DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT390 Dual decade ripple counter

File under Integrated Circuits, IC06

FEATURES

- Two BCD decade or bi-quinary counters
- One package can be configured to divide-by-2, 4, 5, 10, 20, 25, 50 or 100
- Two master reset inputs to clear each decade counter individually
- Output capability: standard
- ICC category: MSI

GENERAL DESCRIPTION

The $74 \mathrm{HC} / \mathrm{HCT} 390$ are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The $74 \mathrm{HC} / \mathrm{HCT} 390$ are dual 4-bit decade ripple counters divided into four separately clocked sections. The counters have two divide-by-2 sections and two divide-by-5 sections. These sections are normally used in a BCD
decade or bi-quinary configuration, since they share a common master reset input (nMR). If the two master reset inputs (1MR and 2MR) are used to simultaneously clear all 8 bits of the counter, a number of counting configurations are possible within one package. The separate clocks ($\mathrm{n} \overline{\mathrm{CP}}_{0}$ and $\mathrm{n} \overline{\mathrm{CP}}_{1}$) of each section allow ripple counter or frequency division applications of divide-by-2, 4, 5, 10, 20, 25,50 or 100.

Each section is triggered by the HIGH-to-LOW transition of the clock inputs ($\mathrm{n} \overline{\mathrm{CP}}_{0}$ and $n \overline{\mathrm{CP}}_{1}$). For BCD decade operation, the $n Q_{0}$ output is connected to the $n \overline{C P}_{1}$ input of, the divide-by-5 section. For bi-quinary decade operation, the $n Q_{3}$ output is connected to the $n \overline{\mathrm{CP}}_{0}$ input and $n Q_{0}$ becomes the decade output.

The master reset inputs (1MR and 2MR) are active HIGH asynchronous inputs to each decade counter which operates on the portion of the counter identified by the "1" and " 2 " prefixes in the pin configuration. A HIGH level on the nMR input overrides the clocks and sets the four outputs LOW.

QUICK REFERENCE DATA

$G N D=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \overline{C P}_{0}$ to $n Q_{0}$ $n \overline{C P}_{1}$ to $n Q_{1}$ $n \overline{C P}_{1}$ to $n Q_{2}$ $n \overline{C P}_{1}$ to $n Q_{3}$ $n M R$ to Q_{n}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & 14 \\ & 15 \\ & 23 \\ & 15 \\ & 16 \end{aligned}$	$\begin{array}{\|l} 18 \\ 19 \\ 26 \\ 19 \\ 18 \end{array}$	ns ns ns ns ns
$\mathrm{f}_{\text {max }}$	maximum clock frequency $\mathrm{n} \overline{\mathrm{CP}}_{0}, \mathrm{n} \overline{\mathrm{CP}}_{1}$		66	61	MHz
C_{1}	input capacitance		3.5	3.5	pF
CPD	power dissipation capacitance per counter	notes 1 and 2	20	21	pF

Notes

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):
$P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\sum\left(C_{L} \times V_{C C}^{2} \times f_{0}\right)=$ sum of outputs
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1,15	$1 \overline{\mathrm{CP}}_{0}, 2 \overline{\mathrm{CP}}_{0}$	clock input divide-by-2 section (HIGH-to-LOW, edge-triggered)
2,14	$1 \mathrm{MR}, 2 \mathrm{MR}$	asynchronous master reset inputs (active HIGH)
$3,5,6,7$	$1 \mathrm{Q}_{0}$ to $1 \mathrm{Q}_{3}$	flip-flop outputs
4,12	$1 \overline{C P}_{1}, 2 \overline{\mathrm{CP}}_{1}$	clock input divide-by-5 section (HIGH-to-LOW, edge triggered)
8	GND	ground (0 V)
$13,11,10,9$	$2 \mathrm{Q}_{0}$ to $2 \mathrm{Q}_{3}$	flip-flop outputs
16	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Fig. 1 Pin configuration.

Fig. 2 Logic symbol.

Fig. 3 IEC logic symbol.

Dual decade ripple counter

Fig. 4 Functional diagram.

