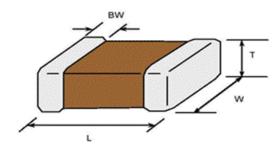


SPECIFICATION

(Reference sheet)

- Supplier : Samsung electro-mechanics - Samsung P/N : CL10C3R6CB8NNNC


Product : Multi-layer Ceramic Capacitor
 Description : CAP, 3.6pF, 50V, ± 0.25pF, C0G, 0603

A. Samsung Part Number

<u>CL</u> <u>10</u> <u>C</u> <u>3R6</u> <u>C</u> <u>B</u> <u>8</u> <u>N</u> <u>N</u> <u>N</u> <u>C</u> ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪

1	Series	Samsung Multi-layer Ceramic Capacitor		
2	Size	0603 (inch code)	L: 1.60 ± 0.10 mm	W: 0.80 ± 0.10 mm
3	Dielectric	C0G	Inner electrode	Ni
4	Capacitance	3.6 pF	Termination	Cu
⑤	Capacitance	± 0.25pF	Plating	Sn 100% (Pb Free)
	tolerance		Product	Normal
6	Rated Voltage	50 V	⑩ Special	Reserved for future use
7	Thickness	0.80 ± 0.10 mm	① Packaging	Cardboard Type, 7" reel

B. Structure and dimension

Samsung P/N	Dimension(mm)				
(Lead Free)	L	W	Т	BW	
CL10C3R6CB8NNNC	1.60 ± 0.10	0.80 ± 0.10	0.80 ± 0.10	0.30 ± 0.20	

