

Datasheet V1.3

preliminary specification

1 INTRODUCTION

GNS902 is a small autonomous GPS/GLONASS receiver, based on the MediaTek MT3333 single chip, with a finely tuned, high-sensitivity ceramic chip antenna. The receiver supports GPS and GLONASS simultaneously.

The navigation performance and accuracy is further improved by using correction data from SBAS (WAAS, EGNOS, GAGAN, MSAS), QZSS.

First Fixes after just a few seconds are achieved with the help of A-GPS using EPOTM (Extended Prediction Orbit) and the EASYTM "self generated orbit prediction" algorithm. EASYTM (Embedded Assist System) does not require any resources or assist data from the host.

The excellent low power design makes it easy to implement this receiver in power sensitive, battery supplied applications. The new AlwaysLocateTM power management feature will improve this behaviour additionally. It adaptively adjusts power consumption depending on the environment and motion conditions, in order to achive a balance between fix rate, power consumption and position accuracy.

Very low power requirements (typ 70mW@3.3V, tracking for GPS+GLONASS) and internal voltage regulator makes it easy to run the receiver with various power supplies and allows direct connection to LiIon batteries.

GNS902 offers the industry's highest level of navigation sensitivity up to -165dBm¹. It has superior dynamic performance at high velocity and provides effective protection against interference signals

Datasheet V1.3

preliminary specification

using MTAICTM (Multi-tone active interference canceller). Up to 12 independent channel interference continious wave jammers <-80dBm can be eliminated or reduced.

The embedded logger function LOCUS with a 16-hrs on chip memory makes this GNSS module a complete track logger for many applications.

In professional timing applications the outstanding high accuracy PPS (pulse per second) hardware pin is used for synchronization to GPS second. Typical accuracy is 10ns RMS.

Note: This module is designed to be operated on a mainboard, that provides a minimum of 20mm x 30mm ground plane. Sensitivity will be decreased if no groundplane is provided.

Features

- GLONASS and GPS simultaneously
- 99 acquisition-/ 33 tracking channels
- Ultra high tracking/navigation sensitivity: -165dBm¹
- smart antenna: tuned miniature ceramic chip antenna
- SBAS (WAAS,EGNOS,MSAS,GAGAN, QZSS) correction support
 A-GPS by EPO "Extended Prediction Orbit" enables 7/14days prediction
- 12 Multitone Active Interference Canceller (MTAIC) for GPS-in-band jammer rejection
- EASY[™]: Self generated orbit prediction support
- AlwaysLocate TM: Intelligent Algorithm for power saving
- High accuracy 1PPS output
- NMEA-0183 or binary protocol
- High update rate (up to 10/s)
- Embedded logger function with 16hrs internal memory
- GNSS current consumption (@3.3V):

Acquisition: 28mA Typical Tracking: 22mA Typical

- Low backup current consumption 15uA, typical
- SMD type
- Small form factor: 15.7x10x2.0mm
- · CE, FCC and RohS certified

¹ Note: Measured navigation sensitivity at RF input of chipset

Datasheet V1.3

preliminary specification

2 INDEX

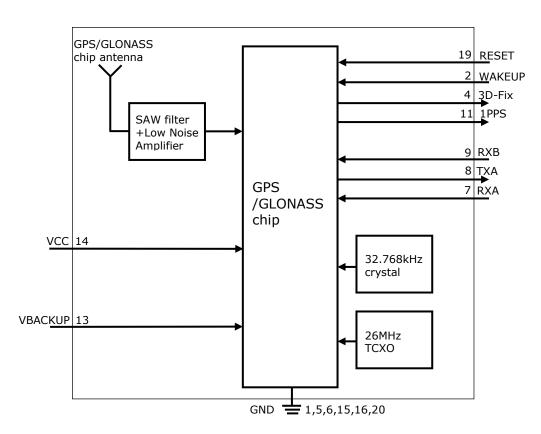
1 INTRODUCTION	
2 INDEX	3
3 FUNCTIONAL DESCRIPTION	4
3.1 System description	4
3.2 Block diagram	4
3.3 GPS and GLONASS simultaneous operation	5
3.4 Power Management Features	5
3.5 Logger function	7 -
3.6 Active interference cancellation (MTAIC)	7
3.7 AGPS with EPO data	
3.8 EASY [™] self generated prediction data feature	ح
3.10 SBAS (Satellite Based Augmentation) support	10
3.11 hinary output	10
3.12 GPS/GLONASS almanac and ephemeris data	10
3.13 Real time clock (RTC)	10
3.14 UART interface	10
3.15 Module default settings	11
4 TYPICAL APPLICATION BLOCK DIAGRAM	12
4.1 Typical System Overview	12
5 GPS/GLONASS characteristics	13
5.1 GPS/GLONASS characteristics	13
6 ELECTRICAL SPECIFICATION	14
6.1 Absolute Maximum Ratings	14
6.2 Recommended Operating Conditions	14
7 PIN CONFIGURATION	15
8 PHYSICAL DIMENSIONS	17
9 RECOMMENDED PAD LAYOUT	18
10 DESIGN GUIDELINES	19
10.1 PCB LAYOUT GUIDELINES	19
11 NMEA DATA interface	21
11.1 NMEA output sentences	21
11.2 NMEA command interface	22
12 MATERIAL INFORMATION	23
13 RECOMMENDED SOLDERING REFLOW PROFILE	23
14 PACKAGE INFORMATION	24
14.1 TAPE	 24
14.2 REEL	25
15 ORDERING INFORMATION	25
16 ENVIRONMENTAL INFORMATION	
17 MOISTURE SENSITIVITY	
18 DOCUMENT REVISION HISTORY	
10 DELATED DOCUMENTS	