BCD COUNT SEQUENCE FOR 1/2 THE "390"

COUNT	OUTPUTS			
	Q $_{\mathbf{0}}$	Q $_{\mathbf{1}}$	Q $_{\mathbf{2}}$	Q $_{\mathbf{3}}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H

Notes

1. Output Q_{0} connected to $n \overline{\mathrm{CP}}_{1}$ with counter input on $n \overline{C P}_{0}$.
H = HIGH voltage level
L = LOW voltage level

BI-QUINARY COUNT SEQUENCE FOR 1/2 THE "390"

COUNT	OUTPUTS			
	Q $_{\mathbf{0}}$	Q $_{\mathbf{1}}$	Q $_{\mathbf{2}}$	Q $_{\mathbf{3}}$
0	L	L	L	L
1	L	H	L	L
2	L	L	H	L
3	L	H	H	L
4	L	L	L	H
5	H	L	L	L
6	H	H	L	L
7	H	L	H	L
8	H	H	H	L
9	H	L	L	H

Note

1. Output Q_{3} connected to $\mathrm{n} \overline{\mathrm{CP}}_{0}$ with counter input on $n \overline{\mathrm{CP}}_{1}$.

Fig. 5 Logic diagram (one counter).

Dual decade ripple counter

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard $I_{C C}$ category: MSI

AC CHARACTERISTICS FOR 74HC
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HC								$V_{C C}$ (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \overline{C P}_{0}$ to $n Q_{0}$		$\begin{array}{\|l\|} \hline 47 \\ 17 \\ 14 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 145 \\ 29 \\ 25 \\ \hline \end{array}$		$\begin{aligned} & \hline 180 \\ & 36 \\ & 31 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 220 \\ & 44 \\ & 38 \\ & \hline \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \overline{C P}_{1}$ to $n Q_{1}$		$\begin{array}{\|l\|} \hline 50 \\ 18 \\ 14 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 155 \\ 31 \\ 26 \\ \hline \end{array}$		$\begin{aligned} & \hline 195 \\ & 39 \\ & 33 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 235 \\ & 47 \\ & 40 \\ & \hline \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\mathrm{n} \overline{\mathrm{CP}}_{1}$ to nQ_{2}		$\begin{aligned} & 74 \\ & 27 \\ & 22 \end{aligned}$	$\begin{array}{\|l\|} \hline 210 \\ 42 \\ 36 \end{array}$		$\begin{aligned} & 265 \\ & 53 \\ & 45 \end{aligned}$		$\begin{aligned} & 315 \\ & 63 \\ & 54 \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \overline{C P}_{1}$ to $n Q_{3}$		$\begin{array}{\|l\|} \hline 50 \\ 18 \\ 14 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 155 \\ 31 \\ 26 \\ \hline \end{array}$		$\begin{aligned} & \hline 195 \\ & 39 \\ & 33 \\ & \hline \end{aligned}$		235 47 40	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 6
$\mathrm{t}_{\text {PHL }}$	propagation delay $n M R$ to $n Q_{n}$		$\begin{array}{\|l\|} \hline 52 \\ 19 \\ 15 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 165 \\ 33 \\ 28 \\ \hline \end{array}$		205 41 35		250 50 43	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 7
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		19 7 6	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$		$\begin{aligned} & \hline 110 \\ & 22 \\ & 19 \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6
tw	clock pulse width $n \overline{\mathrm{CP}}_{0}, \mathrm{n} \overline{\mathrm{CP}}_{1}$	$\begin{array}{\|l\|} \hline 80 \\ 16 \\ 14 \end{array}$	$\begin{aligned} & \hline 19 \\ & 7 \\ & 6 \end{aligned}$		$\begin{aligned} & \hline 100 \\ & 20 \\ & 17 \end{aligned}$		$\begin{array}{\|l\|} \hline 120 \\ 24 \\ 20 \\ \hline \end{array}$		ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6
tw	master reset pulse width HIGH	$\begin{array}{\|l\|} \hline 80 \\ 17 \\ 14 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 28 \\ 10 \\ 8 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 105 \\ 21 \\ 18 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 130 \\ 26 \\ 22 \\ \hline \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 7
$\mathrm{t}_{\text {rem }}$	removal time $n M R$ to $n \overline{C P}_{n}$	$\begin{array}{\|l\|} \hline 75 \\ 15 \\ 13 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 22 \\ 8 \\ 6 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 95 \\ 19 \\ 16 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 110 \\ 22 \\ 19 \\ \hline \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 7
$\mathrm{f}_{\text {max }}$	$\begin{aligned} & \text { maximum clock pulse } \\ & \text { frequency } \\ & \mathrm{nCP}_{0}, \mathrm{n} \overline{\mathrm{CP}}_{1} \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 20 \\ & 60 \\ & 71 \end{aligned}$		$\begin{array}{\|l} \hline 4.8 \\ 24 \\ 28 \end{array}$		$\begin{array}{\|l\|} \hline 4.0 \\ 20 \\ 24 \end{array}$		MHz	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	Fig. 6

