Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

General Description

The MAX5387 dual, 256-tap, volatile, low-voltage linear taper digital potentiometer offers three end-to-end resistance values of $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$. Operating from a single +2.6 V to +5.5 V power supply, the device provides a low $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ end-to-end temperature coefficient. The device features an $I^{2} \mathrm{C}$ interface.

The small package size, low supply operating voltage, low supply current, and automotive temperature range of the MAX5387 make the device uniquely suitable for the portable consumer market, battery backup industrial applications, and the automotive market.
The MAX5387 is specified over the automotive $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range and is available in a 14 -pin TSSOP package.

Applications

Low-Voltage Battery Applications
Portable Electronics
Mechanical Potentiometer Replacement
Offset and Gain Control
Adjustable Voltage References/Linear Regulators
Automotive Electronics

Features

- Dual, 256-Tap Linear Taper Positions
- Single +2.6V to +5.5 V Supply Operation
- Low < 1 1 A Quiescent Supply Current
- $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ End-to-End Resistance Values
- I2C-Compatible Interface
- Power-On Sets Wiper to Midscale
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature Range

Ordering Information

PART	PIN-PACKAGE	END-TO-END RESISTANCE $(\mathbf{k} \boldsymbol{\Omega})$
MAX5387LAUD +	14 TSSOP	10
MAX5387MAUD+	14 TSSOP	50
MAX5387NAUD+	14 TSSOP	100

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 14-Pin TSSOP (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 796.8 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Junction Temperature ... $+150^{\circ} \mathrm{C}$ Storage Temperature Range............................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$
MAX5387N... $\pm 1 \mathrm{~mA}$
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+2.6 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{VH}_{-}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{-}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Resolution	N			256			Tap
DC PERFORMANCE (Voltage-Divider Mode)							
Integral Nonlinearity	INL	(Note 2)		-0.5		+0.5	LSB
Differential Nonlinearity	DNL	(Note 2)		-0.5		+0.5	LSB
Dual Code Matching		Register $\mathrm{A}=$ register B		-0.5		+0.5	LSB
Ratiometric Resistor Tempco		$(\Delta \mathrm{V} W / \mathrm{VW}) / \Delta \mathrm{T}$; no load			+5		LSB
Full-Scale Error		Code $=$ FFH	MAX5387L	-3	-2.5		LSB
			MAX5387M	-1	-0.5		
			MAX5387N	-0.5	-0.25		
Zero-Scale Error		Code $=00 \mathrm{H}$	MAX5387L		+2.5	+3	LSB
			MAX5387M		+0.5	+1.0	
			MAX5387N		+0.25	+0.5	
DC PERFORMANCE (Variable-Resistor Mode)							
Integral Nonlinearity	R-INL	VDD > +2.6V	MAX5387L		± 1.0	± 2.5	LSB
			MAX5387M		± 0.5	± 1.0	
			MAX5387N		± 0.25	± 0.8	
		VDD $>+4.75 \mathrm{~V}$	MAX5387L		± 0.4	± 1.5	
			MAX5387M		± 0.3	± 0.75	
			MAX5387N		± 0.25	± 0.5	
Differential Nonlinearity	R-DNL	V DD > 2.6V (Note 3)		-0.5		+0.5	LSB
DC PERFORMANCE (Resistor Characteristics)							
Wiper Resistance (Note 4)	RwL	$\mathrm{V}_{\mathrm{DD}}>2.6 \mathrm{~V}$			250	600	Ω
		$V_{\text {DD }}>4.75 \mathrm{~V}$			150	200	
Terminal Capacitance	$\mathrm{CH}_{-}, \mathrm{CL}_{-}$	Measured to GND			10		pF
Wiper Capacitance	CW-	Measured to GND			50		pF
End-to-End Resistor Tempco	TCR	No load			35		ppm $/{ }^{\circ} \mathrm{C}$
End-to-End Resistor Tolerance	$\Delta \mathrm{RHL}$	Wiper not connected		-25		+25	\%