Datasheet V1.3

preliminary specification

3 FUNCTIONAL DESCRIPTION

3.1 System description


The GNS902 is a high performance, low power GPS/GLONASS receiver that includes an integrated RF frontend (SAW Filter + LNA) and a ceramic chip antenna.

Due to high input sensitivity and low noise amplifier (LNA), it can work at weak GPS/GLONASS signals.

GNS902 is a complete autonomous GPS/GLONASS receiver, including:

- Full GPS/GLONASS processing, without any host processing requirements
- Standard NMEA message output
- A powerful NMEA command and control interface
- All clock sources integrated
- RF frontend integrates a low noise amplifier (LNA) and a SAW filter
- Rich additional features like geofencing, single sentence output, last position retention, magnetic variation, distance calculation
- Interface for UART, PPS output pin, Fix Status Indicator pin

3.2 Block diagram

Datasheet V1.3

preliminary specification

3.3 GPS and GLONASS simultaneous operation

GNS902 supports tracking of the GPS and the GLONASS satellite system at one time. This feature enhances the overall performance significant.

- Increased availability of number of satellites
- Increased spatial distribution allows better geometrical conditions
- Reduced Horizontal (HDOP) and Vertical Dilution of Precision (VDOP) factors

In GPS-only operation, a minimum of 3 SVs is needed to determine a 2D position fix solution. When using both systems, 5 SVs are needed to determine the four unknowns and one more SV to calculate the GPS/GLONASS time offset.

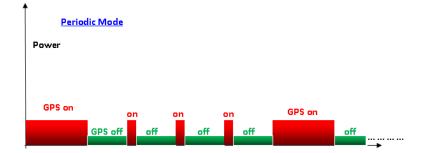
Using a combined receiver, users have an access to potentially 48 or more satellites. This high number of satellites can overcome the typical problems of restricted visibility of the sky, such as in urban canyons or indoor scenarios.

3.4 Power Management Features

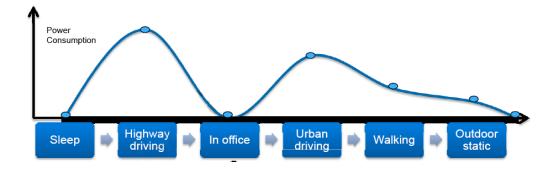
Power management schemes implemented for any GPS system requires an optimally tuned performance for both accuracy of the position fixes and the average power consumed for best user experience. GNS902 architecture achieves these both aspects by providing flexibility and design choices for the system integration, based on wide range of use cases and by leveraging on the proven silicon methodologies. Also GNS902 provides position, velocity and time measurements without any host loading. This, coupled with the optional built-in power management options, reduces the overall system power budget.

Selectable Power management features:

- In Standby mode RF frontend and internal MPU are switched to deep sleep state. Power
 consumption is reduced. This state can be entered by sending the NMEA command:
 \$PMTK161,0*28<CR><LF>.
 - Leaving standby mode and resuming to normal operation will be managed by sending any byte to the module.



Datasheet V1.3


preliminary specification

- Backup mode can be entered by sending NMEA command: \$PMTK225,4*2F<CR><LF>.
 The GPS core will shut down autonomously to backup state, Vcc supply can now be switched off by an external power supply switch.
- Periodic mode describes a power mode, which will autonomously power on/off the module in programmable time slots with reduced fix rate. Periodic mode is useful during stationary operation or if position fixes are just needed from time to time. Since power consumption in GPS off times is nearly zero, the power consumption in periodic mode can be estimated by P_{tracking} * (t_{on}/(t_{on}+t_{off})).
 Periodic mode is controlled with NMEA command \$PTMK225. See document

Periodic mode is controlled with NMEA command \$PTMK225. See document NMEA_Interface_manual_MTK_Vx for programming details.

AlwaysLocate[™] feature provides an optimized overall GPS/GLONASS system power consumption in tracking mode under open sky conditions. Always Locate is an intelligent control of periodic mode. Depending on the environment and motion conditions, GNS902 can adjust the on/off time to achieve balance of positioning accuracy and power consumption. The best power saving will be made under good reception in stationary mode. Critical reception conditions and dynamic movements will need full activity of the GNSS engine which causes nominal power requirements (28mA typ in tracking mode).