Dual decade ripple counter

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
$I_{\text {CC }}$ category: MSI

Note to HCT types

The value of additional quiescent supply current $\left(\Delta \mathrm{I}_{\mathrm{CC}}\right)$ for a unit load of 1 is given in the family specifications.
To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$n \overline{\mathrm{CP}}_{0}$	0.45
$\mathrm{n} \overline{\mathrm{CP}}_{1}, \mathrm{nMR}$	0.60

AC CHARACTERISTICS FOR 74HCT

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HCT								$V_{C c}$ (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \overline{C P}_{0}$ to $n Q_{0}$		21	34		43		51	ns	4.5	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\mathrm{n} \overline{\mathrm{CP}}_{1}$ to $\mathrm{nQ} \mathrm{Q}_{1}$		22	38		48		57	ns	4.5	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \overline{C P}_{1}$ to nQ_{2}		30	51		64		77	ns	4.5	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \overline{C P}_{1}$ to $n Q_{3}$		22	38		48		57	ns	4.5	Fig. 6
$\mathrm{t}_{\text {PHL }}$	propagation delay $n M R$ to $n Q_{n}$		21	36		45		54	ns	4.5	Fig. 7
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		7	15		19		22	ns	4.5	Fig. 6
tw	clock pulse width $n \overline{\mathrm{CP}}_{0}, \mathrm{n} \overline{\mathrm{CP}}_{1}$	18	8		23		27		ns	4.5	Fig. 6
tw	master reset pulse width HIGH	17	10		21		26		ns	4.5	Fig. 7
$\mathrm{t}_{\text {rem }}$	$\begin{aligned} & \text { removal time } \\ & \mathrm{nMR} \text { to } \mathrm{n} \overline{\mathrm{CP}}_{\mathrm{n}} \end{aligned}$	15	8		19		22		ns	4.5	Fig. 7
$\mathrm{f}_{\text {max }}$	```maximum clock pulse frequency n}\mp@subsup{\overline{\textrm{CP}}}{0}{},n\mp@subsup{\overline{\textrm{CP}}}{1}{```	27	55		22		18		MHz	4.5	Fig. 6

Dual decade ripple counter

AC WAVEFORMS

Fig. 7 Waveforms showing the master reset ($n M R$) pulse width, the master reset to output ($n Q_{n}$) propagation delays and the master reset to clock ($n \overline{\mathrm{CP}}_{n}$) removal time.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for nxp manufacturer:
Other Similar products are found below :
MC13211R2 PCA9518PW,112 LFSTBEB865X MC33399PEFR2 PCA9551PW,112 MC34825EPR2 PCF8583P MC68340AB16E MC8640DTVJ1250HE EVBCRTOUCH MC9S08PT16AVLC MC9S08PT8AVTG MC9S08SH32CTL MCF54415CMJ250 MCIMX6Q-SDB MCIMX6SX-SDB 74ALVC125BQ,115 74HC4050N 74HC4514N MK21FN1M0AVLQ12 MKV30F128VFM10 FRDM-K66F FRDMKW40Z FRDM-MC-LVBLDC PESD18VF1BSFYL PMF63UNEX PSMN4R0-60YS,115 HEF4028BPN RAPPID-567XFSW MPC565MVR56 MPC574XG-176DS MPC860PCVR66D4 BT137-600E BT139X-600.127 BUK7628-100A118 BUK765R0-100E. 118 BZT52H-B9V1.115 BZV85-C3V9.113 BZX79-C47.113 P5020NSE7VNB S12ZVML12EVBLIN SCC2692AC1N40 LPC1785FBD208K LPC2124FBD64/01 LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB LS1043ASE7PQA T1023RDB-PC FRDM-KW24D512

