Improved, Quad, SPST Analog Switches

Abstract

General Description Maxim's redesigned DG441/DG442 analog switches now feature on-resistance matching (4Ω max) between switches and guaranteed on-resistance flatness over the signal range ($9 \Omega \mathrm{max}$). These low on-resistance switches conduct equally well in either direction. They guarantee low charge injection (10pC max), low power consumption (1.65 mW), and an ESD tolerance of 2000V minimum per Method 3015.7. The new design offers lower off-leakage current over temperature (less than 5 nA at $+85^{\circ} \mathrm{C}$). The DG441/DG442 are quad, single-pole/single-throw (SPST) analog switches. The DG441 has four normally closed switches, and the DG442 has four normally open switches. Switching times are less than 250ns for tON and less than 170ns for toff. These devices operate from a single +10 V to +30 V supply, or bipolar $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ supplies. Maxim's improved DG441/DG442 continue to be fabricated with a 44 V silicon-gate process.

	Applications
Sample-and-Hold Circuits	PBX, PABX
Communication Systems	Guidance and Control
Test Equipment	Systems
Battery-Operated Systems	Audio-Signal Routing
Heads-Up Displays	Military Radios
Fax Machines	Modems

New Features

- Plug-In Upgrades for Industry-Standard DG441/DG442
- Improved rDS(ON) Match Between Channels(4 $\mathrm{Imax}^{\text {max }}$
- Guaranteed rFLAT(ON) Over Signal Range (9 9 max)
- Improved Charge Injection (10pC max)
- Improved Off-Leakage Current Over Temperature ($<5 \mathrm{nA}$ at $+85^{\circ} \mathrm{C}$)
- Withstand Electrostatic Discharge (2000V min) per Method 3015.7

Existing Features

- Low rds(on) (85 ${ }^{\text {max) }}$
- Single-Supply Operation +10V to +30V

Bipolar-Supply Operation $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$

- Low Power Consumption (1.65mW max)
- Rail-to-Rail Signal Handling
- TTLCMOS-Logic Compatible

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DG441CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
DG441CY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
DG441C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
DG441DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
DG441DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO

Ordering Information continued at end of data sheet.
Note: Devices are available in both leaded and lead(Pb)-free packaging. Specify lead-free by adding the + symbol at the end of the part number when ordering.
*Contact factory for dice specifications.

Pin Configurations/Functional Diagrams/Truth Tables

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Improved, Quad, SPST Analog Switches

ABSOLUTE MAXIMUM RATINGS
Voltage Referenced to V-

GND .. 25 V
VL ...(GND - 0.3V) to (V+ + 0.3V)
Digital Inputs, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}($ Note 1$) \ldots \ldots .(\mathrm{V}-\mathrm{-} \mathrm{~V})$ to $(\mathrm{V}++2 \mathrm{~V})$ or 30 mA (whichever occurs first)
Continuous Current (any terminal) \qquad
Peak Current, S or D
(pulsed at 1ms, 10\% duty-cycle max) \qquad .100mA

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
Plastic DIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 842 mW	
Thin QFN (derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1667 mW	
Narrow SO (derate $8.70 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 696 mW	
CERDIP (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	800 mW
Operating Temperature Ranges	
DG441C/DG442C .	
DG441D, E/DG442D, E	
DG441AK, MY/DG442AK, MY-55 ${ }^{\circ} \mathrm{C}$ to +12	
Storage Temperature Range	
Lead Temperature (soldering, 10s)	

