13 & \\ \hline characteristics & & \\ \hline gate-drain \ charge & V_{GS} = 10 \ V; \ I_D = 25 \ A; \ V_{DS} = 30 \ V; & - \\ \hline see \ Figure 14; \ see \ Figure 15 & - \\ \hline e \ ruggedness & & \\ \hline non-repetitive \ drain-source & V_{GS} = 10 \ V; \ T_{j(init)} = 25 \ {}^\circ\mbox{C}; \ I_D = 50 \ A; & - \\ \hline \end{array}$	$\begin{array}{cccc} drain \ current & T_{mb} = 25\ ^{\circ}C;\ V_{GS} = 10\ V;\ see\ \underline{Figure\ 1}} & - & - \\ \hline total\ power\ dissipation & T_{mb} = 25\ ^{\circ}C;\ see\ \underline{Figure\ 2}} & - & - \\ \hline junction\ temperature & -55 & - \\ \hline aracteristics & & & \\ drain-source\ on-state \\ resistance & & & \\ \hline V_{GS} = 10\ V;\ I_D = 15\ A;\ T_j = 100\ ^{\circ}C; & - & - \\ \hline see\ \underline{Figure\ 12}} & \\ \hline V_{GS} = 10\ V;\ I_D = 15\ A;\ T_j = 25\ ^{\circ}C; & - & 12.6 \\ \hline see\ \underline{Figure\ 13}} & \\ \hline characteristics & & & \\ \hline characteristics & & & \\ \hline gate-drain\ charge & & V_{GS} = 10\ V;\ I_D = 25\ A;\ V_{DS} = 30\ V; & - & 4.7 \\ \hline see\ \underline{Figure\ 14};\ see\ \underline{Figure\ 15} & - & 20.9 \\ \hline e\ ruggedness & & & \\ \hline non-repetitive\ drain-source & & V_{GS} = 10\ V;\ T_{j(init)} = 25\ ^{\circ}C;\ I_D = 50\ A; & - & - \\ \hline \end{array}$	drain current $T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V}; \text{ see Figure 1}$ 50total power dissipation $T_{mb} = 25 \text{ °C}; \text{ see Figure 2}$ 86junction temperature-55-175aracteristicsdrain-source on-state resistance $V_{GS} = 10 \text{ V}; \text{ I}_D = 15 \text{ A}; \text{ T}_j = 100 \text{ °C};$ see Figure 1223.7 $V_{GS} = 10 \text{ V}; \text{ I}_D = 15 \text{ A}; \text{ T}_j = 25 \text{ °C};$ -12.614.8characteristicsgate-drain charge $V_{GS} = 10 \text{ V}; \text{ I}_D = 25 \text{ A}; \text{ V}_{DS} = 30 \text{ V};$ see Figure 14; see Figure 15-4.7-total gate charge $V_{GS} = 10 \text{ V}; \text{ I}_D = 25 \text{ A}; \text{ V}_{DS} = 30 \text{ V};$ see Figure 14; see Figure 15-20.9-e ruggednessnon-repetitive drain-source $V_{GS} = 10 \text{ V}; \text{ T}_{j(init)} = 25 \text{ °C}; \text{ I}_D = 50 \text{ A};$ 44

N-channel 60 V 14.8 mΩ standard level MOSFET in D2PAK

Pinning information 2.

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		_
2	D	drain ^[1]	mb	
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S

SOT404 (D2PAK)

