

POWER RESISTOR - PR01

FEATURES

- · Metal film technology
- High power in small package
- High stability, reliability and uniformity characteristics
- Good performance for pulse applications
- Different leads for different applications
- Various forming styles are available
- Defined interruption behavior (fusing time)
- Non-flammable
- Various packing and taping configurations

MARKET SEGMENTS AND APPLICATIONS

INDUSTRY SECTOR	APPLICATION SEGMENT	END-USER EQUIPMENT
Industrial	Power	Power supplies Motor speed controls
Telecom	Data Communication	Line protection resistor Power supplies
Consumer	Sound & Vision	Amplifiers Television, Color monitor Video cassette recorder
Consumer	Kitchen Appliances	Blender
	Lighting	Ballast equipment
Automotive	Electronic Systems	Dashboard electronics Lighting equipment Window / mirror steering ABS system, Alarm system, Airbag Electronic fuel injection

PR01

Phoenix Passive Components

TECHNOLOGY

A homogeneous film of metal alloy is deposited on a high-grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires of electrolytic copper or copper-clad iron are welded to the end-caps. The resistors are coated with a red, non-flammable lacquer, which provides electrical, mechanical and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with MIL-STD-202, method 215 and IEC 60068-2-45.

QUICK REFERENCE DATA

DESCRIPTION	PR01 ±5% (E24 series)	PR01 ±1% (E24/E96 series)		
	Cu / Fe	Cu lead		
Resistance range	0.22 Ω - 1 ΜΩ	1 Ω - 1 ΜΩ		
Maximum dissipation at T _{amb} = 70 °C	1	W		
Thermal resistance (R _{th})	135 K/W			
Limiting voltage (DC or RMS)	350 V			
Rated voltage (1)	√Pn	хR		
Temperature coefficient	±250 p	ppm/°C		
Basic specification	IEC 60115-1	and 60115-4		
Climatic category (IEC 60068)	55/1	55/56		
Stability ΔR/R _{max} after:				
Load	±5% + 0.1 Ω	±1% + 0.1 Ω		
Climatic tests	±3% + 0.1 Ω	±1% + 0.1 Ω		
Resistance to soldering heat	$\pm 1\% + 0.05 \Omega$ $\pm 0.5\% + 0.05 \Omega$			

⁽¹⁾ Maximum rated voltage is the limiting voltage

MECHANICAL DATA

AXIAL STYLE

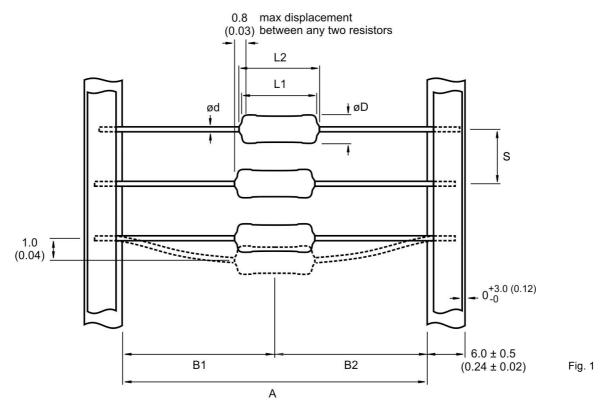


Table 1. Mechanical Data.

PRODUCT	A	L1 max	L2 max	ØD max	B1-B2 max	Ød	s	WEIGHT gr/100 pcs
PR01	52.0 + 1.5 / - 0.0 (2.05 + 0.06 / - 0.00)	6.5 (0.26)	8.5 (0.34)	2.5 (0.10)	1.2 (0.05)	0.58 ±0.05 Cu (0.023 ±0.002 Cu)	5.0 ±0.1 (0.20 ±0.01)	24.0

Dimensions unless specified in mm (inches)

MOUNTING

The resistors are suitable for processing on automatic insertion equipment, cutting and bending machines. A radial taped version economizes space on the PCB. The double kink style offers great advantages for manual insertion improving the mounting stability for the customer. They have a real snap in function to fix the resistor in PCB without weakening the connecting leads.

ELECTRICAL CHARACTERISTICS

DERATING

The power that the resistor can dissipate depends on the operating temperature.