Datasheet V1.3

preliminary specification

3.5 Logger function

GNS902 provides an autonomous logger function that automatically stores position information in an internal 128kB flash memory. A complete tracking unit can be realized without any external CPU or memory.

The parameters for logging are programmable via the NMEA command interface. The following parameter can be set to optimize logging time:

- logger rate

The commands for logger include:

- start logging
- stop logging
- erase memory
- readout memory

please refer to the NMEA_Interface_manual_MTK_Vx for details.

Internal Logger Function								
	Min	Тур	max	unit				
Logger data rate	1/15		1	1/s				
Logger data memory		128		kBytes	Flash memory			
Logger trigger		programm			Logger can be triggered on			
		able			various events			

Logger firmware options (on request):

The logger is configured to record the "Basic" content.

Other content setting can be ordered as firmware options.

The following options can be statically defined by firmware build.

Please note that firmware options are bound to MOQ.

Name	Record size	Content									
		UTC	fixtype	Lat	Lon	Alt	speed	heading	hdop	satNo	Checksum
Basic	16	0	0	0	0	0					0
Racing	20	0	0	0	0	0	0	0			0
Search	19	0	0	0	0	0			0	0	0
Saving	13	0		0	0						0
All	23	0	0	0	0	0	0	0	0	0	0

3.6 Active interference cancellation (MTAIC)

Because different wireless technologies like Wi-Fi, GSM/GPRS, 3G/4G, Bluetooth are integrated into portable systems, the harmonic of RF signals may influence the GPS reception.

The multi-tone active interference canceller can reject external RF interference which come from other active components on the main board, thus improving the performance of GPS reception.

Datasheet V1.3

preliminary specification

GNS902 can cancel up to 12 independent continuous wave (CW) channels having signal levels of up to -80dBm. The functionality is enabled by default and increases power consumption by about 1mA.

3.7 AGPS with EPO data

AGPS (assisted GPS) allows to shorten TTFF (TimeToFirstFix) by injecting ephemeris data from an external source into the module's memory. With the help of these data, the module does not need to acquire satellite positions by receiving the data from the satellites.

Depending on time and position information, that is still available in the module memory, the TTFF can be reduced to just a few seconds.

The GNS AGPS service is based on a short term predicted data service. The predicted data will be fully processed by the GPS engine. The host must load the data from the web and transfer them over the UART into the module:

- 1. Check GNS902 module EPO (Extended Prediction Orbit) data for validity by comparing the time.
- 2. Connect to web server through network connection (GPRS, WLAN, LAN,..).
- 3. Download file. There are just two files, covering all GPS satellites. The first file (MTK7d.EPO) is for 7 days (53kB), the other is 106Kbytes for 14 days (MTK14d.EPO)
- 4. "Parse" file, using software example. This is quite easy, there must be added some header bytes and a checksum and a control counter. GNS offers software support on this.
- 5. Download to GNS902 receiver. Please refer to the NMEA_Interface_manual_MTK_Vx for details.

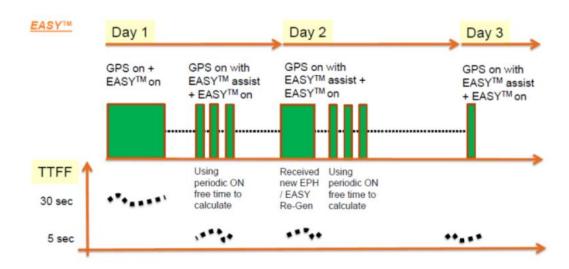
If the host has low memory available, there's no need to save the whole file. The steps 3..5 can be done frame by frame needing less than 2kBytes of buffer memory.

Code samples and support for several platforms are available from GNS (in preparation). Thanks to the predicted system, download data stay valid for up to 14 days. Therefore, users can initiate the download everytime and benefit from using (W)LAN instead of using expensive GSM. File size will be $\sim 50 \, \text{kBytes}$ for a one week prediction data set.

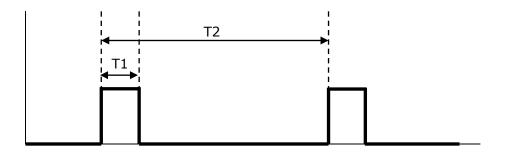
AGPS characteristics								
System					6hrs predicted data			
File size for data download		53		kB	1 week prediction data			
Maximum prediction time	7	14		days				
TTFF		1		sec	Time and last position available			
TTFF		15		sec	Last position available			

3.8 EASY[™] self generated prediction data feature

GNS902 includes an internal prediction system, that allows to sample satellite orbit data during operation and use that data to speed up TTFF on later starts. The prediction time frame is up to three days forward.


Although this prediction feature does not provide the very short TTFF that is achieved using AGPS, it can help to find a fix solution faster and in weak signal condition scenario. Prediction data will be kept in memory as long as VBACKUP is present. This option is activated by default.

Datasheet V1.3


preliminary specification

Note: The EASY functionality is only supported, if "VBACKUP" pin is conntected and the NMEA update rate is 1Hz.

