5th-Order, Lowpass, Switched-Capacitor Filters

General Description

The MAX7418-MAX7425 5th-order, low-pass, switchedcapacitor filters (SCFs) operate from a single +5 V (MAX7418-MAX7421) or +3V (MAX7422-MAX7425) supply. These devices draw only 3 mA of supply current and allow corner frequencies from 1 Hz to 45 kHz , making them ideal for low-power post-DAC filtering and antialiasing applications. They feature a shutdown mode that reduces supply current to $0.2 \mu \mathrm{~A}$.
Two clocking options are available: self-clocking (through the use of an external capacitor), or external clocking for tighter corner-frequency control. An offset adjust pin allows for adjustment of the DC output level.
The MAX7418/MAX7422 deliver 53dB of stopband rejection and a sharp rolloff with a 1.6 transition ratio. The MAX7421/MAX7425 achieve a sharper rolloff with a 1.25 transition ratio while still providing 37 dB of stopband rejection. The MAX7419/MAX7423 Bessel filters provide low overshoot and fast settling, and the MAX7420/MAX7424 Butterworth filters provide a maximally flat passband response. Their fixed response simplifies the design task of selecting a clock frequency.

Applications

ADC Anti-Aliasing
DAC Postfiltering
CT2 Base Stations
Speech Processing
Selector Guide

PART	FILTER RESPONSE	OPERATING VOLTAGE (V)
MAX7418	$\mathrm{r}=1.6$	+5
MAX7419	Bessel	+5
MAX7420	Butterworth	+5
MAX7421	$\mathrm{r}=1.25$	+5

Selector Guide continued at end of data sheet.
Pin Configuration

Features

- 5th-Order, Lowpass Filters Elliptic Response (MAX7418/MAX7421/ MAX7422/MAX7425)
Bessel Response (MAX7419/MAX7423)
Butterworth Response (MAX7420/MAX7424)
- Clock-Turnable Corner Frequency (1 Hz to 45kHz)
- Single-Supply Operation
+5V (MAX7418-MAX7421)
+3V (MAX7422-MAX7425)
- Low Power

3mA (Operating Mode)
$0.2 \mu \mathrm{~A}$ (Shutdown Mode)

- Available in 8-Pin μ MAX Package
- Low Output Offset: $\pm 4 \mathrm{mV}$

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX7418CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7418EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7419CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7419EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7420CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7420EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7421CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7421EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$

Ordering Information continued at end of data sheet.
Typical Operating Circuit

For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

5th-Order, Lowpass, Switched-Capacitor Filters

ABSOLUTE MAXIMUM RATINGS

VDD to GND ...-0.3V to +6V

OUT Short-Circuit Duration.
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
8-Pin $\mu \mathrm{MAX}$ (derate $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 330 mW
Operating Temperature Ranges
MAX74 _ _C_A \qquad
\qquad $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

MAX74 _ _E_A
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s)
.$+300^{\circ} \mathrm{C}$
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX7418-MAX7421

$\left(V_{D D}=+5 \mathrm{~V}\right.$, filter output measured at OUT, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at OUT, OS $=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ capacitor from COM to GND, $\overline{S H D N}=V_{D D}, f_{C L K}=2.2 \mathrm{MHz}, \mathrm{T}_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.)

5th-Order, Lowpass, Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS—MAX7418-MAX7421 (continued)

$\left(V_{D D}=+5 \mathrm{~V}\right.$, filter output measured at OUT, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at OUT, OS = COM, $0.1 \mu \mathrm{~F}$ capacitor from COM to GND, SHDN $=V_{D D}, f_{C L K}=2.2 \mathrm{MHz}, \mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER REQUIREMENTS							
Supply Voltage	$V_{D D}$			4.5		5.5	V
Supply Current	IDD	Operating mode, no load	MAX7418/MAX7421		2.9	3.6	mA
			MAX7419/MAX7420		3.4	4.1	
Shutdown Current	I $\overline{\text { SHDN }}$	$\overline{\text { SHDN }}=$ GND			0.2	1	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	IN = COM (Note 4)			70		dB
SHUTDOWN							
$\overline{\text { SHDN }}$ Input High	VSDH			4.5			V
$\overline{\text { SHDN }}$ Input Low	VSDL					0.5	V
$\overline{\text { SHDN }}$ Input Leakage Current		$\mathrm{V} \overline{\mathrm{SHDN}}=0$ to V_{DD}			± 0.2	± 10	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS—MAX7422-MAX7425

