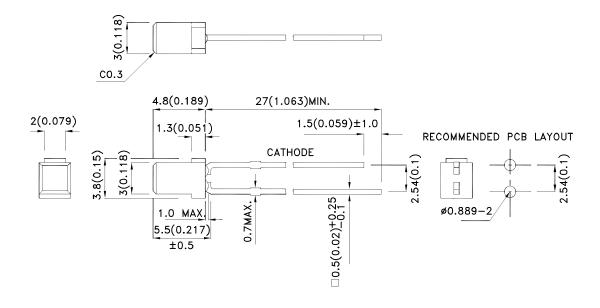


3x3mm SQUARE TOP LED LAMP

Part Number: L-714WG1WT/TD

Blue Green

ATTENTION OBSERVE PRECAUTIONS FOR HANDLING **ELECTROSTATIC** DISCHARGE SENSITIVE **DEVICES**


Features

- Low power consumption.
- Wide viewing angle.
- Reliable and rugged.
- Excellent uniformity of light output.
- Ideal for flush mounted panel indicators.
- RoHS compliant.

Description

- The Green source color devices are made with InGaN Light Emitting Diode.
- Electrostatic discharge and power surge could damage the LEDs.
- It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs.
- All devices, equipments and machineries must be electrically grounded.

Package Dimensions

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ±0.25(0.01") unless otherwise noted.
- 3. Lead spacing is measured where the leads emerge from the package.4. The specifications, characteristics and technical data described in the datasheet are subject to change without prior

SPEC NO: DSAN5309 **REV NO: V.1B** DATE: MAR/11/2014 PAGE: 1 OF 6 APPROVED: WYNEC **CHECKED: Allen Liu** DRAWN: F.Cui ERP: 1101027761

Selection Guide

Part No.	Dice	Lens Type	lv (mcd) [2] Lens Type @ 20mA		Viewing Angle [1]
			Min.	Тур.	201/2
L-714WG1WT/TD	Blue Green (InGaN)	White Triple Diffused	100	270	110°

Notes:

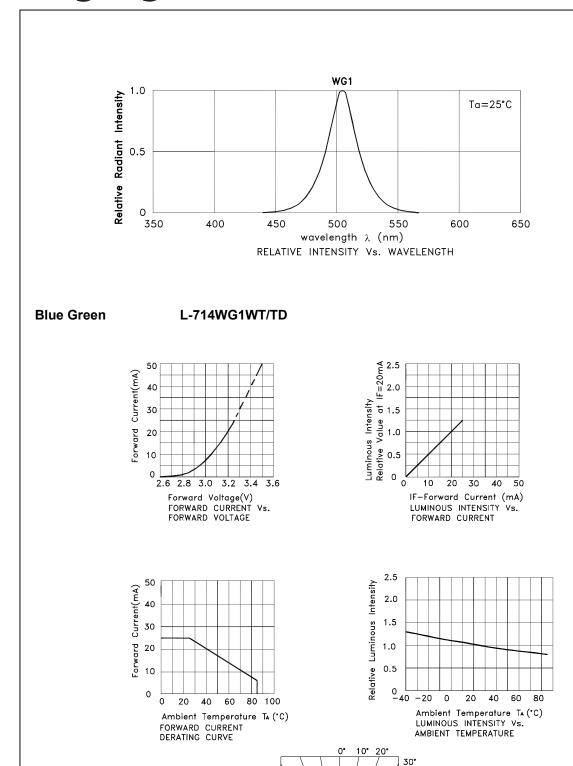
- 1. θ 1/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value.
- Luminous intensity/ luminous Flux: +/-15%.
 Luminous intensity value is traceable to the CIE127-2007 compliant national standards.

Electrical / Optical Characteristics at TA=25°C

Symbol	Parameter	Device	Тур.	Max.	Units	Test Conditions
λpeak	Peak Wavelength	Blue Green	505		nm	IF=20mA
λD [1]	Dominant Wavelength	Blue Green	505		nm	I==20mA
Δλ1/2	Spectral Line Half-width	Blue Green	28		nm	IF=20mA
С	Capacitance	Blue Green	45		pF	VF=0V;f=1MHz
VF [2]	Forward Voltage	Blue Green	3.2	3.8	V	IF=20mA
lr	Reverse Current	Blue Green		10	uA	VR = 5V

Notes:

- 1.Wavelength: +/-1nm.
- 2. Forward Voltage: +/-0.1V.
- 3. Wavelength value is traceable to the CIE127-2007 compliant national standards.