[1] It is not possible to make connection to pin 2

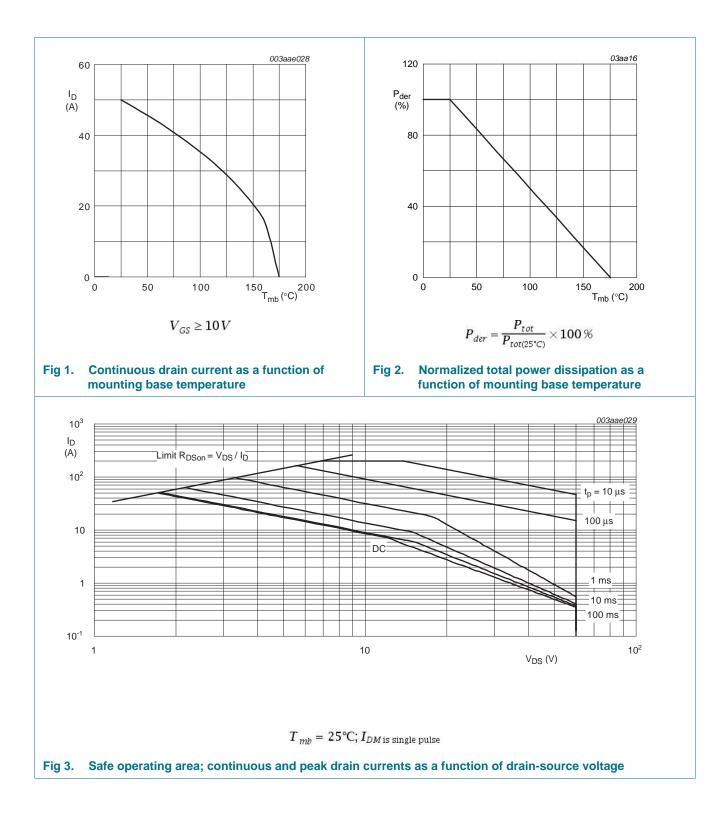
Ordering information 3.

Table 3. **Ordering information**

Type number	Package		
	Name	Description	Version
PSMN015-60BS	D2PAK	plastic single-ended surface-mounted package (D2PAK); 3 leads (one lead cropped)	SOT404

Limiting values 4.

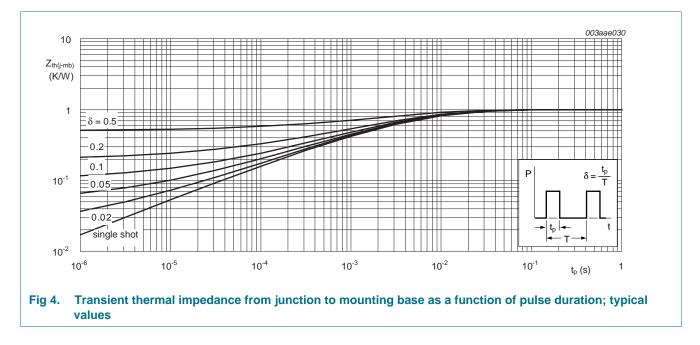
Limiting values Table 4.