(VDD $=+3 \mathrm{~V}$, filter output measured at OUT pin, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at OUT, OS $=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ capacitor from COM to GND, SHDN $=V_{D D}, f_{C L K}=2.2 \mathrm{MHz}, \mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to T_{MAX}, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

5th-Order, Lowpass, Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS—MAX7422-MAX7425 (continued)
$\left(V_{D D}=+3 V\right.$, filter output measured at OUT pin, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at OUT, OS $=C O M, 0.1 \mu F$ capacitor from COM to GND, $\overline{S H D N}=V_{D D}, f_{C L K}=2.2 \mathrm{MHz}, T_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
CLOCK							
Internal Oscillator Frequency	fosc	$\begin{aligned} & \text { Cosc }=1000 \mathrm{pF} \\ & (\text { Note 3) } \end{aligned}$	MAX7422/MAX7425	68	87	106	kHz
			MAX7423/MAX7424	86	110	135	
Clock Output Current (Internal Oscillator Mode)	ICLK		MAX7422/MAX7425	68	87	106	kHz
			MAX7423/MAX7424	86	110	135	
Clock Input High	V_{IH}			2.5			
Clock Input Low	VIL					0.5	
POWER REQUIREMENTS							
Supply Voltage	VDD			2.7		3.6	V
Supply Current	IDD	Operating mode, no load	MAX7422/MAX7425		2.6	3.4	mA
			MAX7423/MAX7424		3.0	3.8	
Shutdown Current	ISHDN	$\overline{\text { SHDN }}=$ GND			0.2	1	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	Measured at DC			70		dB
SHUTDOWN							
SHDN Input High	$\mathrm{V}_{\text {SDH }}$			2.5			V
$\overline{\text { SHDN }}$ Input Low	$\mathrm{V}_{\text {SDL }}$					0.5	V
$\overline{\text { SHDN }}$ Input Leakage Current		$\mathrm{V}_{\overline{\text { SHDN }}}=0$ to $\mathrm{V}_{\text {DD }}$			± 0.2	± 10	$\mu \mathrm{A}$

5th-Order, Lowpass, Switched-Capacitor Filters

FILTER CHARACTERISTICS

$\left(V_{D D}=+5 \mathrm{~V}\right.$ for MAX7418-MAX7420, $\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}$ for MAX7422-MAX7425 filter output measured at OUT, 10k Ω II 50 pF load to GND at OUT, $\overline{\text { SHDN }}=V_{D D}, f_{C L K}=2.2 \mathrm{MHz}, \mathrm{T}_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ELLIPTIC, R = 1.2-MAX7421/MAX7425					
Insertion Gain with DC Gain Error Removed (Note 4)	$\mathrm{fin}^{\mathrm{I}}=0.38 \mathrm{f} \mathrm{C}$	-0.4	-0.2	0.4	dB
	$\mathrm{f}_{\mathrm{IN}}=0.68 \mathrm{f}_{\mathrm{C}}$	-0.4	-0.2	0.4	
	$\mathrm{fin}^{\text {I }}=0.87 \mathrm{f} \mathrm{C}$	-0.4	-0.2	0.4	
	$\mathrm{fIN}=0.97 \mathrm{f} \mathrm{C}$	-0.4	-0.2	0.4	
	$\mathrm{f} / \mathrm{N}=\mathrm{f} \mathrm{C}$	-0.7	-0.2	0.2	
	$\mathrm{fin}^{\mathrm{N}}=1.25 \mathrm{f} \mathrm{C}$		-36	-33	
	$\mathrm{f} / \mathrm{N}=1.43 \mathrm{f} \mathrm{C}$		-37.2	-35	
	$\mathrm{fin}_{\mathrm{IN}}=3.25 \mathrm{f} \mathrm{C}$		-37.2	-35	
BESSEL FILTERS—MAX7419/MAX7423					
Insertion Gain Relative to DC Gain	$\mathrm{fIN}=0.5 \mathrm{fc}$	-1	-0.74		dB
	$\mathrm{fIN}=\mathrm{fC}$	-3.6	-3.0	-2.4	
	$\mathrm{fin}=4 \mathrm{f} \mathrm{C}$		-41.0	-35	
	$\mathrm{fIN}=7 \mathrm{f} \mathrm{C}$		-67	-60	
BESSEL FILTERS—MAX7419/MAX7423					
Insertion Gain Relative to DC Gain	$\mathrm{fIN}=0.5 \mathrm{f} \mathrm{C}$	-1.0	-0.74		dB
	$\mathrm{fin}^{\mathrm{N}}=4 \mathrm{f} \mathrm{C}$	-3.6	-3.0	-2.4	
	$\mathrm{fIN}=7 \mathrm{f} \mathrm{C}$		-41.0	-35	
	$\mathrm{f} / \mathrm{N}=7 \mathrm{f} \mathrm{C}$		-67	-60	
BUTTERWORTH FILTERS-MAX7420/MAX7424					
Insertion Gain Relative to DC Gain	$\mathrm{fIN}=0.5 \mathrm{fc}$	-0.3	0		dB
	$\mathrm{fIN}=\mathrm{f} \mathrm{C}$	-3.6	-3.0	-2.4	
	$\mathrm{fin}=3 \mathrm{f} \mathrm{C}$		-47.5	-43	
	$\mathrm{fin}_{\mathrm{IN}}=5 \mathrm{f} \mathrm{C}$		-70	-65	