C. Samsung Reliability Test and Judgement condition

A72 min 10,000Mohm or 500Mohm×, pF Rated Voltage 60~120 sec. Microscop (X10) Microscop (X1		Performance	Test condition			
A72 min 10,000Mohm or 500Mohm×, pF Rated Voltage 60~120 sec. Microscop (X10) Microscop (X1	Capacitance	Within specified tolerance	1 ^{Mlz} ±10% / 0.5~5Vrms			
Resistance Whichever is smaller Appearance No abnormal exterior appearance Withstanding No dielectric breakdown or Woltage mechanical breakdown Temperature COG Characteristics (From -55°C to 125°C, Capacitance change should be within ±30PPM/°C) Adhesive Strength No peeling shall be occur on the terminal electrode Bending Strength Within ±5% or ±0.5pF whichever is larger Solderability More than 75% of terminal surface is to be soldered newly Resistance to Capacitance change: Within ±2.5% or ±0.25pF whichever is larger Tan δ, IR: initial spec. Wibration Test Capacitance change: Within ±2.5% or ±0.25pF whichever is larger Tan δ, IR: initial spec. Wibration Test Capacitance change: Within ±2.5% or ±0.25pF whichever is larger Tan δ, IR: initial spec. Wibration Test Capacitance change: Within ±2.5% or ±0.25pF whichever is larger Tan δ, IR: initial spec. Wibration Test Capacitance change: Within ±2.5% or ±0.25pF whichever is larger Tan δ, IR: initial spec. With rated voltage 40±2°C, 90~95%RH, 500+12/-0hrs Q: 112 min IR: 500Mohm or 25Mohm × Whichever is smaller	Q	472 min				
Appearance No abnormal exterior appearance Withstanding No dielectric breakdown or mechanical breakdown Temperature COG Characteristics (From -55°C to 125°C, Capacitance change should be within ±30PPM/°C) Adhesive Strength No peeling shall be occur on the terminal electrode Bending Strength Capacitance change: within ±5% or ±0.5pF whichever is larger Within ±5% or ±0.5pF whichever is larger Solderability More than 75% of terminal surface is to be soldered newly Resistance to Capacitance change: within ±2.5% or ±0.25pF whichever is larger Tan δ, IR: initial spec. Vibration Test Capacitance change: within ±2.5% or ±0.25pF whichever is larger Tan δ, IR: initial spec. Amplitude: 1.5mm From 10Hz to 55Hz (return: 1min.) 2hours '3 direction (x, y, z) With rated voltage With rated voltage Within ±7.5% or ±0.75pF whichever is larger Q: 112 min IR: 500Mohm or 25Mohm × μF Whichever is smaller	Insulation	10,000Mohm or 500Mohm× <i>μ</i> F	Rated Voltage 60~120 sec.			
Withstanding No dielectric breakdown or mechanical breakdown 300% of the rated voltage Temperature C0G Characteristics (From -55℃ to 125℃, Capacitance change should be within ±30PPM/℃) Adhesive Strength of Termination No peeling shall be occur on the terminal electrode 500g×F, for 10±1 sec. Bending Strength Capacitance change : within ±5% or ±0.5pF whichever is larger within ±5% or ±0.5pF whichever is larger is to be soldered newly Bending to the limit (1mm) with 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder 45 ±5℃, 3±0.3sec. (preheating : 80~120℃ for 10~30sec.) (preheating : 80~120℃ for 10~30sec.) Resistance to Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) Vibration Test Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) Whosture Capacitance change : within ±7.5% or ±0.75pF whichever is larger Q : 112 min With rated voltage Resistance within ±7.5% or ±0.75pF whichever is larger Q : 112 min With rated voltage Within the value of the provious control of the provious contro	Resistance	Whichever is smaller				
Temperature C0G	Appearance	No abnormal exterior appearance	Microscop (X10)			
Temperature COG Characteristics (From -55°C to 125°C, Capacitance change should be within ±30PPM/°C) Adhesive Strength of Termination Bending Strength Of Termination Bending Strength Capacitance change : within ±5% or ±0.5pF whichever is larger Solderability More than 75% of terminal surface is to be soldered newly Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Capacitance change : within ±2.5% or ±0.75pF whichever is larger Q : 112 min IR : 500Mohm or 25Mohm × μF Whichever is smaller	Withstanding	No dielectric breakdown or	300% of the rated voltage			
Characteristics (From -55°C to 125°C, Capacitance change should be within ±30PPM/°C) Adhesive Strength of Termination No peeling shall be occur on the terminal electrode 500g×F, for 10±1 sec. Bending Strength Capacitance change : within ±5% or ±0.5pF whichever is larger Bending to the limit (1mm) with 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder 245±5°C, 3±0.3sec. (preheating : 80~120°C for 10~30sec.) Resistance to Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Solder pot : 270±5°C, 10±1sec. Vibration Test Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) 2hours '3 direction (x, y, z) Moisture Capacitance change : within ±7.5% or ±0.75pF whichever is larger Q : 112 min IR : 500Mohm or 25Mohm × μF Whichever is smaller With rated voltage 40±2°C, 90~95%RH, 500+12/-0hrs	Voltage	mechanical breakdown				