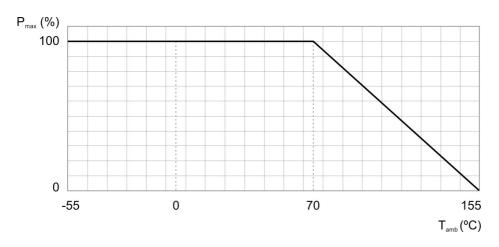


Fig. 2. Maximum dissipation (P_{max}) in percentage of rated power as a function of ambient temperature (T_{amb})

APPLICATION INFORMATION

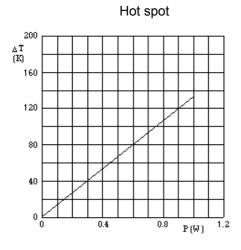


Fig. 3. $~\phi$ 0.58 mm Cu - leads Hot spot temperature rise ($\Delta T)$ as a function of dissipated power

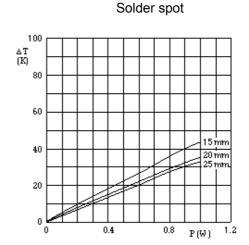


Fig. 4. ϕ 0.58 mm Cu - leads Minimum distance from resistor body to PCB =1mm Temperature rise (Δ T) at the lead end (solder spot) as a function of dissipated power at various leads lengths after mounting

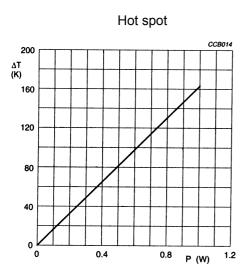


Fig. 5. ϕ 0.60 mm FeCu - leads Hot spot temperature rise (Δ T) as a function of dissipated power (preformed types only)

Solder spot **CCB015** **CCB

Fig. 6. ϕ 0.60 mm FeCu - leads Minimum distance from resistor body to PCB =1mm Temperature rise (Δ T) at the lead end (solder spot) as a function of dissipated power at various leads lengths after mounting (preformed types only)

Note: The maximum permissible hot spot temperature is 205 °C

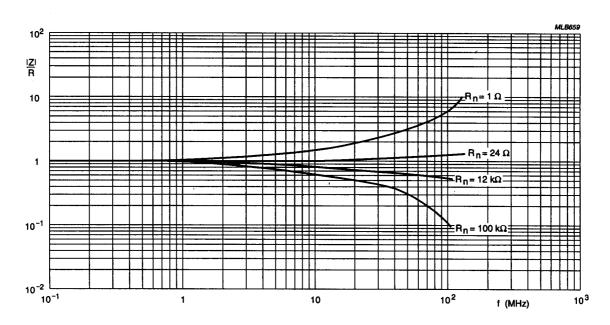


Fig. 7. Impedance as a function of applied frequency

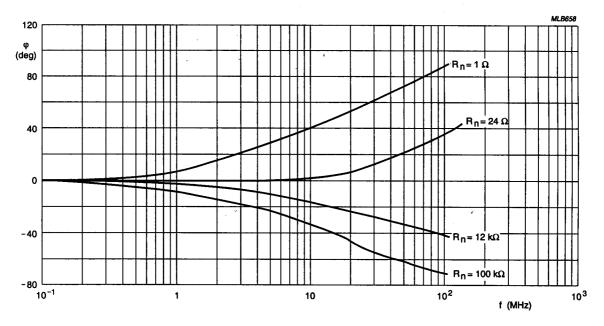


Fig. 8. Phase angle as a function applied frequency

PULSE LOADING CAPABILITIES

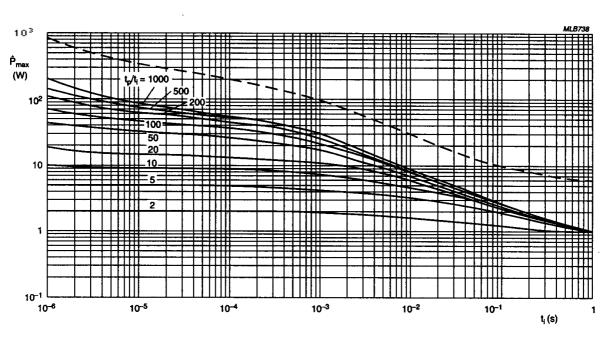


Fig. 9. Pulse on a regular basis, maximum permissible peak pulse power (^P_{max}) as a function of pulse duration (ti)