Note 1: Signals on S, D, or IN exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\text {INH }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS			MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$	MAX	UNITS
SWITCH								
Analog-Signal Range	VANALOG	(Note 3)			-15		15	V
Drain-Source On-Resistance	rDS(ON)	$\begin{aligned} & \mathrm{V}_{+}=13.5 \mathrm{~V}, \mathrm{~V}-=-13.5 \mathrm{~V}, \\ & \mathrm{IS}^{2}=-10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{D}}=8.5 \mathrm{~V} \text { or }-8.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			50	85	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				100	
On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{rDS}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \\ & \mathrm{~V} D= \pm 10 \mathrm{~V}, \\ & \mathrm{IS}=-10 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				4	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				5	
On-Resistance Flatness (Note 4)	rFLAT(ON)	$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=5 \mathrm{~V} \text { or }-5 \mathrm{~V}, \\ & \mathrm{IS}=-10 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				9	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				15	
Source Off-Leakage Current (Note 5)	IS(OFF)	$\begin{aligned} & V_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=\mp 15.5 \mathrm{~V}, \\ & \mathrm{VS}_{\mathrm{S}}= \pm 15.5 \mathrm{~V} \end{aligned}$	$\mathrm{TA}^{\prime}=+25^{\circ} \mathrm{C}$		-0.50	0.01	0.50	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	C, D	-5		5	
				A	-20		20	
Drain Off-Leakage Current (Note 5)	ID(OFF)	$\begin{aligned} & \mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=\mp 15.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-.0.50	0.01	0.50	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	C, D	-5		5	
				A	-20		20	
Drain On-Leakage Current (Note 5)	$\begin{aligned} & \text { ID(ON) } \\ & \text { or } \\ & \text { Is(ON) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \\ & \mathrm{VS}_{\mathrm{S}}= \pm 15.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.50	0.08	0.50	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	C, D	-10		10	
				A	-20		20	
DIGITAL								
Input Current with Input Voltage High	IINH	V IN $=2.4 \mathrm{~V}$			-500	0.01	500	nA
Input Current with Input Voltage Low	IINL	V IN $=0.8 \mathrm{~V}$			-500	0.01	500	nA

Improved, Quad, SPST Analog Switches

ELECTRICAL CHARACTERISTICS-Dual Supplies (continued)

$\left(\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$	MAX	UNITS
SUPPLY							
Power-Supply Range	V+, V-			± 4.5		± 20.0	V
Positive Supply Current	I+	All channels on or off, $\mathrm{V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 5 V			15	100	$\mu \mathrm{A}$
Negative Supply Current	I-	All channels on or off,$\begin{aligned} & \mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	-0.0001	1	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
Ground Current	IGND	All channels on or off, $\mathrm{V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 5 V		-100	-15		$\mu \mathrm{A}$
DYNAMIC							
Turn-On Time	ton	$V_{S}= \pm 10 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		150	250	ns
Turn-Off Time	toff	DG441, $\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		90	120	ns
		DG442, $\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		110	170	
Charge Injection (Note 3)	Q	$\begin{aligned} & C_{L}=1 \mathrm{nF}, V_{G E N}=0 V, \\ & \text { RGEN }=0 \Omega \text {, Figure } 3 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5	10	pC
Off-Isolation Rejection Ratio (Note 6)	OIRR	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 p F, \\ & f=1 \mathrm{MHz}, \text { Figure } 4 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		60		dB
Crosstalk (Note 7)		$\begin{aligned} & R L=50 \Omega, C L=5 p F \\ & f=1 \mathrm{MHz}, \text { Figure } 5 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-100		dB
Source Off-Capacitance	Cs(OFF)	$f=1 \mathrm{MHz}$, Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4		pF
Drain Off-Capacitance	CD(OFF)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4		pF
Drain On-Capacitance	CD(ON)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		16		pF

Improved, Quad, SPST Analog Switches

ELECTRICAL CHARACTERISTICS—Single Supply

$\left(\mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

Note 2: Typical values are for design aid only, are not guaranteed, and are not subject to production testing. The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: Guaranteed by design.
Note 4: On-resistance match between channels and flatness is guaranteed only with bipolar-supply operation. Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured at the extremes of the specified analog range.
Note 5: Leakage parameters $I_{S(O F F)}, I_{D(O F F)}$, and $I_{D(O N)}$ are 100% tested at the maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
Note 6: Off-Isolation Rejection Ratio $=20 \log \left(V_{D} / V_{S}\right), V_{D}=$ output, $V_{S}=$ input to off switch.
Note 7: Between any two switches.
Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Improved，Quad，SPST Analog Switches

Typical Operating Characteristics（continued）

$\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ ，unless otherwise noted．）

Improved, Quad, SPST Analog Switches

Pin Description

PIN		NAME	FUNCTION
DIP/SO	THIN QFN-EP		
$\begin{gathered} 1,16,9 \\ 8 \end{gathered}$	$\begin{gathered} 15,14 \\ 7,6 \end{gathered}$	IN1-IN4	Input
$2,15,$	$\begin{gathered} 16,13, \\ 8,5 \end{gathered}$	D1-D4	Analog Switch Drain Terminal
$\begin{aligned} & 3,14, \\ & 11,6 \end{aligned}$	$\begin{gathered} 1,12,9, \\ 4 \end{gathered}$	S1-S4	Analog Switch Source Terminal
4	2	V-	Negative-Supply Voltage Input
5	3	GND	Ground
12	10	N.C.	Not Internally Connected
13	11	V+	Positive-Supply Voltage Input-Connected to Substrate
-	-	EP	Exposed Pad. Connect EP to V+. Do not use EP as a sole V+ connection. (Thin QFN package only.)