In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Conditions	Min	Max	Unit
drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	60	V
drain-gate voltage	T _j ≥ 25 °C; T _j ≤ 175 °C; R _{GS} = 20 kΩ	-	60	V
gate-source voltage		-20	20	V
drain current	V _{GS} = 10 V; T _{mb} = 100 °C; see <u>Figure 1</u>	-	36	А
	V_{GS} = 10 V; T_{mb} = 25 °C; see <u>Figure 1</u>	-	50	А
peak drain current	pulsed; t _p ≤ 10 µs; T _{mb} = 25 °C; see <u>Figure 3</u>	-	201	A
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	86	W
storage temperature		-55	175	°C
junction temperature		-55	175	°C
peak soldering temperature		-	260	°C
in diode				
source current	T _{mb} = 25 °C	-	50	А
peak source current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^{\circ}C$	-	201	А
ruggedness				
non-repetitive drain-source avalanche energy	V_{GS} = 10 V; T _{j(init)} = 25 °C; I _D = 50 A; V _{sup} ≤ 60 V; R _{GS} = 50 Ω; unclamped	-	44	mJ
	drain-source voltage drain-gate voltage gate-source voltage drain current peak drain current total power dissipation storage temperature junction temperature peak soldering temperature in diode source current peak source current ruggedness non-repetitive drain-source	$\begin{array}{ll} drain-source \ voltage & T_j \geq 25\ ^{\circ}C;\ T_j \leq 175\ ^{\circ}C & \\ drain-gate \ voltage & T_j \geq 25\ ^{\circ}C;\ T_j \leq 175\ ^{\circ}C;\ R_{GS} = 20\ k\Omega & \\ gate-source \ voltage & \\ drain \ current & \frac{V_{GS} = 10\ \text{V};\ T_{mb} = 100\ ^{\circ}C;\ see\ Figure\ 1}{V_{GS} = 10\ \text{V};\ T_{mb} = 25\ ^{\circ}C;\ see\ Figure\ 1} & \\ peak\ drain\ current & pulsed;\ t_p \leq 10\ \mu\text{s};\ T_{mb} = 25\ ^{\circ}C;\ see\ Figure\ 2 & \\ storage\ temperature & \\ junction\ temperature & \\ peak\ soldering\ temperature & \\ peak\ source\ current & T_{mb} = 25\ ^{\circ}C & \\ peak\ source\ current & T_{mb} = 25\ ^{\circ}C & \\ peak\ source\ current & T_{mb} = 25\ ^{\circ}C & \\ pulsed;\ t_p \leq 10\ \mu\text{s};\ T_{mb} = 25\ ^{\circ}C & \\ ruggedness & \\ non-repetitive\ drain-source & V_{GS} = 10\ \text{V};\ T_{j(init)} = 25\ ^{\circ}C;\ I_D = 50\ \text{A}; \\ \end{array}$	$\begin{array}{ccc} drain-source voltage & T_{j} \geq 25 \ ^{\circ}\text{C}; \ T_{j} \leq 175 \ ^{\circ}\text{C} & - \\ \\ drain-gate voltage & T_{j} \geq 25 \ ^{\circ}\text{C}; \ T_{j} \leq 175 \ ^{\circ}\text{C}; \ R_{GS} = 20 \ \text{k}\Omega & - \\ \\ gate-source voltage & -20 \\ \\ drain current & V_{GS} = 10 \ \text{V}; \ T_{mb} = 100 \ ^{\circ}\text{C}; \ see \ Figure 1 & - \\ \hline V_{GS} = 10 \ \text{V}; \ T_{mb} = 25 \ ^{\circ}\text{C}; \ see \ Figure 1 & - \\ \hline V_{GS} = 10 \ \text{V}; \ T_{mb} = 25 \ ^{\circ}\text{C}; \ see \ Figure 1 & - \\ \hline V_{GS} = 10 \ \text{V}; \ T_{mb} = 25 \ ^{\circ}\text{C}; \ see \ Figure 2 & - \\ \\ storage temperature & T_{mb} = 25 \ ^{\circ}\text{C}; \ see \ Figure 2 & - \\ \\ storage temperature & -55 \\ \\ peak soldering temperature & -55 \\ \\ peak soldering temperature & -55 \\ \\ peak soldering temperature & -55 \\ \\ peak source current & T_{mb} = 25 \ ^{\circ}\text{C} & - \\ \\ \\ pulsed; \ t_{p} \leq 10 \ \mu\text{s}; \ T_{mb} = 25 \ ^{\circ}\text{C} & - \\ \\ \\ ruggedness & \\ \\ non-repetitive drain-source & V_{GS} = 10 \ \text{V}; \ T_{j(init)} = 25 \ ^{\circ}\text{C}; \ I_{D} = 50 \ \text{A}; \ - \\ \end{array}$	$\begin{array}{cccccccc} drain-source voltage & T_j \geq 25 \ ^{\circ}C; \ T_j \leq 175 \ ^{\circ}C & - & 60 \\ drain-gate voltage & T_j \geq 25 \ ^{\circ}C; \ T_j \leq 175 \ ^{\circ}C; \ R_{GS} = 20 \ k\Omega & - & 60 \\ gate-source voltage & -20 & 20 \\ drain current & V_{GS} = 10 \ ^{\circ}V; \ T_{mb} = 100 \ ^{\circ}C; \ see \ Figure 1 & - & 36 \\ \hline V_{GS} = 10 \ ^{\circ}V; \ T_{mb} = 25 \ ^{\circ}C; \ see \ Figure 1 & - & 50 \\ peak \ drain \ current & pulsed; \ t_p \leq 10 \ \mu s; \ T_{mb} = 25 \ ^{\circ}C; \\ see \ Figure 3 & - & 201 \\ see \ Figure 3 & - & 201 \\ storage \ temperature & -55 & 175 \\ junction \ temperature & -55 & 175 \\ junction \ temperature & -55 & 175 \\ peak \ soldering \ temperature & -55 & 175 \\ peak \ soldering \ temperature & - & 260 \\ \hline in \ diode & & \\ source \ current & T_{mb} = 25 \ ^{\circ}C & - & 50 \\ peak \ source \ current & T_{mb} = 25 \ ^{\circ}C & - & 50 \\ peak \ source \ current & T_{mb} = 25 \ ^{\circ}C & - & 201 \\ \hline ruggedness & \\ non-repetitive \ drain-source & V_{GS} = 10 \ V; \ T_{j(init)} = 25 \ ^{\circ}C; \ I_D = 50 \ A; & - & 44 \\ \end{array}$

