AC/DC voltage monitoring in 1-phase mains

Monitoring relays - GAMMA series
Multifunction
16.6 to 400 Hz

Fault latch
Zoom voltage 24 to 240 V AC/DC
2 change-over contacts
Width 22.5 mm
Industrial design

Technical data

1. Functions

AC/DC voltage monitoring in 1-phase mains with adjustable thresholds, timing for start-up suppression and tripping delay separately adjustable and the following functions (selectable by means of rotary switch)

OVER	Overvoltage monitoring
OVER+LATCH	Overvoltage monitoring with fault latch
UNDER	Undervoltage monitoring
UNDER+LATCH	Undervoltage monitoring with fault latch
WIN	Monitoring the window between Min and Max
WIN+LATCH	Monitoring the window between
	Min and Max with fault latch

2. Time ranges

	Adjustment range	
Start-up suppression time:	$0 \mathrm{~s} \quad 10 \mathrm{~s}$	
Tripping delay:	$0.1 \mathrm{~s} \quad 10 \mathrm{~s}$	

3. Indicators

Green LED ON:
Green LED flashes:
Yellow LED ON/OFF:
Red LED ON/OFF:

Red LED flashes:
indication of supply voltage indication of start-up suppression time indication of relay output
indication of failure of the corresponding threshold
indication of tripping delay of the corresponding threshold

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 60715
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20
Tightening torque: max. 1Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end

5. Input circuit

Supply voltage:
24 to 240 V AC/DC
terminals A1-A2 (galvanically separated)
Tolerance:
24 to 240 V DC
24 to 240 V AC
Rated frequency:
24 to 240 V AC
48 to 240 V AC
Rated consumption:
Duration of operation:
Reset time:
Wave form for AC:
Residual ripple for DC:
Drop-out voltage:
Overvoltage category:
Rated surge voltage:
-20% to $+25 \%$
-15% to $+10 \%$
48 to 400 Hz
16 to 48 Hz
4.5VA (1W)

100\%
500 ms
Sinus
10\%
$>15 \%$ of the supply voltage
III (in accordance with IEC 60661-1) 4 kV
6. Output circuit

2 potential free change-over contacts
Rated voltage: $\quad 250 \mathrm{~V}$ AC
Switching capacity: $\quad 750 \mathrm{VA}$ (3A / 250V AC)
If the distance between the devices is less than 5 mm !
Switching capacity: 1250VA (5A / 250V AC)
If the distance between the devices is greater than 5 mm !
Fusing: $\quad 5 \mathrm{~A}$ fast acting
Mechanical life: 20×10^{6} operations
Electrical life:
Switching frequency:
2×10^{5} operations at 1000 VA resistive load
max. $60 / \mathrm{min}$ at 100 VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (in accordance with IEC 60947-5-1)
Overvoltage category: III (in accordance with IEC 60664-1)
Rated surge voltage: 4 kV
7. Measuring circuit

Fusing:
max. 20A (in accordance with UL 508)
Measured variable:
Input:
$30 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \quad$ terminals E-F1(+)
60V AC/DC terminals E-F2(+)
300V AC/DC terminals E-F3(+)
Overload capacity:
30V AC/DC
100Veff
440 Veff
Input resistance:
$30 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \quad 47 \mathrm{k} \Omega$
60V AC/DC 100k Ω
300V AC/DC 470k
Switching threshold
Max:
Min:
Overvoltage category: III (in accordance with IEC 60664-1)
Rated surge voltage: 4kV
8. Accuracy

Base accuracy: $\quad \leq 5 \%$ (of maximum scale value)
Frequency response: -10% to $+5 \%$ (at 16.6 to 400 Hz)
Adjustment accuracy: $\leq 5 \%$ (of maximum scale value)
Repetition accuracy: $\leq 2 \%$
Voltage influence:
Temperature influence: $\leq 0.05 \% /{ }^{\circ} \mathrm{C}$
9. Ambient conditions

