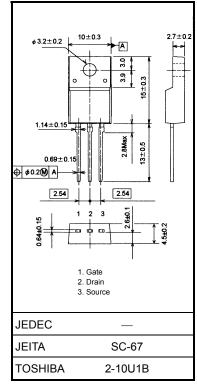
TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (π -MOSIV)


2SK3799

Switching Regulator Applications

- Low drain-source ON resistance $: RDS(ON) = 1.0 \Omega(typ.)$
- High forward transfer admittance \therefore |Y_{fs}| = 6.0 S (typ.)
- Low leakage current $: I_{DSS} = 100 \,\mu A (max) (V_{DS} = 720 \,V)$
- Enhancement model $: V_{th} = 2.0 \text{ to } 4.0 \text{ V} (V_{DS} = 10 \text{ V}, \text{ ID} = 1 \text{ mA})$

Maximum Ratings (Ta = 25°C)

Characteristic		Symbol	Rating	Unit	
Drain-source voltage		V _{DSS}	900	V	
Drain-gate voltage (R _{GS} = 20 kΩ)		V _{DGR}	900	V	
Gate-source voltage		V _{GSS}	±30	V	
Drain current	DC (Note 1)	ID	8	А	
	Pulse (Note 1)	I _{DP}	24	A	
Drain power dissipat	ion	PD	50	W	
Single pulse avalanche energy (Note 2)		E _{AS}	1080	mJ	
Avalanche current		I _{AR}	8	А	
Repetitive avalanche energy (Note 3)		E _{AR}	5	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	

Weight: 1.7 g (typ.)

Thermal Characteristics

Characteristic	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch-c)}	2.5	°C / W
Thermal resistance, channel to ambient	R _{th (ch−a)}	62.5	°C/W

1 o

Note 1: Ensure that the channel temperature does not exceed 150°C during use of the device.

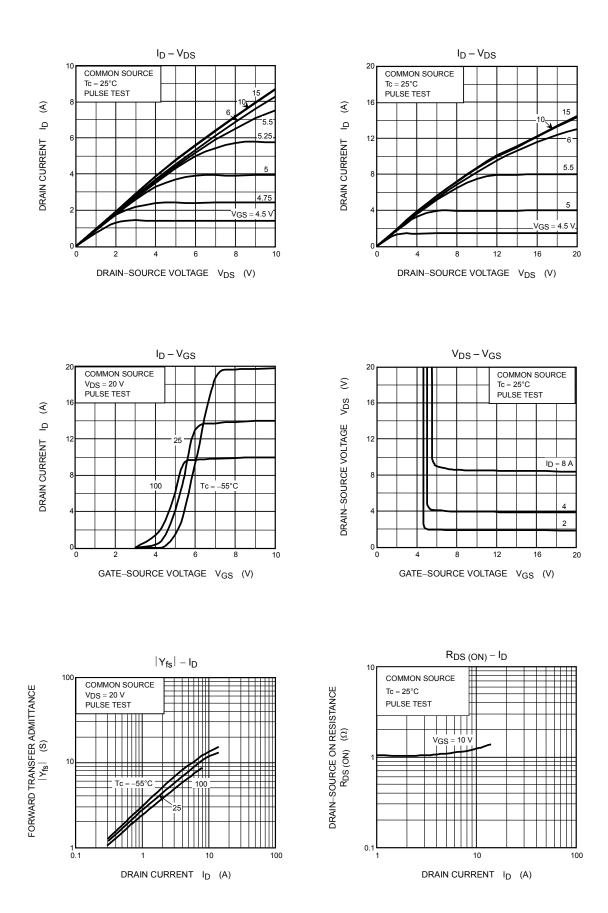
Note 2: V_DD = 90 V, T_ch = 25°C (initial), L = 30.9 mH, R_G = 25 Ω , I_{AR} = 8 A

Note 3: Repetitive rating: pulse width limited by maximum channel temperature.

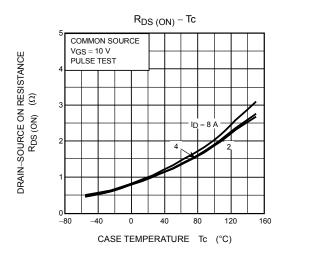
This transistor is an electrostatic-sensitive device. Handle with care.

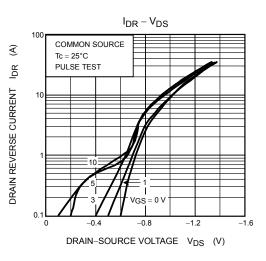

Electrical Characteristics (Ta = 25°C)