PSMN015-60BS Product data sheet

PSMN015-60BS


N-channel 60 V 14.8 m Ω standard level MOSFET in D2PAK

N-channel 60 V 14.8 mΩ standard level MOSFET in D2PAK

Thermal characteristics 5.

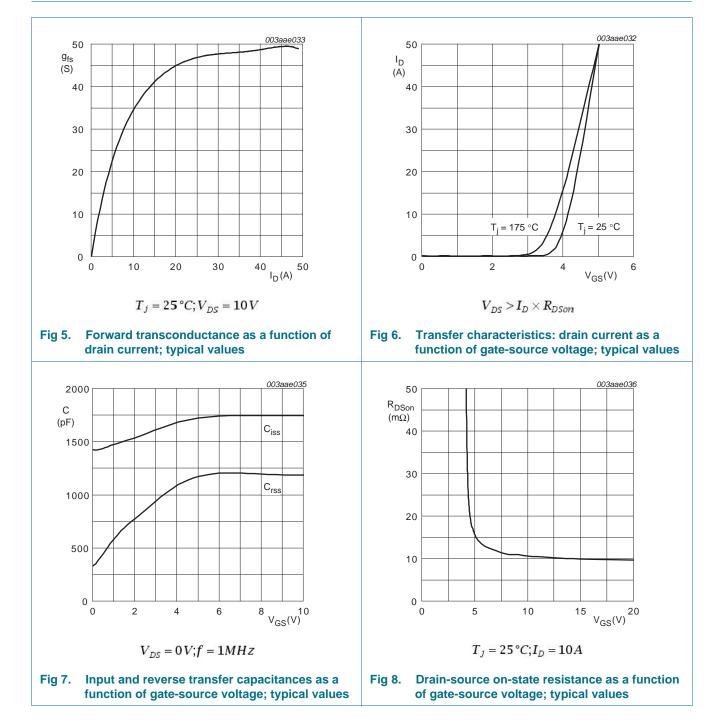
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	1	1.74	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	Minimum footprint; mounted on a printed circuit board	-	60	-	K/W