Note 1: The maximum fc is defined as the clock frequency $\mathrm{f}_{\mathrm{C}} \mathrm{LK}=100 \times \mathrm{fc}$ at which the peak $\mathrm{S} /(\mathrm{THD}+\mathrm{N})$ drops to 68 dB with a sinusoidal input at 0.2 fc . Maximum f_{C} increases as V_{IN} signal amplitude decreases.
Note 2: DC insertion gain is defined as $\Delta V_{\text {OUT }} / \Delta \mathrm{V}_{\text {IN }}$.
Note 3: MAX7418/MAX7421/MAX7422/MAX7425: fosc (kHz) $\cong 87 \times 10^{3} / \operatorname{Cosc}(p F)$. MAX7419/MAX7420/MAX7423/MAX7424: fosc (kHz) $\cong 110 \times 10^{3} / \operatorname{CosC}(\mathrm{pF})$.
Note 4: PSRR is the change in output voltage from a $V_{D D}$ of 4.5 V and a $V_{D D}$ of 5.5 V .

5th-Order, Lowpass,
 Switched-Capacitor Filters

$\left(V_{D D}=+5 V\right.$ for MAX7418-MAX7421, $V_{D D}=+3 V$ for MAX7422-MAX7425; fCLK $=2.2 M H z ; \overline{S H D N}=V_{D D} ; V_{C O M}=V_{O S}=V_{D D} / 2$;
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; unless otherwise noted.)

5th-Order, Lowpass, Switched-Capacitor Filters

Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 V\right.$ for MAX7418-MAX7421, $V_{D D}=+3 V$ for MAX7422-MAX7425; fCLK $=2.2 M H z ; \overline{S H D N}=V_{D D} ; V_{C O M}=V_{O S}=V_{D D} / 2$; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; unless otherwise noted.)

MAX7418
THD + NOISE vs. INPUT SIGNAL AMPLITUDE (ELLIPTIC, R = 1.6)

MAX7421
THD + NOISE vs. INPUT SIGNAL AMPLITUDE (ELLIPTIC, R = 1.25)

MAX7420/MAX7424 PHASE RESPONSE (BUTTERWORTH)

MAX7419
THD + NOISE vs. INPUT SIGNAL AMPLITUDE (BESSEL)

MAX7422
THD + NOISE vs. INPUT SIGNAL AMPLITUDE (ELLIPTIC, R = 1.6)

MAX7424/MAX7425
PHASE RESPONSE (ELLIPTIC, $\mathrm{R}=1.25$)

MAX7420
THD + NOISE vs. INPUT SIGNAL AMPLITUDE
(BUTTERWORTH)

MAX7423
THD + NOISE vs. INPUT SIGNAL AMPLITUDE (BESSEL)

5th-Order, Lowpass, Switched-Capacitor Filters

$\left(V_{D D}=+5 V\right.$ for $M A X 7418-M A X 7421, V_{D D}=+3 V$ for MAX7422-MAX7425; fCLK $=2.2 M H z ; \overline{S H D N}=V_{D D} ; V_{C O M}=V_{O S}=V_{D D} / 2$;
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; unless otherwise noted.)