Adhesive Strength of Termination No peeling shall be occur on the terminal electrode 500g×F, for 10±1 sec. Bending Strength Capacitance change : within ±5% or ±0.5pF whichever is larger Bending to the limit (1mm) with 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder 245±5°C, 3±0.3sec. (preheating : 80~120°C for 10~30sec.) (preheating : 80~120°C for 10~30sec.) Resistance to Soldering heat Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Solder pot : 270±5°C, 10±1sec. Vibration Test Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) 2hours ′ 3 direction (x, y, z) Moisture Capacitance change : within ±7.5% or ±0.75pF whichever is larger Q : 112 min IR : 500Mohm or 25Mohm × μF Whichever is smaller With rated voltage	Temperature	COG	•			
of Termination terminal electrode Bending Strength Capacitance change : within ±5% or ±0.5pF whichever is larger Bending to the limit (1mm) with 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder 245±5°C, 3±0.3sec. (preheating : 80~120°C for 10~30sec.) Solder pot : 270±5°C, 10±1sec. Resistance to Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Amplitude : 1.5mm Vibration Test Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Amplitude : 1.5mm Moisture Capacitance change : within ±7.5% or ±0.75pF whichever is larger Q : 112 min IR : 500Mohm or 25Mohm × μF With rated voltage Resistance Within ±7.5% or ±0.75pF whichever is larger Q : 112 min IR : 500Mohm or 25Mohm × μF With rated voltage	Characteristics	(From -55℃ to 125℃, Capacitance change should be within ±30PPM/℃)				
Bending Strength Capacitance change : within ±5% or ±0.5pF whichever is larger Solderability With 1.0mm/sec. SnAg3.0Cu0.5 solder 245±5°C, 3±0.3sec. (preheating : 80~120°C for 10~30sec.)	Adhesive Strength	No peeling shall be occur on the	500g×F, for 10±1 sec.			
within ±5% or ±0.5pF whichever is larger More than 75% of terminal surface is to be soldered newly Capacitance change: With 1.0mm/sec. SnAg3.0Cu0.5 solder 245±5°C, 3±0.3sec. (preheating: 80~120°C for 10~30sec.) Solder pot: 270±5°C, 10±1sec. Solder pot: 270±5°C, 10±1sec. Solder pot: 270±5°C, 10±1sec. Within ±2.5% or ±0.25pF whichever is larger Tan δ, IR: initial spec. Capacitance change: within ±2.5% or ±0.25pF whichever is larger Tan δ, IR: initial spec. Capacitance change: with 1.0mm/sec. SnAg3.0Cu0.5 solder 245±5°C, 3±0.3sec. (preheating: 80~120°C for 10~30sec.) Solder pot: 270±5°C, 10±1sec. Amplitude: 1.5mm From 10Hz to 55Hz (return: 1min.) 2hours ′ 3 direction (x, y, z) With rated voltage With rated voltage 40±2°C, 90~95%RH, 500+12/-0hrs With rated voltage 40±2°C, 90~95%RH, 500+12/-0hrs	of Termination	terminal electrode				
Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder 245±5 °C, 3±0.3sec. (preheating : 80~120 °C for 10~30sec.) Resistance to Soldering heat Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Solder pot : 270±5 °C, 10±1sec. Vibration Test Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) 2hours ′3 direction (x, y, z) Moisture Resistance Capacitance change : within ±7.5% or ±0.75pF whichever is larger Q : 112 min IR : 500Mohm or 25Mohm × μF Whichever is smaller With rated voltage 40±2°C, 90~95%RH, 500+12/-0hrs	Bending Strength	Capacitance change :	Bending to the limit (1mm)			
is to be soldered newly $ 245\pm5^\circ C, 3\pm0.3 \text{sec.} \\ \text{(preheating: } 80\sim120^\circ C \text{ for } 10\sim30 \text{sec.}) $ $ \text{Resistance to} $ $ \text{Capacitance change:} \\ \text{within } \pm2.5\% \text{ or } \pm0.25^\circ F \text{ whichever is larger} \\ \text{Tan } \delta, \text{IR: initial spec.} $ $ \text{Capacitance change:} \\ \text{within } \pm2.5\% \text{ or } \pm0.25^\circ F \text{ whichever is larger} \\ \text{Tan } \delta, \text{IR: initial spec.} $ $ \text{Amplitude: } 1.5 \text{mm} \\ \text{From } 10\text{Hz to } 55\text{Hz (return: 1min.)} \\ \text{2hours } \text{`3 direction (x, y, z)} $ $ \text{Moisture} \\ \text{Resistance} $ $ \text{Within } \pm7.5\% \text{ or } \pm0.75^\circ F \text{ whichever is larger} \\ Q: \text{112 min} \\ \text{IR: } 500\text{Mohm or } 25\text{Mohm} \times \mu F \\ \text{Whichever is smaller} $ $ \text{Whichever is smaller} $		within ±5% or ±0.5pF whichever is larger	1			
(preheating : 80~120 °C for 10~30sec.) Resistance to Soldering heat Capacitance change : within ±2.5% or ±0.25 pF whichever is larger Tan δ, IR : initial spec. Vibration Test Capacitance change : within ±2.5% or ±0.25 pF whichever is larger Tan δ, IR : initial spec. Capacitance change : within ±2.5% or ±0.25 pF whichever is larger Tan δ, IR : initial spec. Moisture Capacitance change : within ±7.5% or ±0.75 pF whichever is larger Q: uithin ±7.5% or ±0.75 pF whichever is larger Q: 112 min IR : 500Mohm or 25Mohm × μF Whichever is smaller	Solderability	More than 75% of terminal surface				