Table 5 Thermal characteristics

PSMN015-60BS

N-channel 60 V 14.8 mΩ standard level MOSFET in D2PAK

6. Characteristics


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static char	acteristics					
V _{(BR)DSS}	drain-source breakdown	I _D = 250 μA; V _{GS} = 0 V; T _i = -55 °C	54	-	-	V
. ,	voltage	I _D = 250 μA; V _{GS} = 0 V; T _j = 25 °C	60	-	-	V
V _{GS(th)}	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C};$ see <u>Figure 10</u> ; see <u>Figure 11</u>	2	3	4	V
V _{GSth}	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C};$ see <u>Figure 11</u>	-	-	4.8	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 175 \text{ °C};$ see <u>Figure 11</u>	1	-	-	V
I _{DSS}	drain leakage current	V _{DS} = 60 V; V _{GS} = 0 V; T _j = 25 °C	-	0.03	2	μA
		V _{DS} = 60 V; V _{GS} = 0 V; T _i = 125 °C	-	-	30	μA
I _{GSS}	gate leakage current	V _{GS} = 20 V; V _{DS} = 0 V; T _i = 25 °C	-	10	100	nA
	V _{GS} = -20 V; V _{DS} = 0 V; T _j = 25 °C	-	10	100	nA	
R _{DSon}	R _{DSon} drain-source on-state resistance	V _{GS} = 10 V; I _D = 15 A; T _j = 175 °C; see <u>Figure 12</u>	-	28.9	34	mΩ
		V _{GS} = 10 V; I _D = 15 A; T _j = 100 °C; see <u>Figure 12</u>	-	-	23.7	mΩ
		V _{GS} = 10 V; I _D = 15 A; T _j = 25 °C; see <u>Figure 13</u>	-	12.6	14.8	mΩ
R _G	gate resistance	f = 1 MHz	-	1.3	-	Ω
Dynamic c	haracteristics					
Q _{G(tot)}	total gate charge	$I_D = 25 \text{ A}; V_{DS} = 30 \text{ V}; V_{GS} = 10 \text{ V};$ see Figure 14; see Figure 15	-	20.9	-	nC
		$I_D = 0 \text{ A}; V_{DS} = 0 \text{ V}; V_{GS} = 10 \text{ V}$	-	17	-	nC
Q _{GS}	gate-source charge	$I_D = 25 \text{ A}; V_{DS} = 30 \text{ V}; V_{GS} = 10 \text{ V};$ see Figure 14; see Figure 15	-	6.2	-	nC
Q _{GS(th)}	pre-threshold gate-source charge	$I_D = 25 \text{ A}; \text{ V}_{DS} = 30 \text{ V}; \text{ V}_{GS} = 10 \text{ V};$ see Figure 14	-	3.7	-	nC
Q _{GS(th-pl)}	post-threshold gate-source charge		-	2.4	-	nC
Q _{GD}	gate-drain charge	$I_D = 25 \text{ A}; V_{DS} = 30 \text{ V}; V_{GS} = 10 \text{ V};$ see Figure 14; see Figure 15	-	4.7	-	nC
V _{GS(pl)}	gate-source plateau voltage	V _{DS} = 30 V; see <u>Figure 14;</u> see <u>Figure 15</u>	-	4.8	-	V
C _{iss}	input capacitance	V _{DS} = 30 V; V _{GS} = 0 V; f = 1 MHz;	-	1220	-	pF
C _{oss}	output capacitance	T _j = 25 °C; see <u>Figure 16</u>	-	169	-	pF
C _{rss}	reverse transfer capacitance		-	95	-	pF
d(on)	turn-on delay time	$V_{DS} = 30 \text{ V}; \text{ R}_{L} = 1.2 \Omega; \text{ V}_{GS} = 10 \text{ V};$	-	12	-	ns
r	rise time	$R_{G(ext)} = 4.7 \Omega$	-	13	-	ns
d(off)	turn-off delay time		-	27	-	ns
t _f	fall time		-	7	-	ns