MAX7424
THD + NOISE vs. INPUT SIGNAL AMPLITUDE (BUTTERWORTH)

INTERNAL OSCILLATOR FREQUENCY vs. LARGE CAPACITANCE (nF)

ELLIPTIC SUPPLY CURRENT vs. SUPPLY VOLTAGE

MAX7425
THD + NOISE vs. INPUT SIGNAL AMPLITUDE
(ELLIPTIC, R=1.25)

ELLIPTIC INTERNAL OSCILLATOR FREQUENCY vs. SUPPLY VOLTAGE

ELLIPTIC SUPPLY CURRENT vs. TEMPERATURE

INTERNAL OSCILLATOR FREQUENCY vs. SMALL CAPACITANCE (pF)

ELLIPTIC INTERNAL OSCILLATOR FREQUENCY vs. TEMPERATURE

Table A.

LABEL	$\mathbf{f} \mathbf{N}$ $\mathbf{(k H z)}$	$\mathbf{f c}$ $(\mathbf{k H z})$	$\mathbf{f C L K}$ $\mathbf{(k H z)}$	$\mathbf{B W}$ $\mathbf{(k H z)}$
A	2	30	3000	80
B	2	22	2200	80
C	1	10	1000	22
D	2	22	2200	80
E	1	10	1000	22

5th－Order，Lowpass， Switched－Capacitor Filters

Typical Operating Characteristics（continued）

$\left(V_{D D}=+5 V\right.$ for MAX7418－MAX7421，$V_{D D}=+3 V$ for MAX7422－MAX7425；fCLK $=2.2 M H z ; \overline{S H D N}=V_{D D} ; V_{C O M}=V_{O S}=V_{D D} / 2$ ； $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ；unless otherwise noted．）

DC OFFSET VOLTAGE
vs．TEMPERATURE
dC OFFSET VOLTAGE
vs．SUPPLY VOLTAGE

Pin Description

PIN	NAME	FUNCTION
1	COM	Common Input Pin．Biased internally at midsupply．Bypass COM externally to GND with a 0．1 To override internal biasing，drive COM with an external supply．
2	IN	Filter Input
3	GND	Ground
4	VDD	Positive Supply Input：＋5V for MAX7418－MAX7421，＋3V for MAX7422－MAX7425．Bypass VDD to GND with a 0．1 1μ c capacitor．
5	OUT	Filter Output
6	OS	Offset Adjust Input．To adjust output offset，connect OS to an external supply through a resistive voltage－ divider（Figure 4）．Connect OS to COM if no offset adjustment is needed．The Offset and Common－Mode Input Adjustment section．
7	$\overline{\text { SHDN }}$	Shutdown Input．Drive low to enable shutdown mode；drive high or connect to VDD for normal operation．
8	CLK	Clock Input．Connect an external capacitor（Cosc）from CLK to ground．To override the internal oscillator， connect CLK to an external clock：fC＝fCLK／100．

Detailed Description

The MAX7418／MAX7421／MAX7422／MAX7425 elliptic lowpass filters provide sharp rolloff with good stopband rejection．The MAX7419／MAX7423 Bessel filters provide low overshoot and fast settling responses，and the MAX7420／MAX7424 Butterworth filters provide a maxi－ mally flat passband response．All parts operate with a 100：1 clock－to－corner frequency ratio．

Most switch capacitor filters（SCFs）are designed with biquadratic sections．Each section implements two pole－zero pairs，and the sections can be cascaded to
produce higher order filters．The advantage to this approach is ease of design．However，this type of design is highly sensitive to component variations if any section＇s Q is high．The MAX7418－MAX7425 use an alternative approach，which is to emulate a passive net－ work using switched－capacitor integrators with sum－ ming and scaling．The passive network may be synthesized using CAD programs，or may be found in many filter books．Figure 1 shows a basic 5th－order lad－ der filter structure．