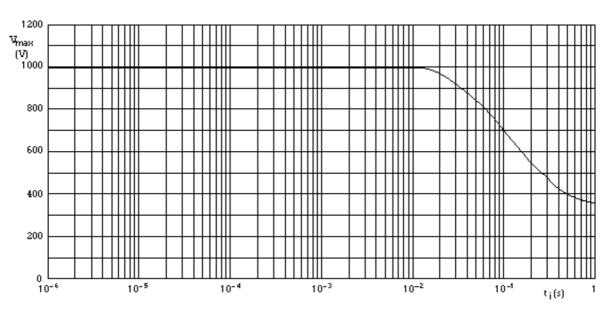


Fig. 10. Pulse on a regular basis, maximum permissible peak pulse voltage (^V_{max}) as a function of pulse duration (ti)

INTERRUPTION CHARACTERISTICS

The graphs are based on measured data under constant voltage conditions; these data may deviate according to the application.

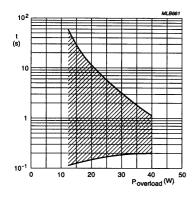


Fig. 11. Time to interruption as a function of overload power for range: $0R22 \le Rn < 1R$

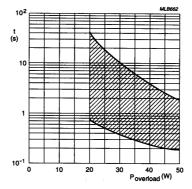


Fig. 12. Time to interruption as a function of overload power for range: $1R \le Rn < 15R$

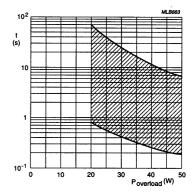


Fig. 13. Time to interruption as a function of overload power for range: $16R \le Rn < 560R$

Phoenix Passive Components

MARKING

The nominal resistance and tolerance are marked on the resistor using four or five colored bands in accordance with IEC publication 60062 "color code for fixed resistors". Standard values of nominal resistance are taken from the E24/E96 series for resistors with a tolerance of $\pm 5\%$ or $\pm 1\%$. The values of the E24/E96 series are in accordance with IEC publication 60063.

ORDERING INFORMATION

Table 2. Ordering code.

LEAD Ø	TOLERANCE	TAPING	QUANTITY (pcs)	PACKAGING	ORDERING CODE
			5000		2306 191 5xxxx
	±1%	52.0 (2.05)	0000	AMMOPACK	2322 196 1xxxx
0.58 Cu			1000	AMMOPACK	2306 191 2xxx
(0.023)	±5%		(2.05)	1000	AMMOPACK
			5000	AMMOPACK	2322 193 14xxx
			3300	REEL	2306 197 23xxx

Dimensions unless specified in mm (inches)

Check "Formed leads" specifications to see related part-numbers

The resistors have a 12 digit ordering code starting with 2306 or 2322.

The next 5 digits indicate the resistor type and packaging see table 2.

For 5% tolerance the last 3 digits indicate the resistance value:

- The first 2 digits indicate the resistance value;
- The last digit indicates the resistance decade in accordance with table 3.

For 1% tolerance the last 4 digits indicate the resistance value:

- The first 3 digits indicate the resistance value;
- The last digit indicates the resistance decade in accordance with table 3.

Phoenix Passive Components

Table 3. Last digit of ordering code.

RESISTANCE DECADE (5%)	RESISTANCE DECADE (1%)	LAST DIGIT
0.22 - 0.91 Ω	-	7
1 – 9.1 Ω	1 - 9.76 Ω	8
10 - 91 Ω	10 - 97.6 Ω	9
100 - 910 Ω	100 - 976 Ω	1
1 – 9.1 kΩ	1 - 9.76 kΩ	2
10 - 91 kΩ	10 - 97.6 kΩ	3
100 - 910 kΩ	100 - 976 kΩ	4
1 ΜΩ	1 ΜΩ	5

Example:

PR01, 150 Ω , ±5%, ammopack 1000 pcs is **2306 197 53151**

NAFTA ORDERING INFORMATION

Table 4. NAFTA ordering code.

