DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT126 Quad buffer/line driver; 3-state

File under Integrated Circuits, IC06

FEATURES

- Output capability: bus driver
- I ${ }_{\text {CC }}$ category: MSI

GENERAL DESCRIPTION

The $74 \mathrm{HC} / \mathrm{HCT} 126$ are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The HC/HCT126 are four non-inverting buffer/line drivers with 3-state outputs. The 3-state outputs (nY) are controlled by the output enable input (nOE). A LOW at nOE causes the outputs to assume a HIGH impedance OFF-state.

The " 126 " is identical to the " 125 " but has active HIGH enable inputs.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay nA to nY	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	9	11	ns
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per buffer	notes 1 and 2	23	24	pF

Notes

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
$\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)=$ sum of outputs
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
$1,4,10,13$	1 OE to 4OE	output enable inputs (active HIGH)
$2,5,9,12$	1 A to 4A	data inputs
$3,6,8,11$	1 Y to 4 Y	data outputs
7	GND	ground (0 V)
14	$\mathrm{~V}_{\text {CC }}$	positive supply voltage

Fig. 3 IEC logic symbol.

FUNCTION TABLE

INPUTS		OUTPUT
nOE	nA	nY
H	L	L
H	H	H
L	X	Z

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level
X = don't care
$\mathrm{Z}=$ high impedance OFF-state

Quad buffer/line driver; 3-state

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: bus driver
$I_{\text {CC }}$ category: MSI

AC CHARACTERISTICS FOR 74HC

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HC								$V_{c c}$ (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay nA to nY		$\begin{aligned} & \hline 30 \\ & 11 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 20 \\ & 17 \\ & \hline \end{aligned}$		$\begin{array}{\|l} \hline 125 \\ 25 \\ 21 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 150 \\ 30 \\ 26 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 6
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time nOE to nY		$\begin{aligned} & 41 \\ & 15 \\ & 12 \end{aligned}$	$\begin{array}{\|l\|} \hline 125 \\ 25 \\ 21 \end{array}$		$\begin{array}{\|l\|} \hline 155 \\ 31 \\ 26 \end{array}$		$\begin{array}{\|l\|} \hline 190 \\ 38 \\ 32 \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 7
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable time nOE to nY		$\begin{aligned} & 41 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 125 \\ & 25 \\ & 21 \end{aligned}$		$\begin{array}{\|l\|} \hline 155 \\ 31 \\ 26 \end{array}$		$\begin{aligned} & \hline 190 \\ & 38 \\ & 32 \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 7
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		14 5 4	$\begin{aligned} & 60 \\ & 12 \\ & 10 \end{aligned}$		$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6

Quad buffer/line driver; 3-state

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: bus driver
$I_{\text {CC }}$ category: MSI

Note to HCT types

The value of additional quiescent supply current $\left(\Delta I_{C C}\right)$ for a unit load of 1 is given in the family specifications.
To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per unit, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$\mathrm{nA}, \mathrm{nOE}$	1.00

AC CHARACTERISTICS FOR 74HCT

$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HCT								$V_{c c}$ (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay nA to nY		14	24		30		36	ns	4.5	Fig. 6
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time nOE to nY		13	25		31		38	ns	4.5	Fig. 7
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable time nOE to nY		18	28		35		42	ns	4.5	Fig. 7
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		5	12		15		18	ns	4.5	Fig. 6

AC WAVEFORMS

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 6 Waveforms showing the input ($n A$) to output ($n \mathrm{Y}$) propagation delays and the output transition times.

Fig. 7 Waveforms showing the 3-state enable and disable times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:

Click to view products by NXP manufacturer:

Other Similar products are found below :
5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1 74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7