5th-Order, Lowpass, Switched-Capacitor Filters

Figure 1. 5th-Order Ladder Filter Network
An SCF that emulates a passive ladder filter retains many of the same advantages. The component sensitivity of a passive ladder filter is low when compared to a cascaded biquadratic design because each component affects the entire filter shape rather than a single pole-zero pair. In other words, a mismatched component in a biquadratic design has a concentrated error on its respective poles, while the same mismatch in a ladder filter design spreads its error over all poles.

Elliptic Characteristics Lowpass elliptic filters such as the MAX7418/MAX7421/ MAX7422/MAX7425 provide the steepest possible rolloff with frequency of the four most common filter types (Butterworth, Bessel, Chebyshev, and elliptic). The high- Q value of the poles near the passband edge combined with the stopband zeros allow for the sharp attenuation characteristic of elliptic filters, making these devices ideal for anti-aliasing and post-DAC filtering in single-supply systems (see Anti-Aliasing and Post-DAC Filtering).
In the frequency domain, the first transmission zero causes the filter's amplitude to drop to a minimum level (Figure 2). Beyond this zero, the response rises as the frequency increases until the next transmission zero. The stopband begins at the stopband frequency, fs. At frequencies above fs, the filter's gain does not exceed the gain at fs. The corner frequency, f_{c}, is defined as the point at which the filter output attenuation falls just below the passband ripple. The transition ratio (r) is defined as the ratio of the stopband frequency to the corner frequency:

$$
r=\mathrm{fs} / \mathrm{fc}
$$

The MAX7418/MAX7422 have a transition ratio of 1.6 and typically 53 dB of stopband rejection. The MAX7421/MAX7425 have a transition ratio of 1.25 (providing a steeper rolloff) and typically 37 dB of stopband rejection.

Bessel Characteristics
Lowpass Bessel filters such as the MAX7419/MAX7423
delay all frequency components equally, preserving the line up shape of step inputs (subject to the attenuation of the higher frequencies). Bessel filters settle quicklyan important characteristic in applications that use a multiplexer (mux) to select an input signal for an ana-log-to-digital converter (ADC). An anti-aliasing filter placed between the mux and the ADC must settle quickly after a new channel is selected.

Butterworth Characteristics

Lowpass Butterworth filters such as the MAX7420/ MAX7424 provide a maximally flat passband response, making them ideal for instrumentation applications that require minimum deviation from the DC gain throughout the passband.
The difference between Bessel and Butterworth filters can be observed when a 1 kHz square wave is applied to the filter input (Figure 3, trace A). With the filter cutoff frequencies set at 5 kHz , trace B shows the Bessel filter response and trace C shows the Butterworth filter response.

Clock Signal
 External Clock

These SCFs are designed for use with external clocks that have a 40% to 60% duty cycle. When using an external clock, drive the CLK pin with a CMOS gate powered from 0 to $V_{D D}$. Varying the rate of the external clock adjusts the corner frequency of the filter:

$$
{ }^{\mathrm{f}} \mathrm{C}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100}
$$

Figure 2. Elliptic Filter Response

5th-Order, Lowpass, Switched-Capacitor Filters

Figure 3. Bessel vs. Butterworth Filter Response

Internal Clock

When using the internal oscillator, the capacitance (COSC) on CLK determines the oscillator frequency:

$$
\mathrm{fOSC}(\mathrm{kHz})=\frac{\mathrm{k}}{\operatorname{COSC}(\mathrm{pF})}
$$

where
$\mathrm{k}=87 \times 10^{3}$ for the
MAX7418/MAX7421/MAX7422/MAX7425
and
$\mathrm{k}=110 \times 10^{3}$ for the
MAX7419/MAX7420/MAX7423/ MAX7424.
Since CosC is in the low picofarads, minimize the stray capacitance at CLK so that it does not affect the internal oscillator frequency. Varying the rate of the internal oscillator adjusts the filter's corner frequency by a 100:1 clock-to-corner frequency ratio. For example, an internal oscillator frequency of 2.2 kHz produces a nominal corner frequency of 2.2 MHz .