LEAD Ø	TOLERANCE	TAPING	QUANTITY (pcs)	PACKAGING	NAFTA ORDERING CODE	
			5000	REEL	5073NWxxxxxJ12AFX	
	±5% ±1%	52.0 (2.05)	1000	AMMOPACK	5073NWxxxxxJA8AFX	
0.58 Cu				5000	AMMOPACK	5073NWxxxxxJ18AFX
(0.023)			5000	AMMOPACK	5073NWxxxxxF18AF5	
			1000	AMMOPACK	5073NWxxxxxFA8AF5	
			5000	REEL	5073NWxxxxxF12AF5	

Dimensions unless specified in mm (inches)

The ohmic value in the NAFTA ordering code (see table 4) is represented by the "xxxxx" in the middle of the above ordering code. Table 5 gives some examples how to use these 5 digits.

Table 5. Examples of the ohmic value.

VALUE	5 DIGITS
1 Ω	1R000
10 Ω	10R00
100 Ω	100R0
1 kΩ	1K000
10 kΩ	10K00
100 kΩ	100K0
1 ΜΩ	1M000

PACKAGING

TAPE IN AMMOPACK

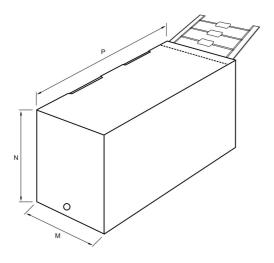


Table 6. Ammopack.

PRODUCT	TAPING	М	N	Р	QUANTITY (pcs)
PR01	52.0 + 1.5 / - 0.0 (2.05 + 0.06 / - 0.00)	82 (3.3)	28 (1.2)	262 (10.4)	1000
PR01	52.0 + 1.5 / - 0.0 (2.05 + 0.06 / - 0.00)	78 (3.1)	100 (4.0)	260 (10.3)	5000

Dimensions unless specified in mm (inches)

TAPE ON REEL

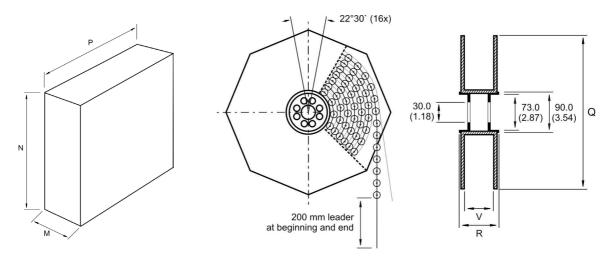


Table 7. Reel.

PRODUCT	TAPING	М	N	P	ď	V	R	QTY pcs
PR01	52.0 + 1.5 / - 0.0 (2.05 + 0.06 / - 0.00)	92 (3.7)	311 (12.3)	311 (12.3)	305 (12.1)	75 (3.0)	86 (3.4)	5000

Dimensions unless specified in mm (inches)

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance to the schedule of IEC publications 60115 – 1, category 55/155/56 (rated temperature range - 55 to +155 °C; damp heat, long term, 56 days and along the lines of IEC publications 60068-2); "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmosphere conditions according to IEC 60068-1 subclause 5.3, unless otherwise specified.

In some instances deviations from IEC applications were necessary for our method specified.

Table 8. Test and requirements.

IEC 60115-1	IEC 60068-2 TEST	TEST	PROCEDURE	REQUIR	EMENTS
CLAUSE METHOD			PR01 5%	PR01 1%	
4.6.1.1	-	Insulation resistance	500 V (DC) during 1 minute; V-block method.	$R_{ins min} 10^4 M\Omega$	