Absolute Maximum Ratings at TA=25°C

Parameter	Blue Green	Units	
Power dissipation	95	mW	
DC Forward Current	25	mA	
Peak Forward Current [1]	150	mA	
Reverse Voltage	5	V	
Operating/Storage Temperature	-40°C To +85°C		
Lead Solder Temperature [2]	260°C For 3 Seconds		
Lead Solder Temperature [3]	260°C For 5 Seconds		

Notes:

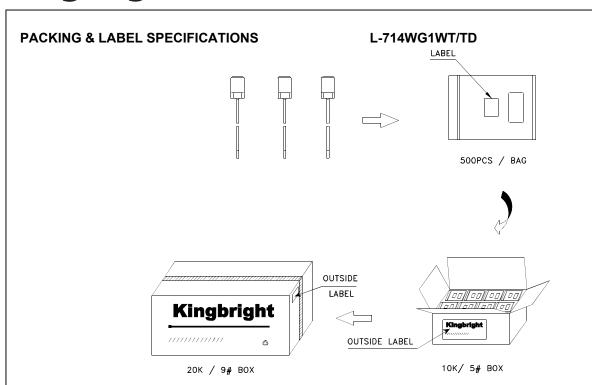
- 1. 1/10 Duty Cycle, 0.1ms Pulse Width.
 2. 2mm below package base.
 3. 5mm below package base.

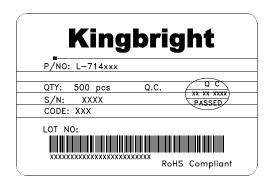
SPEC NO: DSAN5309 **REV NO: V.1B** DATE: MAR/11/2014 PAGE: 2 OF 6 APPROVED: WYNEC **CHECKED: Allen Liu** DRAWN: F.Cui ERP: 1101027761

 SPEC NO: DSAN5309
 REV NO: V.1B
 DATE: MAR/11/2014
 PAGE: 3 OF 6

 APPROVED: WYNEC
 CHECKED: Allen Liu
 DRAWN: F.Cui
 ERP: 1101027761

SPATIAL DISTRIBUTION


1.0

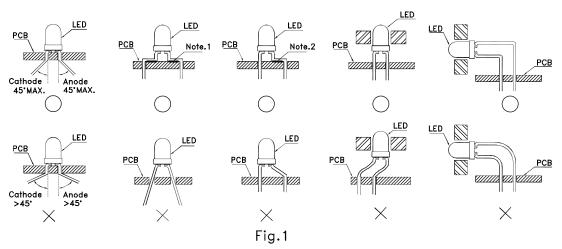

0.7

40°

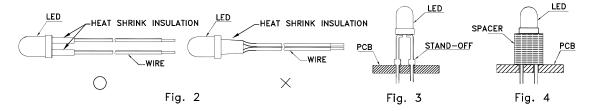
50° 60° 70° 80°

90°

Terms and conditions for the usage of this document


- 1. The information included in this document reflects representative usage scenarios and is intended for technical reference only.
- 2.The part number, type, and specifications mentioned in this document are subject to future change and improvement without notice. Before production usage customer should refer to the latest datasheet for the updated specifications.
- 3. When using the products referenced in this document, please make sure the product is being operated within the environmental and electrical limits specified in the datasheet. If customer usage exceeds the specified limits, Kingbright will not be responsible for any subsequent issues.
- 4.The information in this document applies to typical usage in consumer electronics applications. If customer's application has special reliability requirements or have life-threatening liabilities, such as automotive or medical usage, please consult with Kingbright representative for further assistance.
- 5. The contents and information of this document may not be reproduced or re-transmitted without permission by Kingbright.
- 6.All design applications should refer to Kingbright application notes available at http://www.kingbright.com/application_notes

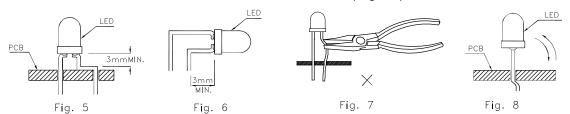
 SPEC NO: DSAN5309
 REV NO: V.1B
 DATE: MAR/11/2014
 PAGE: 4 OF 6