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+2.6 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{H_{-}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}_{-}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications overtemperature limits are guaranteed by design and characterization.
Note 2: DNL and $I N L$ are measured with the potentiometer configured as a voltage-divider (Figure 1) with $H_{-}=V_{D D}$ and $L_{-}=0 V$. The wiper terminal is unloaded and measured with an ideal voltmeter.
Note 3: R-DNL and R-INL are measured with the potentiometer configured as a variable resistor (Figure 1). DNL and INL are measured with the potentiometer configured as a variable resistor. H_{-}is unconnected and $\mathrm{L}_{-}=\mathrm{GND}$. For $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$, the wiper terminal is driven with a source current of $400 \mu \mathrm{~A}$ for the $10 \mathrm{k} \Omega$ configuration, $80 \mu \mathrm{~A}$ for the $50 \mathrm{k} \Omega$ configuration, and $40 \mu \mathrm{~A}$ for the $100 \mathrm{k} \Omega$ configuration. For $\mathrm{V}_{\mathrm{DD}}=+2.6 \mathrm{~V}$, the wiper terminal is driven with a source current of $200 \mu \mathrm{~A}$ for the $10 \mathrm{k} \Omega$ configuration, $40 \mu \mathrm{~A}$ for the $50 \mathrm{k} \Omega$ configuration, and $20 \mu \mathrm{~A}$ for the $100 \mathrm{k} \Omega$ configuration.
Note 4: The wiper resistance is the worst value measured by injecting the currents given in Note 3 into W_{-}with $L_{-}=G N D$. Rw = $\left(\mathrm{V}_{\mathrm{W}}-\mathrm{V}_{\mathrm{H}}\right) / \mathrm{ll}$.

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

Note 5: Drive HA with a 1 kHz GND to VDD amplitude tone. $L A=L B=G N D$. No load. WB is at midscale with a 10 pF load. Measure WB.
Note 6: The wiper settling time is the worst-case 0 to 50% rise time, measured between tap 0 and tap $127 . H_{-}=V_{D D}, L_{-}=G N D$, and the wiper terminal is loaded with 10pF capacitance to ground.
Note 7: Digital timing is guaranteed by design and characterization, not production tested.
Note 8: The SCL clock period includes rise and fall times ($t_{R}=t_{F}$). All digital input signals are specified with $t_{R}=t_{F}=2 n s$ and timed from a voltage level of $\left(V_{I L}+V_{I H}\right) / 2$.

Figure 1. Voltage-Divider and Variable Resistor Configurations
Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

VARIABLE-RESISTOR DNL vs. TAP POSITION ($50 \mathrm{k} \Omega$)

VARIABLE-RESISTOR INL vs. TAP POSITION ($50 \mathrm{k} \Omega$)

VARIABLE-RESISTOR DNL vs. TAP POSITION (100k Ω)

VARIABLE-RESISTOR INL vs. TAP POSITION ($100 \mathrm{k} \Omega$)

Typical Operating Characteristics (continued)

VARIABLE-RESISTOR DNL vs. TAP POSITION ($10 \mathrm{k} \Omega$)

VARIABLE-RESISTOR INL vs. TAP POSITION ($10 \mathrm{k} \Omega$)

VOLTAGE-DIVIDER DNL vs. TAP POSITION ($10 \mathrm{k} \Omega$)

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

$\overline{\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text {, unless otherwise noted. }\right)}$

VOLTAGE-DIVIDER INL
vs. TAP POSITION (50k Ω)

VOLTAGE-DIVIDER DNL
vs. TAP POSITION (50k Ω)

Typical Operating Characteristics (continued)

VOLTAGE-DIVIDER DNL
vs. TAP POSITION (100k Ω)

VOLTAGE-DIVIDER INL
vs. TAP POSITION (100k Ω)

VOLTAGE-DIVIDER INL

TAP-TO-TAP SWITCHING TRANSIENT (CODE 127 TO 128) ($10 \mathrm{k} \Omega$)

TAP-TO-TAP SWITCHING TRANSIENT (CODE 127 TO 128) ($50 \mathrm{k} \Omega$)

TAP-TO-TAP SWITCHING TRANSIENT (CODE 127 TO 128) (100k Ω)

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

Pin Description

PIN	NAME	FUNCTION
1	HA	Resistor A High Terminal. The voltage at HA can be higher or lower than the voltage at LA. Current can flow into or out of HA.
2	WA	Resistor A Wiper Terminal
3	LA	Resistor A Low Terminal. The voltage at LA can be higher or lower than the voltage at HA. Current can flow into or out of LA.
4	HB	Resistor B High Terminal. The voltage at HB can be higher or lower than the voltage at LB. Current can flow into or out of HB.
5	WB	Resistor B Wiper Terminal
6	LB	Resistor B Low Terminal. The voltage at LB can be higher or lower than the voltage at HB. Current can flow into or out of LB.
7	I.C.	Internally Connected. Connect to GND.
8	GND	Ground
9	A2	Address Input 2. Connect to VDD or GND.
10	A1	Address Input 1. Connect to VDD or GND.
11	A0	Address Input 0. Connect to VDD or GND.
13	SDA	I 2 C-Compatible Serial-Data Input/Output. A pullup resistor is required.
14	SCL	I 2 C-Compatible Serial-Clock Input. A pullup resistor is required.

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

Detailed Description

The MAX5387 dual, 256-tap, volatile, low-voltage linear taper digital potentiometer offers three end-to-end resistance values of $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$. The potentiometer consists of 255 fixed resistors in series between terminals H_{-}and L_{-}. The potentiometer wiper, W_{-}, is programmable to access any one of the 256 tap points on the resistor string.
The potentiometers are programmable independently of each other. The MAX5387 features an I2C interface.