Resistance to Soldering heat Capacitance change : within $\pm 2.5\%$ or $\pm 0.25p\text{F}$ whichever is larger Tan δ , IR: initial spec. Capacitance change : within $\pm 2.5\%$ or $\pm 0.25p\text{F}$ whichever is larger within $\pm 2.5\%$ or $\pm 0.25p\text{F}$ whichever is larger Tan δ , IR: initial spec. Amplitude: 1.5mm From $\pm 10\text{Hz}$ to $\pm 10\text{Hz}$ to $\pm 10\text{Hz}$ to $\pm 10\text{Hz}$ (return: 1min.) 2hours '3 direction (x, y, z) 2hours '3 direction (x, y, z) 3 direction (x, y, z) 40 direction		is to be soldered newly	245±5℃, 3±0.3sec.			
Soldering heat within $\pm 2.5\%$ or $\pm 0.25\mathrm{pF}$ whichever is larger Tan δ , IR: initial spec. Vibration Test Capacitance change: within $\pm 2.5\%$ or $\pm 0.25\mathrm{pF}$ whichever is larger Tan δ , IR: initial spec. Amplitude: 1.5mm From $\pm 10\mathrm{Hz}$ to $\pm 10\mathrm{Hz}$ to $\pm 10\mathrm{Hz}$ (return: 1min.) 2hours $\pm 10\mathrm{Hz}$ direction (x, y, z) Moisture Capacitance change: With rated voltage Within $\pm 7.5\%$ or $\pm 0.75\mathrm{pF}$ whichever is larger Q: $\pm 112\mathrm{min}$ IR: $\pm 500\mathrm{Mohm}$ or $\pm 25\mathrm{Mohm}$ x		·				
Soldering heat within $\pm 2.5\%$ or $\pm 0.25\mathrm{pF}$ whichever is larger Tan δ , IR: initial spec. Vibration Test Capacitance change: within $\pm 2.5\%$ or $\pm 0.25\mathrm{pF}$ whichever is larger Tan δ , IR: initial spec. Amplitude: 1.5mm From $\pm 10\mathrm{Hz}$ to $\pm 10\mathrm{Hz}$ to $\pm 10\mathrm{Hz}$ (return: 1min.) 2hours $\pm 10\mathrm{Hz}$ direction (x, y, z) Moisture Capacitance change: With rated voltage Within $\pm 7.5\%$ or $\pm 0.75\mathrm{pF}$ whichever is larger Q: $\pm 112\mathrm{min}$ IR: $\pm 500\mathrm{Mohm}$ or $\pm 25\mathrm{Mohm}$ x						
Tan δ , IR: initial spec. Capacitance change: within $\pm 2.5\%$ or $\pm 0.25\mathrm{pF}$ whichever is larger Tan δ , IR: initial spec. Amplitude: 1.5mm From $10\mathrm{Hz}$ to $55\mathrm{Hz}$ (return: 1min.) 2hours ´ 3 direction (x, y, z) Moisture Capacitance change: within $\pm 7.5\%$ or $\pm 0.75\mathrm{pF}$ whichever is larger Q: 112 min IR: 500Mohm or 25Mohm × $\mu\mathrm{F}$ Whichever is smaller	Resistance to	Capacitance change :	Solder pot : 270±5℃, 10±1sec.			
Vibration TestCapacitance change : within $\pm 2.5\%$ or $\pm 0.25\mathrm{pF}$ whichever is larger Tan δ , IR : initial spec.Amplitude : 1.5mmMoistureCapacitance change : within $\pm 7.5\%$ or $\pm 0.75\mathrm{pF}$ whichever is larger Q : Nondommer Capacitance of the control of the contr	Soldering heat	within ±2.5% or ±0.25pF whichever is larger				
within $\pm 2.5\%$ or $\pm 0.25\mathrm{pF}$ whichever is larger Tan δ , IR: initial spec. From $10\mathrm{Hz}$ to $55\mathrm{Hz}$ (return: 1min.) 2hours ´3 direction (x, y, z) Moisture Resistance within $\pm 7.5\%$ or $\pm 0.75\mathrm{pF}$ whichever is larger Q: 112 min IR: 500Mohm or 25Mohm × $\mu\mathrm{F}$ Whichever is smaller	_	Tan δ, IR : initial spec.				
Tan δ , IR: initial spec. 2hours ´3 direction (x, y, z) Moisture Capacitance change: With rated voltage within $\pm 7.5\%$ or $\pm 0.75\mathrm{pF}$ whichever is larger Q: 112 min IR: 500Mohm or 25Mohm × $\mu\mathrm{F}$ Whichever is smaller	Vibration Test	Capacitance change :	Amplitude : 1.5mm			
MoistureCapacitance change :With rated voltageResistancewithin $\pm 7.5\%$ or ± 0.75 pF whichever is larger 40 ± 2 °C, $90\sim 95\%$ RH, $500+12$ /-0hrsQ :112 minIR : 500 Mohm or 25 Mohm × μ FWhichever is smaller		within ±2.5% or ±0.25pF whichever is larger	From 10Hz to 55Hz (return : 1min.)			
Resistance within $\pm 7.5\%$ or $\pm 0.75\mathrm{pF}$ whichever is larger Q: 112 min IR: 500Mohm or 25Mohm × $\mu\mathrm{F}$ Whichever is smaller		Tan δ, IR : initial spec.	2hours ´ 3 direction (x, y, z)			
Q: 112 min IR: 500Mohm or 25Mohm × μ F Whichever is smaller	Moisture	Capacitance change :	· · · ·			
Q: 112 min IR: 500Mohm or 25Mohm × μ F Whichever is smaller	Resistance	within ±7.5% or ±0.75pF whichever is larger	_			
Whichever is smaller		Q: 112 min				
		IR : 500Mohm or 25Mohm × μ F				
High Temperature Capacitance change : With 200% of the rated voltage		Whichever is smaller				
	High Temperature	Capacitance change :	With 200% of the rated voltage			
Resistance within ±3% or ±0.3pF whichever is larger Max. operating temperature	Resistance	within ±3% or ±0.3pF whichever is larger				
Q: 236 min 1000+48/-0hrs		Q: 236 min	1000+48/-0hrs			
IR: 1,000Mohm or 50Mohm × μ F		IR: 1,000Mohm or 50Mohm × μ F				
Whichever is smaller		Whichever is smaller				
Temperature Capacitance change : 1 cycle condition	Temperature	Capacitance change :	1 cycle condition			
	Cycling					
Tan δ , IR: initial spec. \rightarrow Max. operating temperature \rightarrow 25°C	-	-	1			
			. , ,			
5 cycle test			5 cycle test			