3.9 Pulse Per Second (PPS)

GNS902 provides a Pulse Per Second (PPS) hardware output pin for timing purposes. After calculation of a 3D position fix (default setting), the PPS signal is accurately aligned to the GPS second boundaries. The pulse generated is approximately 100 milliseconds in duration and the repetition rate is 1 second. On request PPS output can activated on a 2D- fix or after power-up of the module, providing a time accuracy decreased PPS signal.

T1 = 100ms T2 = 1sec

GNS902 module provides an exceptionally low RMS jitter of typical 10 nanoseconds.

PPS characteristics based upon a 3D-fix								
1PPS pulse duration	ı	100	-	msec				
1PPS time jitter	-	10		nsec RMS	Pulse rising edge deviation from expected pulse time, measured with full 3D fix			

Datasheet V1.3

nrel	imina	ITV SI	pecifica	ntion

1PPS rise and fall time	5	nsec	10%90%,	load is 10k 5pF

3.10 SBAS (Satellite Based Augmentation) support

GNS902 supports Satellite Based Augmentation for improvement of the navigation precision. Correction data is sent from geostationary satellites to the GPS/GLONASS receiver. GNS902 supports European, US, and Asian augmentation systems (EGNOS, WAAS, GAGAN, MSAS, QZSS) to enable precision improvements in nearly every region of the world.

SBAS is active by default and will automatically track the available SBAS satellites. It can be disabled by NMEA command. See document NMEA_Interface_manual_MTK_Vx for details

3.11 binary output

GNS902 allows to reduce data transfer to host to a minimum. Reduced data transfer can save host processor activity times and thus reduce system power consumption.

3.12 GPS/GLONASS almanac and ephemeris data

For quick re-acquisition of the GPS/GLONASS receiver after off-times, the GPS/GLONASS engine should have access to almanac and ephemeris data. This data is permanently stored inside GNS902 module, even if all power supplies have been removed. When the receiver is powered-up again, the data will be used to allow a quick re-acquisition, as soon as a coarse time information is available. Time will be available immediately, when RTC is kept running.

3.13 Real time clock (RTC)

GNS902 has a real time clock with 32,768Hz crystal on board. As long as VBACKUP is connected to a power source, the real time clock and the module memory can be kept alive at very low power consumption of just 15uA. The RTC will track the current time and enable the module to start from sleep states with very fast time to first Fix (TTFF).

3.14 UART interface

GNS902 core and I/O sections work at 3.3V nominal. Absolute Maximum Ratings should not be exceeded. Should the GNS902 be interfaced to a host with I/O at higher/lower levels, level shifters should be used. UART baud rate is 9600baud by default. The baud rate can be modified to higher rates by a NMEA software command. See document NMEA_Interface_manual_MTK_Vx for details.

UART Default Settings							
Parameter	Value						
Baud rate	9600						
Data length	8 bits						
Stop bit	1						
Parity	None						

Datasheet V1.3

preliminary specification

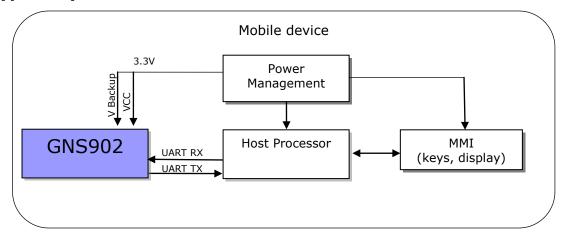
3.15 Module default settings

The GNS902 receiver comes with default settings, which are persistently programmed. Whenever power is removed from the module (both VCC and VBACKUP), the settings will be reset to the values shown in the following table.

Default settings								
Setting	Default value							
UART setting	9600,8,N,1							
Fix frequency (update rate)	1/sec							
NMEA sentences	Refer to chapter "NMEA output sentences"							
NMEA rate	Once a second: RMC,GSA,VTG,GGA every 5 sec :GSV sentences							
DGPS option	SBAS enabled							
Datum	WGS 84							
MTAIC	enabled							
Logging parameters	cyclic / Content Basic / Interval 15 sec							

On request, other options can be selected as preprogrammed (persistent default) options. Please contact the GNS support for your project requirements.

Note: Customized options are solely available for fixed order lots.



Datasheet V1.3

preliminary specification

4 TYPICAL APPLICATION BLOCK DIAGRAM

4.1 Typical System Overview

Datasheet V1.3

preliminary specification

5 GPS/GLONASS characteristics

5.1 GPS/GLONASS	5.1 GPS/GLONASS characteristics								
Parameter	Min	Тур	Max	Unit	Note				
general									
Frequency		1575.42		MHz	GPS L1				
		1598.0625~ 1609.3125		MHz	GLONASS L1				
Datum					WGS84				
AGPS	7		14	days	Configurable				
Output data frequency	1/10	1	10	1/sec					
Navigation&tracking sensitivity ¹		-165		dBm	autonomous				
Acquisition sensitivity ¹		-148		dBm	Cold start				
Reacquisition sensitivity ¹		-163		dBm	Hot start				
TTFF hotstart ¹		1		sec	All SVs @-130dBm				
TTFF autonomous warm start ¹		33		sec	All SVs @-130dBm				
TTFF autonomous cold start ¹		35		sec	All SVs @-130dBm				
Reacquisition time ¹		<1		sec	All SVs @-130dBm				
Number of channels tracking		33							
Number of acquisition channels		99							
Dimension		15.7x10x2		mm	Tolerance is +/-0.2 mm				
Weight		0.48		g					
		Power con	sumption						
GPS ACTIVE (acquisition)		28		mA	TBD NMEA frequency = 1/sec,SBAS enabled, MTAIC enabled				
GPS ACTIVE (tracking)		23		mA	TBD NMEA frequency = 1/sec, SBAS enabled, MTAIC enabled				
Backup current @ 3V		15		uA					