I2C Digital Interface

The I2C interface contains a shift register that decodes the command and address bytes, routing the data to the appropriate control registers. Data written to a control register immediately updates the wiper position. Wipers A and B power up in midposition, $D[7: 0]=80 \mathrm{H}$.

Serial Addressing

The MAX5387 operates as a slave device that receives data through an $I^{2} \mathrm{C}$-/SMBus ${ }^{T \mathrm{M}}$-compatible 2 -wire serial interface. The interface uses a serial-data access (SDA) line and a serial-clock line (SCL) to achieve bidirectional communication between master(s) and slave(s). A
master, typically a microcontroller, initiates all data transfers to the MAX5387, and generates the SCL clock that synchronizes the data transfer (Figure 2).
The MAX5387 SDA line operates as both an input and an open-drain output. The SDA line requires a pullup resistor, typically $4.7 \mathrm{k} \Omega$. The MAX5387 SCL line operates only as an input. The SCL line requires a pullup resistor (typically $4.7 \mathrm{k} \Omega$) if there are multiple masters on the 2 -wire interface, or if the master in a single-master system provides an open-drain SCL output.
Each transmission consists of a START (S) condition (Figure 3) sent by a master, followed by the MAX5387 7-bit slave address plus the NOP \bar{W} bit (Figure 6), 1 command byte and 1 data byte, and finally a STOP (P) condition (Figure 3).

START and STOP Conditions

SCL and SDA remain high when the interface is inactive. A master controller signals the beginning of a transmission with a START condition by transitioning SDA from high to low while SCL is high. The master controller issues a STOP condition by transitioning the SDA from low to high while SCL is high, after finishing communicating with the slave. The bus is then free for another transmission.

Figure 2. ${ }^{2}$ C Serial Interface Timing Diagram

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

Bit Transfer
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable while SCL is high. See Figure 4.

Acknowledge

The acknowledge bit is a clocked 9th bit that the recipient uses to handshake receipt of each byte of data. See Figure 5. Each byte transferred requires a total of nine bits. The master controller generates the 9th clock pulse, and the recipient pulls down SDA during the acknowledge clock pulse, so the SDA line remains stable low during the high period of the clock pulse.

Slave Address
The MAX5387 includes a 7 -bit slave address (Figure 6). The 8th bit following the 7th bit of the slave address is the NOP \bar{W} bit. Set the NOP/ \bar{W} bit low for a write command and high for a no-operation command. The device does not support readback.
The device provides three address inputs (A0, A1, and A2), allowing up to eight devices to share a common bus (Table 1). The first 4 bits (MSBs) of the factory-set slave addresses are always 0101. A2, A1, and A0 set the next 3 bits of the slave address. Connect each address input to VDD or GND. Each device must have a unique address to share a common bus.

Figure 3. START and STOP Conditions

Figure 4. Bit Transfer

Figure 5. Acknowledge

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

Figure 6. Slave Address

Figure 7. Command and Single Data Byte Received

Message Format for Writing

Write to the devices by transmitting the device's slave address with NOP/ \bar{W} (eighth bit) set to zero, followed by at least 2 bytes of information. The first byte of information is the command byte. The second byte is the data byte. The data byte goes into the internal register of the device as selected by the command byte (Figure 7 and Table 2).

Command Byte

Use the command byte to select the destination of the wiper data. See Table 2.

Command Descriptions
REG A: The data byte writes to register A and the wiper of potentiometer A moves to the appropriate position. $\mathrm{D}[7: 0]$ indicates the position of the wiper. $\mathrm{D}[7: 0]=00 \mathrm{~h}$
moves the wiper to the position closest to LA. $D[7: 0]=$ FFh moves the wiper to the position closest to HA. D[7:0] is 80 h following power-on.

Table 1. Slave Addresses

ADDRESS INPUTS			SLAVE ADDRESS
A2	A1	A0	
GND	GND	GND	0101000
GND	GND	VDD	0101001
GND	VDD	GND	0101010
GND	VDD	VDD	0101011
$V_{D D}$	$G N D$	$G N D$	0101100
$V_{D D}$	$G N D$	VDD	0101101
$V_{D D}$	$V_{D D}$	$G N D$	0101110
$V_{D D}$	$V_{D D}$	VDD	0101111