Applications Information

Operation with Supply Voltages Other Than $\pm 15 \mathrm{~V}$
Using supply voltages other than $\pm 15 \mathrm{~V}$ reduces the analog signal range. The DG441/DG442 switches operate with $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ bipolar supplies or with $\mathrm{a}+10 \mathrm{~V}$ to +30 V single supply; connect V - to 0 V when operating with a single supply. Also, all device types can operate with unbalanced supplies such as +24 V and -5 V . The Typical Operating Characteristics graphs show typical on-resistance with $\pm 20 \mathrm{~V}, \pm 15 \mathrm{~V}, \pm 10 \mathrm{~V}$, and $\pm 5 \mathrm{~V}$ sup-
plies. (Switching times increase by a factor of two or more for operation at $\pm 5 \mathrm{~V}$.)

Overvoltage Protection
Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence $\mathrm{V}+$ on first, followed by V - and logic inputs. If power-supply sequencing is not possible, add two small, external signal diodes in series with supply pins for overvoltage protection (Figure 1). Adding external diodes reduces the analog-signal range to 1 V below V+ and 1V above V-, but low switch resistance and low leakage characteristics are unaffected. Device operation is unchanged, and the difference between $V+$ and V - should not exceed $+44 V$.

Figure 1. Overvoltage Protection Using External Blocking Diodes

Improved，Quad，SPST Analog Switches

Timing Diagrams／Test Circuits

Figure 2．Switching Time

Figure 3．Charge Injection

Figure 4．Off－Isolation Rejection Ratio

Figure 5．Crosstalk（repeat for channels 3 and 4）

Improved, Quad, SPST Analog Switches

Figure 6. Source/Drain-On/Off Capacitance

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
DG441DK	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP
DG441ETE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Thin QFN-EP**
DG441AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP***
DG441MY/PR	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Narrow SO
DG442CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
DG442CY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
DG442C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
DG442DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
DG442DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
DG442DK	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP
DG442ETE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Thin QFN-EP**
DG442AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP***
DG442MY/PR	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Narrow SO

Note: Devices are available in both leaded and lead(Pb)-free packaging. Specify lead-free by adding the + symbol at the end of the part number when ordering.
*Contact factory for dice specifications.
${ }^{* *} E P=$ Exposed pad.
*** Contact factory for availability and processing to MIL-STD883B. Not available in lead-free.

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
16 Plastic DIP	P16-1	$\underline{\mathbf{2 1 - 0 0 4 3}}$
16 Narrow SO	S16-3	$\underline{\mathbf{2 1 - 0 0 4 1}}$
16 CERDIP	J16-3	$\underline{\mathbf{2 1 - 0 0 4 5}}$
16 Thin QFN-EP $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$	T1655-2	$\underline{\mathbf{2 1 - 0 1 4 0}}$

Improved, Quad, SPST Analog Switches

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
5	$5 / 09$	Added ruggedized plastic.	$1,2,6,8$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
DG9233EDY-GE3 NLAS4684FCTCG NLAS5223BLMNR2G NLV74HC4066ADR2G MC74HC4067ADTG NLX2G66DMUTCG
NS5A4684SMNTAG 732480R 733995E 425541DB 425528R 099044FB FSA221UMX MAX4888ETI+T MAX4968CEXB+ MAX4760EWX+T NLAS3799BMNR2G NLAS5123MNR2G NLAS5213AMUTAG NLAS7222AMTR2G MAX14807ECB+ MAX4968ECM + NLV14066BDG LC78615E-01US-H PI5A4599BCEX PI5A3157BZUEX ADG613SRUZ-EP NLAS4717EPFCT1G PI5A3167CCEX MAX4744ELB+T MAX4802ACXZ+ DG4051EEN-T1-GE4 SLAS3158MNR2G PI5A3157BC6EX PI5A392AQE MAX4744HELB+T PI5A4157ZUEX MC74HC4067ADTR2G PI5A4158ZAEX PI5A3166TAEX MAX4901EBL+T MAX14510EEVB+T PI3A3899ZTEX MAX4996ETG+T MAX4889AETO+T MAX14508EEVB+T MAX4701ETE+T MAX4996LETG+T NLX2G66FCTAG HI1-5051-2