PSMN015-60BS

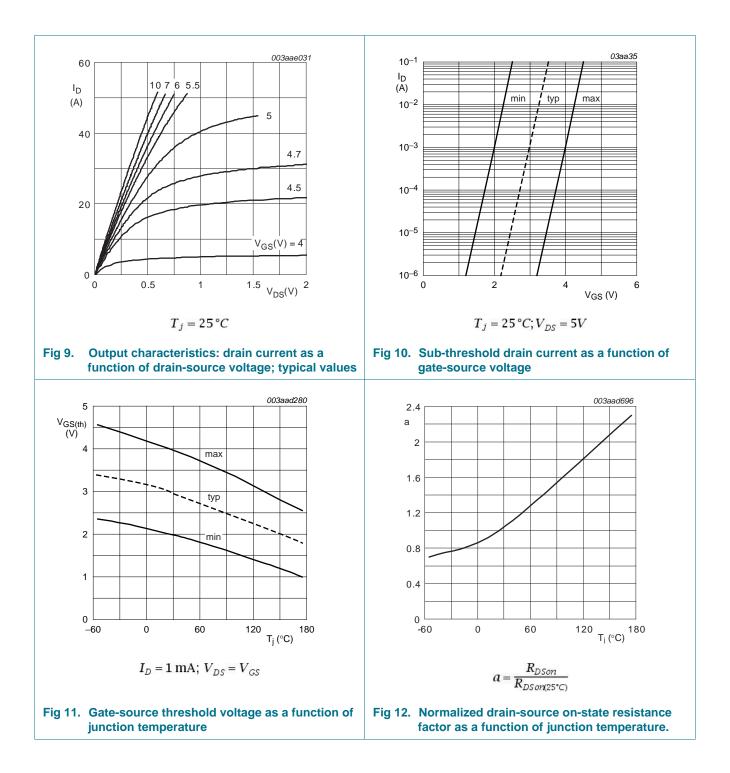
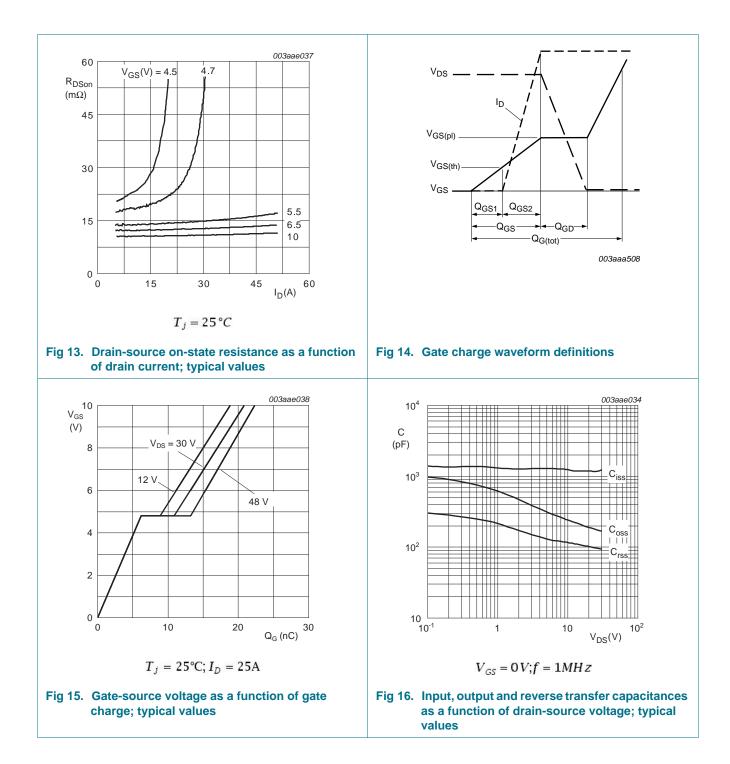

N-channel 60 V 14.8 m Ω standard level MOSFET in D2PAK

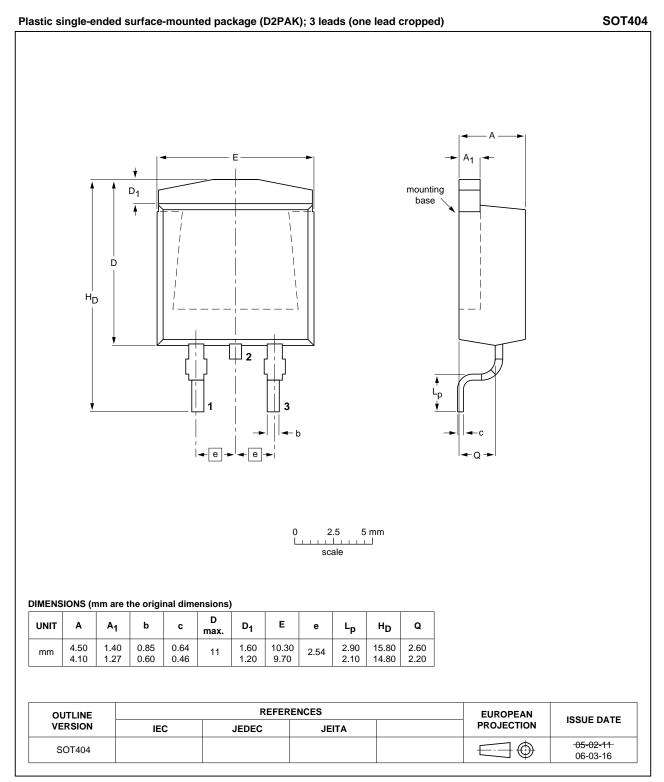
Table 6.	Characteristics	continued
----------	------------------------	-----------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Source-dra	in diode					
V _{SD}	source-drain voltage	I_{S} = 15 A; V_{GS} = 0 V; T_{j} = 25 °C	-	0.8	1.2	V
t _{rr}	reverse recovery time	I _S = 25 A; dI _S /dt = -100 A/µs;	-	31	-	ns
Qr	recovered charge	$V_{GS} = 0 V; V_{DS} = 30 V$	-	28.5	-	nC