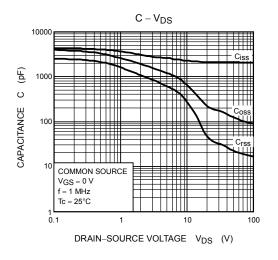
Chara	cteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cu	urrent	I _{GSS}	V _{GS} = ±30 V, V _{DS} = 0 V		—	±10	μA
Drain-source bre	eakdown voltage	V (BR) GSS	$I_{G} = \pm 10 \ \mu A, V_{GS} = 0 \ V$	±30	_	_	V
Drain cut-off cur	rent	I _{DSS}	V _{DS} = 720 V, V _{GS} = 0 V		_	100	μA
Drain-source bre	eakdown voltage	V (BR) DSS	I _D = 10 mA, V _{GS} = 0 V	450	—	_	V
Gate threshold v	voltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA	2.0	_	4.0	V
Drain-source Of	V resistance	R _{DS (ON)}	V _{GS} = 10 V, I _D = 4 A		1.0	1.3	Ω
Forward transfe	r admittance	Y _{fs}	V _{DS} = 15 V, I _D = 4 A	3.5	6.0	_	S
Input capacitance	nput capacitance C _{iss}				2200	_	pF
Reverse transfer capacitance		C _{rss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz		45	_	
Output capacitance		C _{oss}			190	—	
Switching time	Rise time	tr	$V_{GS} = 4 A$ $V_{GS} = 4 A$ $V_{GS} = 4 A$ $U_{D} = 4 A$ U	_	25	_	
	Turn-on time	t _{on}		_	65	_	ns
	Fall time	t _f		_	20	_	. 115
	Turn-off time	t _{off}	Duty ≤ 1%, t _w = 10 µs	_	120	_	
Total gate charge (Gate-source plus gate-drain)		Qg	V _{DD} ≈ 400 V, V _{GS} = 10 V, I _D = 8 A	_	60	_	nC
Gate-source charge		Q _{gs}		_	34	_	
Gate-drain ("miller") charge		Q _{gd}		_	26		


Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I _{DR}	—	_	_	8	А
Pulse drain reverse current (Note 1)	I _{DRP}	—	_	_	24	А
Forward voltage (diode)	V _{DSF}	I _{DR} = 8 A, V _{GS} = 0 V	_	_	-1.7	V
Reverse recovery time	t _{rr}	I _{DR} = 8 A, V _{GS} = 0 V dI _{DR} / dt = 100 A / μS		1700	_	ns
Reverse recovery charge	Qrr	dl _{DR} / dt = 100 A / μS	I	23		μC


Marking




TOSHIBA

TOSHIBA

P_D – Tc

80

CASE TEMPERATURE Tc (°C)

120

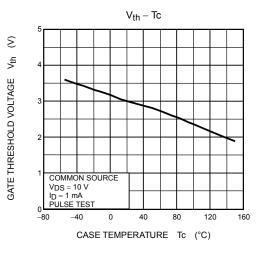
160

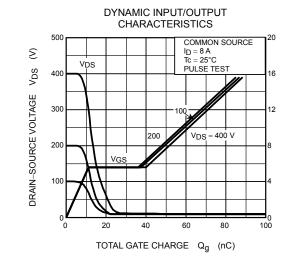
80

60

40

20

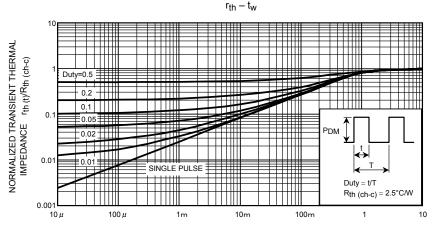

0L 0


40

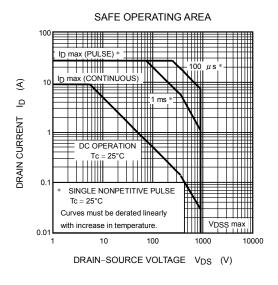
Ś

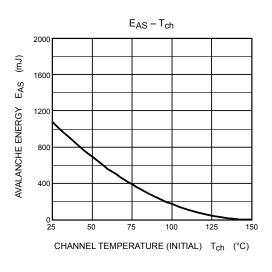
PD

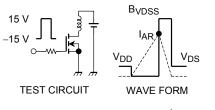
DRAIN POWER DISSIPATION

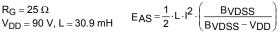


S


V_{GS}


GATE-SOURCE VOLTAGE


4



RESTRICTIONS ON PRODUCT USE

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for toshiba manufacturer:

Other Similar products are found below :

 TLP250(F)
 TC7W125FU(TE12L,F)
 TC7SBL384CFU,LF
 TK20V60W,LVQ
 TK31N60X,S1F
 TLP183(GB,E
 431392HB
 EMPP008Z

 TC58DVM92A5TA00
 TK35N65W5,S1F
 TLP291(TP,E)
 TLP705A(F)
 TLP5214(D4-TP,E
 TLP591B(C,F)
 2SA1943N(S1,E,S)
 TLP5754(D4

 TP,E
 TLP352(LF1,F)
 TLP2409(F)
 TLP109(TPR,E)
 TCK112G,LF
 TLP184(GB-TPL,E(O)
 TLP185(GR-TPL,E(O)
 TLP108

 GT50JR22(STA1,E,S)
 VFNC3S-2015PL
 VFS15-4007PL-W
 TLP7820(D4-A,E
 TPH4R10ANL,L1Q
 TLP7920(D4-A,F
 SSM3J35AMFV,L3F

 THRIVECOVER
 1SS392(TE85L,F)
 TCK22971G,LF
 TK15J50D(F)
 TK28A65W,S5X
 TK6A80E,S4X
 058399HB
 TORX177F,T

 TK31A60W,S4VX
 TLP190B(U,C,F)
 VFS15S-2015PL-W
 TK39N60W5,S1VF
 TLP2362(E)
 74VHC125FT
 TLP759(LF1,J,F)
 TLP5754(D4,E)

 TLP4026G(F)
 TLP360J
 TK8A65W,S5X
 TC7W14FUTE12LF
 TLP360LF1,JF)
 TLP5754(D4,E)