3.0mm Round Type Housing LED Lamps
 Technical Data Sheet

Part No.: H30E-1SD Luckylight

Features:

\diamond Low Power consumption.
\diamond High efficiency and low cost.
\diamond Good control and free combinations on the colors of LED lamps.
\diamond Good lock and easy to assembly.
\diamond Stackable and easy to assembly.
\diamond Stackable vertically and easy to assembly.
\diamond Versatile mounting on P.C board or panel.
\diamond Stackable horizontally and easy to assembly.
\diamond The product itself will remain within RoHS compliant version.

Descriptions:

\diamond ARRAY $=$ Plastic Holder + Combinations of Lamps.
\diamond The array will easily mount be applicable on any panel up to.

Applications:

\diamond Used as indicators of indicating the Degree, Functions, Positions etc, in electronic instruments.

Package Dimension:

Part No.	Chip Material	Lens Color	Source Color
H30E-1SD	GaAlAs	Red Diffused	Super Red

Notes:

1. All dimensions are in millimeters (inches).
2. Tolerance is $\pm 0.25 \mathrm{~mm}\left(.010^{\prime \prime}\right)$ unless otherwise noted.
3. Protruded resin under flange is 1.00 mm (.039") max.
4. Specifications are subject to change without notice.

Luckylight

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameters	Symbol	Max.	Unit
Power Dissipation	PD	60	mW
Peak Forward Current (1/10 Duty Cycle, 0.1 ms Pulse Width)	IFP	100	mA
Forward Current	IF	25	mA
Reverse Voltage	VR	5	V
Electrostatic Discharge (HBM)	ESD	2000	V
Operating Temperature Range	Topr	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	
Storage Temperature Range	Tstg	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Lead Soldering Temperature (.157") From Body]	Tsld	$260{ }^{\circ} \mathrm{C}$ for 5 Seconds	

Electrical Optical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameters	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Luminous Intensity*	IV	20	30	---	mcd	IF=20mA (Note 1)
Viewing Angle*	$2 \theta_{1 / 2}$	---	80	---	Deg	IF=20mA (Note 2)
Peak Emission Wavelength	λp	---	660	---	$n m$	IF=20mA
Dominant Wavelength	λd	---	640	---	$n m$	IF=20mA
Spectrum Radiation Bandwidth	$\Delta \lambda$	---	45	---	$n m$	IF=20mA
Forward Voltage	VF	1.50	1.80	2.40	V	IF=20mA
Reverse Current	IR	---	---	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=5 \mathrm{~V}$

Notes:

1. Luminous Intensity Measurement allowance is $\pm 10 \%$.
2. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. The dominant wavelength ($\lambda \mathrm{d}$) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device

Luckylight

Typical Electrical / Optical Characteristics Curves ($25^{\circ} \mathrm{C}$ Ambient Temperature Unless Otherwise Noted)

Spectrum Distribution

Luminous Intensity \&

Forward Current Derating Curve

Forward Current \& Forward Voltage
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Luminous Intensity \& Forward Current

Radiation Diagram

Spec No.: H30E
Approved: JoJo
Lucky Light Electronics Co., Ltd.

Date: Jul./15/2006
Drawn: Wang
http://www.luckylightled.com

Luckylight

Reliability Test Items And Conditions:

The reliability of products shall be satisfied with items listed below:
Confidence level: 90\%.
LTPD: 10\%.

1) Test Items and Results:

Test Item	Standard Test Method	Test Conditions	Note	Number of Damaged
Resistance to Soldering Heat	$\begin{aligned} & \text { JEITA ED-4701 } \\ & 300302 \end{aligned}$	TsId $=260 \pm 5^{\circ} \mathrm{C}, 10 \mathrm{sec} 3 \mathrm{~mm}$ from the base of the epoxy bulb	1 time	0/100
Solder ability	$\begin{gathered} \text { JEITA ED-4701 } \\ 300303 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Tsld }=235 \pm 5^{\circ} \mathrm{C}, 5 \mathrm{sec} \text { (using } \\ & \text { flux) } \end{aligned}$	1time over 95\%	0/100
Thermal Shock	$\begin{gathered} \text { JEITA ED-4701 } \\ 300307 \end{gathered}$	$0^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C}$ 15sec, 15 sec	100 cycles	0/100
Temperature Cycle	$\begin{aligned} & \text { JEITA ED-4701 } \\ & 100105 \end{aligned}$	$-40^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C}$ $30 \mathrm{~min}, 5 \mathrm{~min}, 30 \mathrm{~min}, 5 \mathrm{~min}$	100 cycles	0/100
Moisture Resistance Cycle	$\begin{aligned} & \text { JEITA ED-4701 } \\ & 200203 \\ & \hline \end{aligned}$	$\begin{gathered} 25^{\circ} \mathrm{C} \sim 65^{\circ} \mathrm{C} \sim-10^{\circ} \mathrm{C} 90 \% \mathrm{RH} \\ 24 \mathrm{hrs} / 1 \mathrm{cycle} \\ \hline \end{gathered}$	10 cycles	0/100
High Temperature Storage	$\begin{aligned} & \text { JEITA ED-4701 } \\ & 200201 \\ & \hline \end{aligned}$	$\mathrm{Ta}=100^{\circ} \mathrm{C}$	1000hrs	0/100
Terminal Strength (Pull test)	$\begin{gathered} \text { JEITA ED-4701 } \\ 400401 \\ \hline \end{gathered}$	$\begin{gathered} \text { Load } 10 \mathrm{~N}(1 \mathrm{kgf}) \\ 10 \pm 1 \mathrm{sec} \end{gathered}$	No noticeable damage	0/100
Terminal Strength (bending test)	$\begin{gathered} \text { JEITA ED-4701 } \\ 400401 \\ \hline \end{gathered}$	$\begin{gathered} \text { Load } 5 \mathrm{~N}(0.5 \mathrm{kgf}) \\ 0^{\circ} \sim 90^{\circ} \sim 0^{\circ} \text { bend } 2 \text { times } \end{gathered}$	No noticeable damage	0/100
Temperature Humidity Storage	$\begin{gathered} \text { JEITA ED-4701 } \\ 100103 \\ \hline \end{gathered}$	$\mathrm{Ta}=60^{\circ} \mathrm{C}, \mathrm{RH}=90 \%$	1000hrs	0/100
Low Temperature Storage	$\begin{aligned} & \text { JEITA ED-4701 } \\ & 200202 \\ & \hline \end{aligned}$	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$	1000hrs	0/100
Steady State Operating Life		$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{IF}=30 \mathrm{~mA}$	1000hrs	0/100
Steady State Operating Life of High Humidity Heat		$\begin{gathered} \mathrm{Ta}=60^{\circ} \mathrm{C}, \mathrm{RH}=90 \%, \\ \mathrm{IF}=30 \mathrm{~mA} \end{gathered}$	500hrs	0/100
Choice of various viewing angles		$\mathrm{Ta}=-30^{\circ} \mathrm{C}, \mathrm{IF}=30 \mathrm{~mA}$	1000hrs	0/100

2) Criteria for Judging the Damage:

Item	Symbol	Test Conditions	Criteria for Judgment	
			Min	Max
Forward Voltage	VF	IF $=20 \mathrm{~mA}$	---	F.V.*) $\times 1.1$
Reverse Current	IR	VR=5V	---	F.V.*) $\times 2.0$
Luminous Intensity	IV	IF=20mA	F.V.* $) \times 0.7$	---

*) F.V.: First Value.

Luckylight
Please read the following notes before using the product:

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

2. Storage

2.1 Do not open moisture proof bag before the products are ready to use.
2.2 Before opening the package, the LEDs should be kept at $30^{\circ} \mathrm{C}$ or less and 80% RH or less.
2.3 The LEDs should be used within a year.
2.4 After opening the package, the LEDs should be kept at $30^{\circ} \mathrm{C}$ or less and $60 \% \mathrm{RH}$ or less.
2.5 The LEDs should be used within 168 hours (7 days) after opening the package.
3. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than $260^{\circ} \mathrm{C}$ for 5 seconds within once in less than the soldering iron capacity 25 W . Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

4. Soldering

When soldering, for Lamp without stopper type and must be leave a minimum of 3 mm clearance from the base of the lens to the soldering point.
To avoided the Epoxy climb up on lead frame and was impact to non-soldering problem, dipping the lens into the solder must be avoided.

Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.
Recommended soldering conditions:

Soldering Iron		Wave Soldering	
Temperature	$300^{\circ} \mathrm{C}$ Max.	Pre-heat	$100^{\circ} \mathrm{C} \mathrm{Max}$.
Soldering Time	3 sec. Max.	Pre-heat Time	60 sec. Max.
	(one time only)	Solder Wave	$260^{\circ} \mathrm{C} \mathrm{Max}$.
		Soldering Time	5 sec. Max.

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

6. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices equipment and machinery must be properly grounded.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Panel Mount Indicators category:
Click to view products by Lucky Light manufacturer:
Other Similar products are found below :
607-1312-310F 607-3232-140F 6091M1-24V 6091M5-24V 6091M7-24V 821-0331-503 FL2870C8R FL2950WL7B FL589WL8R Q6P3BXXB12E H8630FBBA3 MPC5ADW6.0 DX1091GN NL177WL3G NL276C3G NL2950BWL3G NL2950CWL2R NL589WL2R NL67C3G NL67C3R 2191L1-12V PB22SIOL0RG PB22SPPM41R PB22SPPM61R LE177C5B LH1048BSWL3702 LH1048BWL3702 LH382A LHM62B SSI-LXH387USBD-150 SSI-LXH9ZIC40587 SSP-LXS110818BA FL2950BWL7R FL2950WL7R FL2951WL8G FL2951WL8R FL589C7R FL67C7R FL67WL8G 2191QU7-24V 2191U1-12V 2191U5-12V 2191U5-6V 2191U7-12V 249-4167-3734504F Q6P5BXXG02E 3990A7 5110F3-12V MPC5BCW18.0 556-1237-801F