Accuracy							
Position error (50%CEP)	-	3	ı	m	Without aid 2D-RMS		
Position error (50%CEP)	=	2.5	-	m	Using (SBAS) 2D-RMS		
Velocity error	-	0.1	-	m/s	Without aid		
Velocity error	-	0.05	1	m/s	Using (SBAS)		

ITAR limits								
Operation altitude		ı	18,000	m				
Operation velocity	-	-	515	m/s				
Operation acceleration	1	ı	4	G				

¹ Note: based on chip specifications

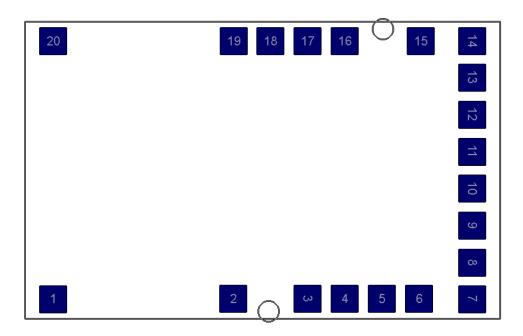
Datasheet V1.3

preliminary specification

6 **ELECTRICAL SPECIFICATION**

6.1 Absolute Maximum Ratings			
Parameter	Value	Unit	
Supply voltage range: Vcc	3.0 to 4.3	V	
Backup voltage: VBACKUP	2 to 4.3	V	

Parameter	Min	Тур	Max	Unit	Note
V_{cc}	3.0	3.3	4.3	V	supply voltage
V _{cc} ripple voltage				50	mVpp
VBACKUP	2.0	3.0	4.3	V	Backup voltage for RTC and memory retention, must be available during normal operation
RX0 TTL H Level	2.0		V _{cc}	V	Condition: VCC=3.0V~4.3V
RX0 TTL L Level	0		0.8	V	Condition: VCC=3.0V~4.3V
TX0 TTL H Level	2.4		2.8	V	Condition: VCC=3.0V~4.3V
TX0 TTL L Level	0		0.4	V	Condition: VCC=3.0V~4.3V
Storage temperature	-50		+90	°C	
Operating temperature	-40		+85	°C	