^{*} The reliability test condition can be replaced by the corresponding accelerated test condition.

D. Recommended Soldering method:

Reflow (Reflow Peak Temperature: 260+0/-5°C, 10sec. Max)

A Product specifications included in the specifications are effective as of March 1, 2013.

Please be advised that they are standard product specifications for reference only.

We may change, modify or discontinue the product specifications without notice at any time.

So, you need to approve the product specifications before placing an order.

Should you have any question regarding the product specifications,

please contact our sales personnel or application engineers.

- Disclaimer & Limitation of Use and Application -

The products listed in this Specification sheet are **NOT** designed and manufactured for any use and applications set forth below.

Please note that any misuse of the products deviating from products specifications or information provided in this Spec sheet may cause serious property damages or personal injury.

We will **NOT** be liable for any damages resulting from any misuse of the products, specifically including using the products for high reliability applications as listed below.

If you have any questions regarding this 'Limitation of Use and Application', you should first contact our sales personnel or application engineers.

- ① Aerospace/Aviation equipment
- ② Automotive or Transportation equipment (vehicles, trains, ships, etc)
- 3 Medical equipment
- Military equipment
- 5 Disaster prevention/crime prevention equipment
- 6 Any other applications with the same as or similar complexity or reliability to the applications set forth above.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Samsung manufacturer:

Other Similar products are found below:

M39014/01-1467 M39014/02-1218V M39014/02-1225V M39014/02-1262V M39014/02-1301 M39014/22-0631 1210J5000102JCT

1210J2K00102KXT 1210J5000103KXT 1210J5000223KXT D55342E07B379BR-TR D55342E07B523DR-T/R 1812J1K00103KXT

1812J1K00473KXT 1812J2K00680JCT 1812J4K00102MXT 1812J5000102JCT 1812J5000103JCT 1812J5000682JCT NIN-FB391JTRF

NIN-FC2R7JTRF NPIS27H102MTRF C1206C101J1GAC C1608C0G1E472JT000N C2012C0G2A472J 2220J2K00101JCT

KHC201E225M76N0T00 1812J1K00222JCT 1812J2K00102KXT 1812J2K00222KXT 1812J2K00472KXT 2-1622820-7-CUT-TAPE

2220J3K00102KXT 2225J2500824KXT CCR07CG103KM CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C

CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H151J CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C CGA2B2C0G1H3R3C

CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2X8R1H221K CGA2B2X8R1H472K CGA3E1X7R1C474K

CGA3E2C0G1H561JT0Y0N