Input Impedance vs. Clock Frequencies

 The MAX7418-MAX7425s' input impedance is effectively that of a switched-capacitor resistor (see the following equation), and is inversely proportional to frequency. The input impedance values determined by the equation represent the average input impedance, since the input current is not continuous. As a rule, use a driver with an output resistance less than 10% of the filter's input impedance.

Figure 4. Offset Adjustment Circuit
Estimate the input impedance of the filter by using the following formula:

$$
Z_{I N}=\frac{1}{\left(f_{C L K} \times C_{I N}\right)}
$$

where $\mathrm{f}_{\mathrm{CLK}}=$ clock frequency and $\mathrm{CIN}=1 \mathrm{pF}$.

Low-Power Shutdown Mode

The MAX7418-MAX7425 have a shutdown mode that is activated by driving $\overline{\text { SHDN }}$ low. In shutdown mode, the filter supply current reduces to $0.2 \mu \mathrm{~A}$, and the output of the filter becomes high impedance. For normal operation, drive SHDN high or connect to VDD.

Applications Information

Offset (OS) and Common-Mode (COM) Input Adjustment COM sets the common-mode input voltage and is biased at midsupply with an internal resistor-divider. If the application does not require offset adjustment, connect OS to COM. For applications in which offset adjustment is required, apply an external bias voltage through a resistor-divider network to OS, as shown in Figure 4. For applications that require DC level shifting, adjust OS with respect to COM. (Note: Do not leave OS unconnected.) The output voltage is represented by these equations:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{OUT}}=\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{COM}}\right)+\mathrm{V}_{\mathrm{OS}} \\
& \mathrm{~V}_{\mathrm{COM}}=\frac{\mathrm{V}_{\mathrm{DD}}}{2} \text { (typical) }
\end{aligned}
$$

where (VIN - VCOM) is lowpass filtered by the SCF and OS is added at the output stage. See the Electrical

5th-Order, Lowpass, Switched-Capacitor Filters

Characteristics table for the input voltage range of COM and OS. Changing the voltage on COM or OS significantly from midsupply reduces the dynamic range.

Power Supplies

The MAX7418-MAX7421 operate from a single +5 V supply and the MAX7422-MAX7425 operate from a single +3 V supply. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ capacitor. If dual supplies are required, connect COM to the system ground and GND to the negative supply. Figure 5 shows an example of dual-supply operation. Single-supply and dual-supply performance are equivalent. For either single-supply or dual-supply operation, drive CLK and SHDN from GND (V- in dual supply operation) to VDD. Use the MAX7418-MAX7421 for ± 2.5, and use the MAX7422-MAX7425 for $\pm 1.5 \mathrm{~V}$. For $\pm 5 \mathrm{~V}$ dual-supply applications, refer to the MAX291/ MAX292/MAX295/MAX296 and MAX293/MAX294/ MAX297 data sheets.

Input Signal Amplitude Range

The optimal input signal range is determined by observing the voltage level at which the signal-to-noise plus distortion (SINAD) ratio is maximized for a given corner frequency. The Typical Operating Characteristics show the THD + Noise response as the input signal's peak-topeak amplitude is varied.

Anti-Aliasing and Post-DAC Filtering When using the MAX7418-MAX7425 for anti-aliasing or post-DAC filtering, synchronize the DAC (or ADC) and the filter clocks. If the clocks are not synchronized, beat frequencies may alias into the desired passband.