Datasheet V1.3

preliminary specification

7 PIN CONFIGURATION

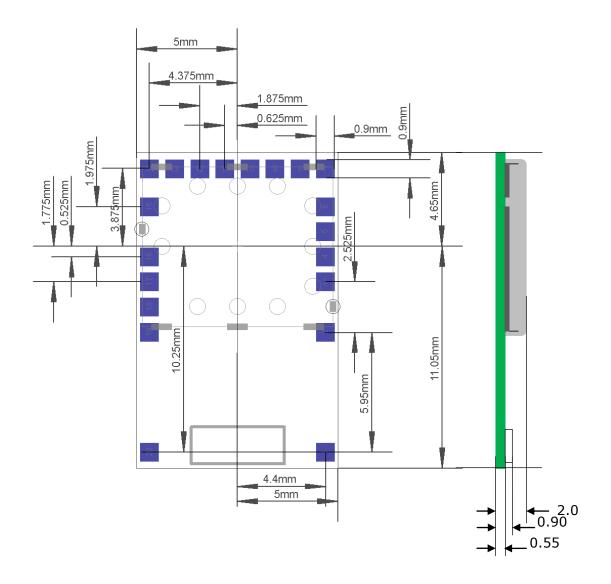
Top View

Datasheet V1.3

preliminary specification

Pin	Name	I/O	Description & Note
1	GND		Ground
2	WAKEUP	Ι	Wakeup input (TBD) leave open
3	NC		Not conected
4	3D_FIX	0	3D-Fix Indicator The 3D_FIX is assigned as a fix flag output. If not used, keep floating. Before 2D Fix The pin will continuously toggle with 1 Hz. output 100ms high-level and 0.9s low-level signal After 2D or 3D Fix The pin will continuously output low-level signal This pin may not connected to high-level at power-on sequence.
5	GND		Ground
6	GND		Ground
7	RXA	I	Serial Data Input A for NMEA commands (TTL) This is the UART-A receiver of the module. It is used to receive commands from system
8	TXA	0	Serial Data Output A for NMEA output (TTL) This is the UART-A transmitter of the module. It outputs GPS information for application.
9	RXB	Ι	Serial Data Input B This is the UART-B receiver of the module. It is used to receive RTCM data from system
10	NC		Not connected
11	1PPS	0	1PPS Time Mark Output 2.8V CMOS Level This pin provides one pulse-per-second output from the module and synchronizes to GPS time. Keep floating if not used.
12	NC		Not conected
13	VBACKUP	Р	Backup power input for RTC & navigation data keep This connects to the backup power of the GPS module. Power source (such as battery) connected to this pin will help the GPS chipset in keeping its internal RTC running when the main power source is turned off. The voltage should be kept between 2.8V-4.3V, Typical 3.3V. If VBACKUP power was not reserved, the GPS receiver will perform a lengthy cold start every time it is powered on because previous satellite information is not retained and needs to be re-transmitted. This pin must be connected for normal operation.
14	VCC	Р	Main DC power input The main DC power supply for the module. The voltage should be kept between from 2.8V to 4.3V. The ripple must be limited under 50mVpp (Typical: 3.3V).
15	GND		Ground
16	GND		Ground
17	NC		Not conected
18	NC		Not conected
19	RESET	I	System reset pin An external reset applied to this pin overrides all other internal controls. RESET# is an active low signal. Pulling this pin low for at least 20 µs causes a system reset.
20	GND		Ground

⁽¹⁾ I = INPUT; O = OUTPUT; I/O = BIDIRECTIONAL; P = POWER PIN; ANA = ANALOG PIN.

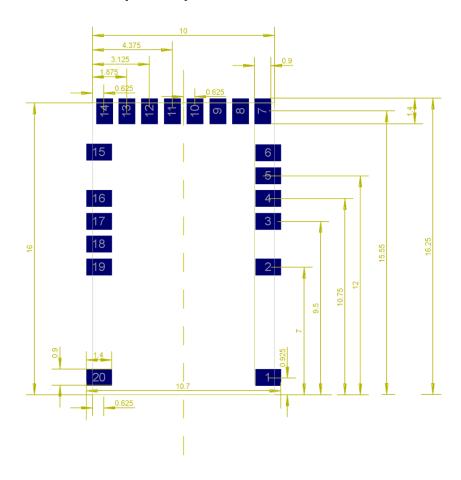

Datasheet V1.3

preliminary specification

8 PHYSICAL DIMENSIONS

TOP VIEW

all units in mm, tolerance is ± 0.2 mm


Datasheet V1.3

preliminary specification

9 RECOMMENDED PAD LAYOUT

all units in mm

Footprint Top View

Datasheet V1.3

preliminary specification

10 DESIGN GUIDELINES

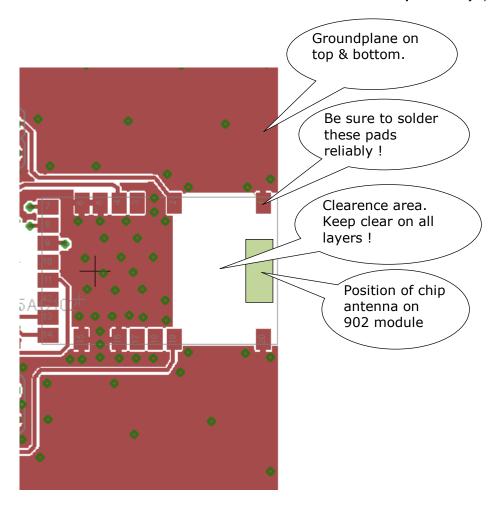
Although GNS902 GPS/GLONASS receiver provides best performance at low power consumption, special care should be taken to provide clean signal and clean power supplies. Power lines should be blocked near to the receiver with low ESR capacitors.

Radiated noise from neighbour components may also reduce the performance of the receiver. Please refer to "GNS902 Starter Kit User Manual" for more informations, downloadable at the GNS forum: www.forum.gns-gmbh.com.

10.1 PCB LAYOUT GUIDELINES

GNS902 uses a high performance chip antenna design.

For optimum performance, a ground plane area is needed on the main board. This area should be at least 20×30 mm, a larger ground like 30×60 mm is recommended.


The groundplane can be part of the main ground layer of the mainboard, some (small) components in the neighbourhood of the antenna are acceptable. Do not place any bulky or metallic components near to the antenna (in a distance below 30mm) to avoid unwanted electromagnetic shielding effects.

It's recommended to place GNS 902 at the rim of the main PCB, so that the antenna has a wide unobstructed working angle.

Datasheet V1.3

preliminary specification

The marked clearance area below the antenna must be kept clear in any case! Do not design any copper tracks or planes in the clearance area!

The two ground solder pads near the chip antenna must be reliably soldered to mainboard groundplanes to make the antenna work at high performance.

Please do not place any shielding or lids in the area 5mm below your PCB under the Clearance area. Plastic enclosures can also have impact on the antenna. Avoid that the antenna is in touch with any enclosure parts. Product testing should be performed with the PCB already mounted in the final enclosure.