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

Table 2. $I^{2} \mathrm{C}$ Command Byte Summary

		ADDRESS BYTE									COMMAND BYTE										DATA BYTE								
	$\begin{aligned} & \frac{\varpi}{6} \\ & \frac{\stackrel{\alpha}{\star}}{6} \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	$\begin{aligned} & \text { © } \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$
CYCLE NO.		A6	A5	A4	A3	A2	A1	A0	W	$\begin{gathered} \mathrm{ACK} \\ (\mathrm{~A}) \end{gathered}$	R7	R6	R5	R4	R3	R2	R1	Ro	ACK (A)	D7	D6	D5	D4	D3	D2	D1	D0	ACK (A)	
REG A		0	1	0	1	A2	A1	AO	0		0	0	0	1	0	0	0	1		D7	D6	D5	D4	D3	D2	D1	DO		
REG B		0	1	0	1	A2	A1	AO	0		0	0	0	1	0	0	1	0		D7	D6	D5	D4	D3	D2	D1	DO		
REGS A AND B		0	1	0	1	A2	A1	AO	0		0	0	0	1	0	0	1	1		D7	D6	D5	D4	D3	D2	D1	D0		

REG B: The data byte writes to register B and the wiper of potentiometer B moves to the appropriate position. $D[7: 0]$ indicates the position of the wiper. $D[7: 0]=00 h$ moves the wiper to the position closest to LB . $\mathrm{D}[7: 0]=$ FFh moves the wiper to the position closest to HB. D[7:0] is 80h following power-on.
REGS A and B: The data byte writes to registers A and B and the wipers of potentiometers A and B move to the appropriate position. $\mathrm{D}[7: 0]$ indicates the position of the wiper. $\mathrm{D}[7: 0]=00 \mathrm{~h}$ moves the wipers to the position closest to L_{-}. $D[7: 0]=$ FFh moves the wipers to the position closest to H_{-}. $\mathrm{D}[7: 0]$ is 80 h following power-on.

Applications Information

Variable Gain Amplifier

Figure 8 shows a potentiometer adjusting the gain of a noninverting amplifier. Figure 9 shows a potentiometer adjusting the gain of an inverting amplifier.

Figure 8. Variable Gain Noninverting Amplifier

Adjustable Dual Regulator
Figure 10 shows an adjustable dual linear regulator using a dual potentiometer as two variable resistors.

Adjustable Voltage Reference
Figure 11 shows an adjustable voltage reference circuit using a potentiometer as a voltage-divider.

Figure 9. Variable Gain Inverting Amplifier

Figure 10. Adjustable Dual Linear Regulator

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

Variable Gain Current to Voltage Converter

Figure 12 shows a variable gain current to voltage converter using a potentiometer as a variable resistor.

LCD Bias Control

Figure 13 shows a positive LCD bias control circuit using a potentiometer as a voltage-divider

Figure 14 shows a positive LCD bias control circuit using a potentiometer as a variable resistor.

Figure 11. Adjustable Voltage Reference

Figure 12. Variable Gain I-to-V Converter

Programmable Filter
Figure 15 shows a programmable filter using a dual potentiometer.

Offset-Voltage Adjustment Circuit
Figure 16 shows an offset-voltage adjustment circuit using a dual potentiometer.

Figure 13. Positive LCD Bias Control Using a Voltage-Divider

Figure 14. Positive LCD Bias Control Using a Variable Resistor

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

Figure 15. Programmable Filter

Process Information
PROCESS: BiCMOS

Figure 16. Offset-Voltage Adjustment Circuit

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$1 / 10$	Initial release	-
1	$4 / 10$	Added Soldering Temperature in Absolute Maximum Ratings; corrected code in Conditions of -3dB Bandwidth specification in Electrical Characteristics	2
2	$11 / 10$	Updated figures for optimal circuit operation	$12,13,14$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Potentiometer ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
604-00010 CAT5111VI-10-GT3 CAT5110TBI-10GT3 CAT5111LI-10-G CAT5112VI-00-GT3 CAT5112VI-50-GT3 X9241AWVI X9C103S MAX5438EUB+T MAX5430BEKA+T MAX5430AEKA+T DS3902U-530+T\&R DS3930E+T\&R MAX5395NATA+T DS3501U+T\&R MAX5394MATA+T AD5204BRZ10-REEL MAX5386NATE+T CAT5110TBI-50GT3 CAT5113ZI50 DS1801S+T\&R MAX5387NAUD+T CAT5112ZI-50-GT3 MAX5483EUD+T DS3501U+H MAX5437EUD+T CAT5137SDI-10GT3 CAT5111YI-10-GT3 MAX5434NEZT+T DS1809Z-010+C AD5144TRUZ10-EP MCP4251-503EML MCP4252-103EMF MCP4332-502E/ST MCP4352-104EST MCP4452-103EST MCP4541T-104E/MS MCP4551T-103E/MS MCP4562T-103EMF MCP4562T-103EMS MCP4631-502E/ST MCP4631T-103EST MCP4641-502E/ST MCP4651T-103E/ML MCP4651T-503E/ML MCP4652T-103EMF MCP4661T-503EML MCP4662T-103E/MF MCP4012T-202ECH MCP4023T-503ECH