Figure 5. Dual-Supply Operation

Harmonic Distortion

Harmonic distortion arises from nonlinearities within the filter. These nonlinearities generate harmonics when a pure sine wave is applied to the filter input. Tables 1, 2, and 3 list typical harmonic distortion values with a $10 \mathrm{k} \Omega$ load at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Table 1. MAX7418/MAX7421/MAX7422/MAX7425 Typical Harmonic Distortion

FILTER	$\begin{gathered} \text { fCLK } \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} \mathrm{fiN}_{(\mathrm{kHz}} \end{gathered}$	$\begin{gathered} V_{\text {IN }} \\ (\mathrm{Vp}-\mathrm{p}) \end{gathered}$	TYPICAL HARMONIC DISTORTION (dB)			
				2nd	3rd	4th	5th
MAX7418	2.2	2	4	<-80	<-80	<-80	<-80
	1.5	2		<-80	<-80	<-80	<-80
MAX7421	2.2	2	4	<-80	<-80	<-80	<-80
	1.5	2		<-80	<-80	<-80	<-80
MAX7422	4.0	4	2	<-80	<-80	<-80	<-80
	2.2	2		<-80	<-80	<-80	<-80
MAX7425	4.0	4	2	<-80	<-80	<-80	<-80
	2.2	2		<-80	<-80	<-80	<-80

5th-Order, Lowpass, Switched-Capacitor Filters

Table 2. MAX7420/MAX7424 Typical Harmonic Distortion

FILTER	fCLK (MHz)	$\stackrel{\mathrm{f}_{\mathrm{N}}}{(\mathrm{kHz})}$	$\begin{gathered} V_{\text {IN }} \\ (V p-p) \end{gathered}$	TYPICAL HARMONIC DISTORTION (dB)			
				2nd	3rd	4th	5th
MAX7420	2.2	2	4	-77	-67	<-80	-76
	1.5	2		<-80	-70	<-80	<-80
MAX7424	3.5	3	2	<-80	-70	<-80	<-80
	2.2	2		<-80	-77	<-80	<-80

Table 3. MAX7419/MAX7423 Typical Harmonic Distortion

FILTER	$\begin{gathered} \text { fCLK } \\ (\mathrm{MHz}) \end{gathered}$	$\stackrel{\mathrm{fin}}{(\mathrm{kHz})}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}} \\ (\mathrm{Vp}-\mathrm{p}) \end{gathered}$	TYPICAL HARMONIC DISTORTION (dB)			
				2nd	3rd	4th	5th
MAX7419	2.2	2	4	<-80	-77	<-80	<-80
	1.5	2		<-80	-80	<-80	<-80
MAX7423	3.5	3	2	<-80	-75	<-80	<-80
	2.2	2		<-80	<-80	<-80	<-80

__Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX7422CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7422EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7423CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7423EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7424CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7424EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7425CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7425EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$

Selector Guide (continued)

PART	FILTER RESPONSE	OPERATING VOLTAGE (V)
MAX7422	$\mathrm{r}=1.6$	+3
MAX7423	Bessel	+3
MAX7424	Butterworth	+3
MAX7425	$\mathrm{r}=1.25$	+3

Chip Information
TRANSISTOR COUNT: 1457
PROCESS: BiCMOS

5th-Order, Lowpass, Switched-Capacitor Filters

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Active Filter category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
1D38810GQ2 1D73312GQ22 1D38830GQ3 D51510GQ1 D45015GQ42 HMC894LP5ETR HMC896LP4ETR HMC891LP5ETR
$\underline{\text { MAX7491CEE }+ \text { MAX7415CUA }+ \text { MAX7413CPA }+ \text { MAX7411CPA }+ \text { MAX7410CPA }+ \text { MAX7405EPA }+ \text { MAX7413CUA }+ \text { MAX7411CUA }+~}$
$\underline{\text { MAX7408CPA }+}$ MAX7405CPA + MAX7401EPA + MAX293CWE + MAX281AEWE + MAX275ACPP + MAX264BEPI + MAX263BEPI +
MAX293ESA+ MAX280EPA+ MAX275AEPP+ MAX268BCWG+ MAX263AEPI+ MAX7423EUA+T LT1568CGN\#PBF
LTC1062CSW\#PBF LTC1562CG-2\#PBF HMC881LP5ETR HMC882LP5ETR HMC1000LP5ETR LTC1569CS8-6\#PBF LTC1563$\underline{2 I G N \# P B F}$ MAX7426EPA + MAX7426CPA + MAX7410EPA + MAX7407EPA + MAX7407CPA + MAX7427CPA + MAX7412CPA +
MAX7404EPA+ MAX7404CPA+ MAX7400EPA+ MAX7400CPA+ MAX296EPA+