Generally the rules for good and low noise design should be followed:

- → Use a solid ground plane, best on layer 2 of the mainboard
- → Keep noisy components (µC, switch mode supplies) as far as possible away from sensitive antenna inputs
- → Place decoupling capacitors near to the source of noise and provide a short and low induction connection to ground (use multi-vias if needed)
- → EMC filters or noise filtering coils or beads can help to reduce the noise level further.
- → Select system clocks in a way, that no harmonics will match the GPS/Glonass frequency 0f 1575.42 to 1610 MHz

Datasheet V1.3

preliminary specification

11 NMEA DATA interface

GNS902 provides NMEA (National Marine Electronics Association) 0183 compatible data. A set of proprietary NMEA commands is available to send control messages to the receiver. These commands are described in a separate document: NMEA_Interface_manual_MTK_Vx. For standard operation, no commands are needed; the module will start outputting NMEA sentences after power supply has been attached. GNS902 will always start communication output with 9600 bit per second.

If non standard options are needed (f.e. other baud rate, other NMEA sequence) they can be programmed from host controller during runtime.

Important note: Options set by using NMEA command interface are not persistent! They will be lost when power is removed. A backup supply at VBACKUP will be sufficient to keep them.

11.1 NMEA output sentences

NMEA output sentences			
Type content			
RMC	Recommended Minimum Navigation Information		
GGA	Fix Data, Time, Position and fix related data		
GLL	Geographic Position - Latitude/Longitude		
GSA	DOP and active satellites		
VTG	Course and Speed Information relative to the Ground		
GSV	Satellites in view		

NMEA output sentences indentifier, related to its GNSS system:

NMEA output identifier						
System	System GGA GSA GSV RMC VTG					
GPS	GPGGA	GPGSA	GPGSV	GPRMC	GPVTG	
GPS+GLONASS	GPGGA	GNGSA	GPGSV	GPRMC ¹ or	GPVTG	
			GLGSV	GNRMC		

Note1: Before 3D fix RMC output is GPRMC, after 3D fix it changes to GNRMC.

Refer to **NMEA_protocol** document available at GNS forum www.forum.gns-gmbh.com for more information.

Datasheet V1.3

preliminary specification

11.2 NMEA command interface

GNS902 NMEA command interface allows to control settings and the extended functions. The command interface specification is available in an extra document: NMEA_Interface_manual_MTK_Vx.

Two groups of commands are available:

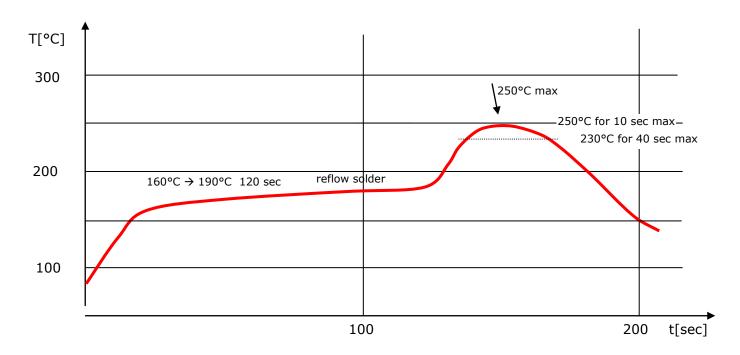
<u>Setting commands</u> do modify the behavior of the module.

Note: Modified settings will be valid as long as the module is powered through VCC or VBACKUP. (f.e.: setting of a new baud rate). After removing VCC and VBACKUP, all settings are reset to their default values.

<u>Action commands</u> will perform the specified action one time after the command has been received. (f.e. : request for cold start)

Commands are always started with \$PTMK, directly followed by the command number 000..999. Each command must be terminated by *<chksum>and a <CR><LF>.

The checksum calculation is simple, just XOR all the bytes between the \$ and the * (not including the delimiters themselves). Then use the hexadecimal ASCII format.


Datasheet V1.3

preliminary specification

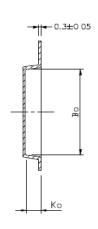
12 MATERIAL INFORMATION

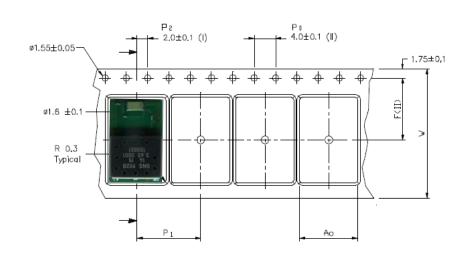
Complies to ROHS standard ROHS documentations are available on request Contact surface: gold over nickel

13 RECOMMENDED SOLDERING REFLOW PROFILE

Notes:

- 1. GNS902 should be soldered in upright soldering position. In case of head-over soldering, please prevent shielding / GNS902 receiver from falling down.
- 2. Do never exceed maximum peak temperature
- 3. Reflow cycles allowed: 1 time
- 4. Do not solder with Pb-Sn or other solder containing lead (Pb)
- 5. This device is not applicable for flow solder processing
- 6. This device is not applicable for solder iron process