 APPROVED: WYNEC
 CHECKED: Allen Liu
 DRAWN: F.Cui
 ERP: 1101027761

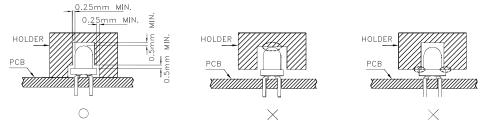
PRECAUTIONS

1. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement. Lead—forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures. (Fig. 1)

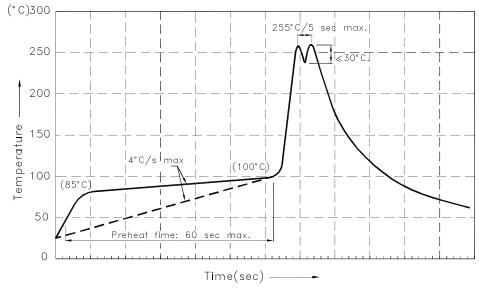
- "()" Correct mounting method "imes" Incorrect mounting method
- 2. When soldering wire to the LED, use individual heat—shrink tubing to insulate the exposed leads to prevent accidental contact short—circuit. (Fig.2)
- 3. Use stand—offs (Fig.3) or spacers (Fig.4) to securely position the LED above the PCB.



- 4. Maintain a minimum of 3mm clearance between the base of the LED lens and the first lead bend. (Fig. 5 and 6)
- 5. During lead forming, use tools or jigs to hold the leads securely so that the bending force will not be transmitted to the LED lens and its internal structures. Do not perform lead forming once the component has been mounted onto the PCB. (Fig. 7)


SPEC NO: DSAN5309 REV NO: V.1B DATE: MAR/11/2014 PAGE: 5 OF 6

APPROVED: WYNEC CHECKED: Allen Liu DRAWN: F.Cui ERP: 1101027761


6. Do not bend the leads more than twice. (Fig. 8)

7. During soldering, component covers and holders should leave clearance to avoid placing damaging stress on the LED during soldering.

- 8. The tip of the soldering iron should never touch the lens epoxy.
- 9. Through—hole LEDs are incompatible with reflow soldering.
- 10. If the LED will undergo multiple soldering passes or face other processes where the part may be subjected to intense heat, please check with Kingbright for compatibility.
- 11. Recommended Wave Soldering Profiles:

Notes:

- 1.Recommend pre-heat temperature of 105°C or less (as measured with a thermocouple attached to the LED pins) prior to immersion in the solder wave with a maximum solder bath temperature of 260°C
- 2.Peak wave soldering temperature between 245°C \sim 255°C for 3 sec (5 sec max).
- $3.\mbox{Do}$ not apply stress to the epoxy resin while the temperature is above $85^{\circ}\mbox{C}.$
- 4.Fixtures should not incur stress on the component when mounting and during soldering process. 5.SAC 305 solder alloy is recommended.
- 6.No more than one wave soldering pass.

 SPEC NO: DSAN5309
 REV NO: V.1B
 DATE: MAR/11/2014
 PAGE: 6 OF 6

 APPROVED: WYNEC
 CHECKED: Allen Liu
 DRAWN: F.Cui
 ERP: 1101027761

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for kingbright manufacturer:

Other Similar products are found below:

DLC-6EGW BR-8.24 L-934EW/1GD AA4040PGS PSA05-11GWA BC04-11SYKWA KB-2600ID L53YC13 DLC2-6GD DLC2-6SGD SA40-19GWA CC56-21SRWA WP4060VH/2ID DC10GWA DC-05YWA KA-3535SELZ4S KB-2755SYKW SA56-11GWA DE2CGKD AA4040SF4S-P22 BR9.52 L-1384AL/1ID SA15-11PBWA-A KB-2855SGW BA56-11SYKWA ACSA03-41EWA-F01 L-59GYC WP7113SF4BT-P22 SA03-11PBWA/A SC40-19EWA DA03-11GWA L-934EB/2ID WP132WUM/EGW WP1503CB/GD WP1384AD/GD AA3528AVUACGSK L-964ID KPBD-3224SURKCGKC WP1533BQ/GD SA08-11SURKWA AM2520SYCK09 L-138A8QMP/1ID SA23-12EWA WP934MD/2ID KPHBM-2012ETSGTC KPTR-3216SGC WP4060VH/2GD PDC54-12SRWA WP53MGD DLC-6MBD