N-channel 60 V 14.8 m Ω standard level MOSFET in D2PAK

PSMN015-60BS


N-channel 60 V 14.8 mΩ standard level MOSFET in D2PAK

PSMN015-60BS

N-channel 60 V 14.8 mΩ standard level MOSFET in D2PAK

7. Package outline

Fig 17. Package outline SOT404 (D2PAK)

All information provided in this document is subject to legal disclaimers.

PSMN015-60BS

N-channel 60 V 14.8 mΩ standard level MOSFET in D2PAK

8. Revision history

Table 7. Revision l	nistory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PSMN015-60BS v.2	20120301	Product data sheet	-	PSMN015-60BS v.1
Modifications:	 Status change 	d from objective to product.		
	 Various chang 	es to content.		
PSMN015-60BS v.1	20111021	Objective data sheet	-	-

Legal information 9.

9.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

Please consult the most recently issued document before initiating or completing a design. [1]

[2] The term 'short data sheet' is explained in section "Definitions"

The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product [3] status information is available on the Internet at URLhttp://www.nxp.com.

9.2 Definitions

Preview— The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft- The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet— A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification— The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet

9.3 **Disclaimers**

Limited warranty and liability- Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial saleof NXP Semiconductors.

Right to make changes- NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use-NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data— The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications— Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

PSMN015-60BS

N-channel 60 V 14.8 m Ω standard level MOSFET in D2PAK

Terms and conditions of commercial sale— NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published athttp://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license— Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control— This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products— Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations— A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante,Bitport,Bitsound,CoolFlux,CoReUse,DESFire,EZ-HV,FabKey,G reenChip,HiPerSmart,HITAG,I²C-buslogo,ICODE,I-CODE,ITEC,Labelution ,MIFARE,MIFARE Plus,MIFARE Ultralight,MoReUse,QLPAK,Silicon Tuner,SiliconMAX,SmartXA,STARplug,TOPFET,TrenchMOS,TriMediaand UCODE— are trademarks of NXP B.V.

HD RadioandHD Radiologo — are trademarks of iBiquity Digital Corporation.

10. Contact information

For more information, please visit:http://www.nxp.com

For sales office addresses, please send an email to:<u>salesaddresses@nxp.com</u>

PSMN015-60BS

N-channel 60 V 14.8 mΩ standard level MOSFET in D2PAK

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values2
5	Thermal characteristics4
6	Characteristics5
7	Package outline9
8	Revision history10
9	Legal information11
9.1	Data sheet status11
9.2	Definitions11
9.3	Disclaimers
9.4	Trademarks12
10	Contact information12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 1 March 2012 Document identifier: PSMN015-60BS

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for nxp manufacturer:

Other Similar products are found below :

MC13211R2 PCA9518PW,112 LFSTBEB865X MC33399PEFR2 PCA9551PW,112 MC34825EPR2 CBTW28DD14AETJ PCF8583P MC68340AB16E MC8640DTVJ1250HE EVBCRTOUCH MC9S08PT16AVLC MC9S08PT8AVTG MC9S08SH32CTL MCF54415CMJ250 MCIMX6Q-SDB MCIMX6SX-SDB 74ALVC125BQ,115 74HC4050N 74HC4514N MK21FN1M0AVLQ12 MKV30F128VFM10 FRDM-K66F FRDM-KW40Z FRDM-MC-LVBLDC PESD18VF1BSFYL PMF63UNEX PSMN4R0-60YS,115 HEF4028BPN RAPPID-567XFSW MPC565MVR56 MPC574XG-176DS MPC860PCVR66D4 BT137-600E BT139X-600.127 BUK7628-100A118 BUK765R0-100E.118 BZT52H-B9V1.115 BZV85-C3V9.113 BZX79-C47.113 P5020NSE7VNB S12ZVML12EVBLIN SCC2692AC1N40 LPC1785FBD208K LPC2124FBD64/01 LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB LS1043ASE7PQA T1023RDB-PC