Datasheet V1.3

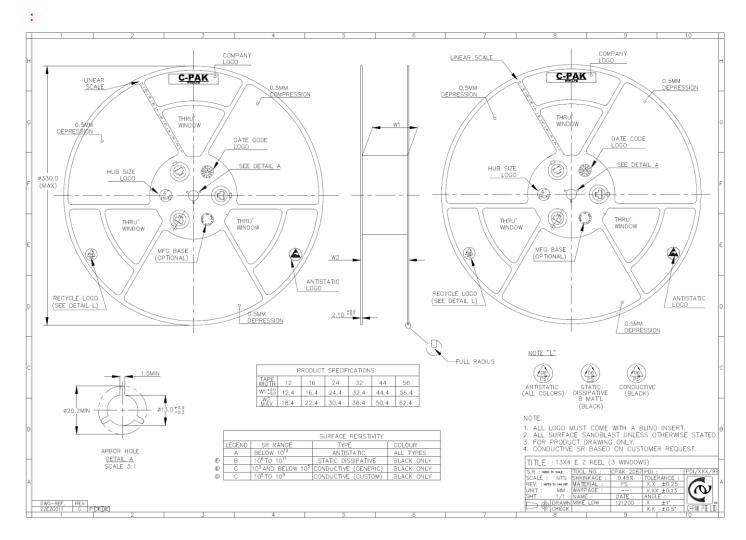
preliminary specification

14 PACKAGE INFORMATION

14.1 TAPE

10.90 +/- 0.1 Вο 15.82 +/- 0.1 K٥ 3.00 + / - 0.1F 11.50 +/- 0.1 12.00 +/- 0.1 24.00 +/- 0.3 P 1 W

- Measured from centreline of sprocket hole
- to centraline of sprocket cumulative tolerance of 10 sprocket holes is \pm 0.20 . Measured from centraline of sprocket hole to centraline of pocket. Other material available.


ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Datasheet V1.3

preliminary specification

14.2 **REEL**

Number of devices: 1500 pcs/reel

15 ORDERING INFORMATION

Ordering information				
Type Part# label marking Description				
GNS902	4037735105171	GNS902 FWV YYWW SN	GNS902receiver FWV => Firmware version YYWW => date code SN => serial number	

Datasheet V1.3

preliminary specification

16 ENVIRONMENTAL INFORMATION

This product is free of environmental hazardous substances and complies with 2002/95/EC. (RoHS directive).

17 MOISTURE SENSITIVITY

This device must be prebaked before being put to reflow solder process.

Disregarding may cause destructive effects like chip cracking, which leaves the device defective!

Shelf life	6 months, sealed
Possible prebake recommendations	12 hrs @ 60°C
Floor life (time from prebake to solder process)	<72 hrs

Datasheet V1.3

preliminary specification

18 DOCUMENT REVISION HISTORY

V1.0	April 8 2014	M.Reiff	initial document
V1.1	July 8 2014	P.Skaliks	First preliminary release
V1.3	Oct 6 2014	P.Skaliks	Added logger information

19 RELATED DOCUMENTS

Title	Description / file	Available from
NMEA_Interface_manual_MTK_Vx	Detailed description of NMEA commands	www.forum.gns-qmbh.com www.gns-qmbh.com
GNS202/902 StarterKit user manual	User manual for the GNS902 receiver based evaluation kit	www.forum.gns-gmbh.com www.gns-gmbh.com

© GNS GMBH 2014

THE INFORMATION IN THIS DOCUMENTATION DOES NOT FORM ANY QUOTATION OR CONTRACT. TECHNICAL DATA ARE DUE TO BE CHANGED WITHOUT NOTICE.

NO LIABILITY WILL BE ACCEPTED BY THE PUBLISHER FOR ANY CONSEQUENCE OF THIS DOCUMENT'S USE. REPRODUCTION IN WHOLE OR IN PART IS PROHIBITED WITHOUT THE PRIOR WRITTEN CONSENT OF THE COPYRIGHT OWNER

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for GPS Modules category:

Click to view products by Global Navigation Systems manufacturer:

Other Similar products are found below:

A5135-H EWM-G109H01E ISM3333-C6.1 S2-106ZN S2-105V4-Z185K MIKROE-4150 GPS-11858 4037735104327 RXM-GNSS-TM-T EWM-G108H01E DD-14239 GPS-10922 GPS-12751 NEO-M8P-2 SIM28ML RXM-GNSS-GM-T SIM28 M10578-A3 M10578-A3-U2 TEL0132 POL-2G POL-3G FT-X-GPS GPS-13740 PKG300060P PKG300071 PKG300071P PKG9000000000271T PKG9000000000853P PKG9000000000853T EZ-GPS-G A2235H RXM-GNSS-TM-B RXM-GPS-F4-T RXM-GPS-FM-B RXM-GPS-FM-T RXM-GPS-R4-T A1084-A A2100-A A2200-A A2235-H A5100-A 28504 L26ADR-S89 L26T-S89 L89-S90 101990655 113990659 GPS-13670 TESEO-LIV3F