Ambient temperature: -25 to $+55^{\circ} \mathrm{C}$
(in accordance with IEC 60068-1)
-25 to $+40^{\circ} \mathrm{C}$ (in accordance with UL 508)
Storage temperature: -25 to $+70^{\circ} \mathrm{C}$
Transport temperature: -25 to $+70^{\circ} \mathrm{C}$
Relative humidity:
15% to 85%
(in accordance with IEC 60721-3-3 class 3K3)
Pollution degree:
3 (in accordance with IEC 60664-1)
Vibration resistance:
(in accordance with IEC 60068-2-6)
Shock resistance: $\quad 15 \mathrm{~g} 11 \mathrm{~ms}$ (in accordance with IEC 60068-2-27)

Functions

When the supply voltage U is applied, the output relays switch into on-position (yellow LED illuminated) and the set interval of the start-up suppression (START) begins (green LED U flashes). Changes of the measured voltage during this period do not affect the state of the output relay. After the interval has expired the green LED is illuminated steadily. For all the functions the LEDs MIN and MAX are flashing alternating, when the minimum value for the measured voltage was chosen to be greater than the maximum value.

Overvoltage monitoring (OVER, OVER+LATCH)

When the measured voltage exceeds the value adjusted at the MAX-regulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired (red LED MAX illuminated), the output relays switch into off-position (yellow LED not illuminated). The output relays again switch into on-position (yellow LED illuminated), when the measured voltage falls below the value adjusted at the MIN-regulator (red LED MAX not illuminated).
If the fault latch is activated (OVER+LATCH) and the measured voltage remains above the MAX-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured voltage falls below the value adjusted at the MIN-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).

Undervoltage monitoring (UNDER, UNDER+LATCH)
When the measured voltage falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relays switch into off-position (yellow LED not illuminated). The output relays again switch into on-position (yellow LED illuminated), when the measured voltage exceeds the value adjusted at the MAX-regulator. If the fault latch is activated (UNDER+LATCH) and the measured voltage remains below the MIN-value longer than the set interval of the tripping delay, the output relays remain in the offposition even if the measured voltage exceeds the value adjusted at the MAX-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).

Window function (WIN, WIN+LATCH)

The output relays switch into on-position (yellow LED illuminated) when the measured voltage exceeds the value adjusted at the MIN-regulator. When the measured voltage exceeds the value adjusted at the MAXregulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired (red LED MAX illuminated), the output relays switch into off-position (yellow LED not illuminated). The output relays again switch into on-position (yellow LED illuminated) when the measured voltage falls below the value adjusted at the MAXregulator (red LED MAX not illuminated). When the measured voltage falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins again (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relays switch into off-position (yellow LED not illuminated).

If the fault latch is activated (WIN+LATCH) and the measured voltage remains below the MIN-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured voltage exceeds the value adjusted at the MIN-regulator. If the measured voltage remains above the MAX-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured voltage falls below the value adjusted at the MAX-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).

Connections

Range 30 V , supply voltage 24 V AC/DC and fault latch

Range 300 V , supply voltage 24 V AC/DC and fault latch

Dimensions

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Industrial Relays category:
Click to view products by Tele manufacturer:
Other Similar products are found below :
6-1618400-7 686-117111 686-120111 EV250-4A-02 EV250-6A-01 FCA-125-CX8 FCA-410-138 8-1618393-1 GCA32A208VAC60HZ GCA32A220VAC50/60HZ GCA32A230VAC50/60HZ GCA32A240VAC50/60HZ GCA32A48VAC60HZ GCA63A120VAC50/60HZ GCA63A208VAC60HZ GCA63A220VAC60HZ GCA63A230VAC50/60HZ GCA63A240VAC50/60HZ GCA63A277VAC60HZ GCA63A48VAC60HZ GCA63A500VAC50/60HZ GCA63A600VAC60HZ GCA800A200VACDC GCA95A110VAC50/60HZ GCA95A120VAC50/60HZ GCA95A12VDC GCA95A240VAC50/60HZ GCA95A24VAC50/60HZ GCA95A48VAC60HZ ACC530U20 ACC730U30 1395832-1 RM699BV-3011-85-1005 RMIA210230AC RMIA45024AC 1423675-8 B07B032AC1-0329 B329 1617807-1 N417 P25-E5019-1 P30C42A12D1-120 2-1618398-1 PBO-18A1218 2307497 RPYA00324LT RPYA003A120LT KR-4539-1 RT334012WG S160156115