1					
IEC 60115-1	IEC 60068-2 TEST	TEST	PROCEDURE	REQUIR	EMENTS
CLAUSE	METHOD			PR01 5%	PR01 1%
4.7	-	Voltage proof on insulation	500 V (RMS) during 1 minute, V-block method.		akdown shover
4.8	-	Temperature coefficient	Between - 55 °C and + 155 °C	±250 բ	ppm/°C
4.16	21(U)	Robustness of terminations:			
4.16.2	21(Ua1)	Tensile all samples	Load 10 N, 10s		
4.16.3	21(Ub)	Bending half number of samples	Load 5 N, 4 X 90°		image 5% + 0.05 Ω
4.16.4	21(Uc)	Torsion other half of samples	3 x 360° in opposite directions		
4.17	20(Ta)	Solderability (after ageing)	16 h 155 °C; immersed in flux 600, leads immersed 2 mm for 2 ±0.5 s in a solder bath at 235 ±5 °C	Good tinning (≥ 95% covered) No damage	
4.18	20(Tb)	Resistance to soldering heat	Thermal shock: 3 s; 350 ±10 °C; 6 mm from body	$\Delta R/R_{max}$ $\Delta R/R_{max}$ $\pm 1\% + 0.05 \Omega$ $\pm 0.5\% + 0.05$	
4.19	14(Na)	Rapid change of temperature	30 minutes at - 55 °C and	No visua	l damage
		temperature	30 minutes at + 155 °C; 5 cycles	Δ R/R _{max} ±1% + 0.05 Ω	Δ R/R _{max} $\pm 0.5\% + 0.05 \Omega$
4.22	6(Fc)	Vibration	Frequency 10 to 500 Hz, displacement 1.5mm or acceleration 10g; three directions; total 6 hours (3 x 2 h)	No damage $\Delta R/R_{max} \pm 0.5\% \pm 0.05 \Omega$	
4.23		Climatic sequence:			
4.23.2	2(Ba)	Dry heat	16 h; 155 °C	$R_{\text{ins min}} 10^3 M\Omega$	
4.23.3	30(Db)	Damp heat (accelerated) 1 st cvcle	24 h; 25 °C to 55 °C; 90 to 100% RH		
4.23.4	1(Aa)	Cold	2 h; - 55 °C		
4.23.6	30(Db)	Damp heat (accelerated) remaining cycles	5 days; 25 °C to 55 °C; 90to 100% R.H.	Δ R/R _{max} ±3% + 0.05 Ω	Δ R/R _{max} \pm 1% + 0.05 Ω

IEC 60115-1	IEC 60068-2	TEST	PROCEDURE	REQUIR	EMENTS
CLAUSE	TEST METHOD			PR01 5%	PR01 1%
4.24	3(Ca)	Damp heat	56 days; 40 °C; 90 to 95% R.H.	$R_{\text{ins min}} 10^3 \text{M}\Omega$	
		(steady state)	loaded with 0.01Pff	Δ R/R _{max} ±3% + 0.05 Ω	$\Delta R/R_{max}$ ±1% + 0.05 Ω
4.25.1	-	Endurance (at 70 °C)	1000 h loaded with Pn or V _{max} 1.5 h ON and 0.5 h OFF	Δ R/R _{max} \pm 5% + 0.05 Ω	Δ R/R _{max} ±1% + 0.05 Ω
4.29	45(Xa)	Component solvent resistance	Isopropyl alcohol followed by brushing in accordance with MIL STD 202	No visible damage	
	mendment to 60115-1	Pulse Load		See figs. 9 and 10	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for vishay manufacturer:

Other Similar products are found below:

M39006/22-0577H Y00892K49000BR13L M8340109M6801GGD03 ITU1341SM3 VS-MBRB1545CTPBF IKAB100E IH10EB600K12 CP0005150R0JE1490 562R5GAD47RR S472M69Z5UR84K0R MKP1848C65090JY5L CRCW1210360RFKEA VSMF4720-GS08 TSOP34438SS1V CRCW04024021FRT7 001789X LTO050FR0500JTE3 CRCW0805348RFKEA LVR10R0200FE03 CRCW12063K30FKEAHP 009923A CRCW2010331JR02 CRCW25128K06FKEG CS6600552K000B8768 M39003/01-2289 M39003/01-2784 M39006/25-0133 M39006/25-0228 M64W101KB40 M64Z501KB40 CW001R5000JS73 CW0055R000JE12 CW0056K800JB12 CW0106K000JE73 672D826H075EK5C CWR06JC105KC CWR06NC475JC MAL219699001E3 MCRL007035R00JHB00 GBU4K-E3/51 GBU8M-E3/51 PTF56100K00QYEK PTN0805H1502BBTR1K RCWL1210R130JNEA RH005220R0FE02 RH005330R0FC02 RH010R0500FC02 132B20103 RH1007R000FJ01 RH2503R500FE01