TLP620, TLP620-2, TLP620-4

Programmable Controllers

AC / DC-Input Module

Telecommunication

The TOSHIBA TLP620, -2 and -4 consists of a photo-transistor optically coupled to two gallium arsenide infrared emitting diode connected in inverse parallel.
The TLP620-2 offers two isolated channels in an eight lead plastic DIP, while the TLP620-4 provides four isolated channels in a sixteen plastic DIP.

- Collector-emitter voltage: 55 V (min.)
- Current transfer ratio: 50% (min.) Rank GB: 100\% (min.)

Pin Configurations (top view)

Unit in mm

Weight: 0.26 g (typ.)

Weight: 0.54 g (typ.)

Weight: 1.1 g (typ.)

	Made In Japan		Made In Thailand	
UL recognized	E67349	${ }^{* 1}$	E152349	${ }^{* 1}$
BSI approved	7426,7427	${ }^{*} 2$	7426,7427	${ }^{* 2}$

*1 UL1577
*2 BS EN60065: 2002, BS EN60950-1: 2002

- Isolation voltage: $5000 \mathrm{~V}_{\mathrm{rms}}$ (min.)
- Option (D4) type

VDE approved: DIN EN 60747-5-2, certificate no. 40009302
Maximum operating insulation voltage: 890 VPK
Highest permissible over voltage: 8000 VPK
(Note) When an EN 60747-5-2 approved type is needed, please designate the "Option(D4)".

- Creepage distance: 6.4 mm (min.)

Clearance: 6.4 mm (min.)
Insulation thickness: 0.4 mm (min.)

Absolute Maximum Ratings ($\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic		Symbol	Rating		Unit	
		TLP620	$\begin{aligned} & \hline \text { TLP620-2 } \\ & \text { TLP620-4 } \end{aligned}$			
블	Forward current		$\mathrm{I} F$ (RMS)	60	50	mA
	Forward current derating	$\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	$-0.7\left(\mathrm{Ta} \geq 39^{\circ} \mathrm{C}\right)$	$-0.5\left(\mathrm{Ta} \geq 25^{\circ} \mathrm{C}\right)$	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	
	Pulse forward current	I_{FP}	1 (100 μ s pulse, 100pps)		A	
	Power dissipation (1 circuit)	PD_{D}	100	70	mW	
	Power dissipation derating	$\Delta \mathrm{P}_{\mathrm{D}} /{ }^{\circ} \mathrm{C}$	-1.0	-0.7	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$	
	Junction temperature	T_{j}	125		${ }^{\circ} \mathrm{C}$	
	Collector-emitter voltage	$\mathrm{V}_{\text {CEO }}$	55		V	
	Emitter-collector voltage	VECO	7		V	
	Collector current	IC	50		mA	
	Collector power dissipation (1 circuit)	PC_{C}	150	100	mW	
	Collector power dissipation derating (1 circuit) ($\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$)	$\Delta \mathrm{P}_{\mathrm{C}} /{ }^{\circ} \mathrm{C}$	-1.5	-1.0	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$	
	Junction temperature	T_{j}	125		${ }^{\circ} \mathrm{C}$	
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-55~125		${ }^{\circ} \mathrm{C}$	
Operating temperature range		Topr	-55~100		${ }^{\circ} \mathrm{C}$	
Lead soldering temperature		T ${ }_{\text {sold }}$	260 (10s)		${ }^{\circ} \mathrm{C}$	
Total package power dissipation		P_{T}	250	150	mW	
Total package power dissipation derating ($\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$, 1 circuit)		$\Delta \mathrm{P}_{\mathrm{T}} /{ }^{\circ} \mathrm{C}$	-2.5	-1.5	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$	
Isolation voltage		$B V_{S}$	5000 (AC, 1 min., RH 560%)		$\mathrm{V}_{\text {rms }}$	

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Recommended Operating Conditions

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Supply voltage	V_{CC}	-	5	24	V
Forward current	$\mathrm{I}_{\mathrm{F}}(\mathrm{RMS})$	-	16	20	mA
Collector current	IC	-	1	10	mA
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	-25	-	85	${ }^{\circ} \mathrm{C}$

Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the device. Additionally, each item is an independent guideline respectively. In developing designs using this product, please confirm specified characteristics shown in this document.

Individual Electrical Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic		Symbol	Test Condition	Min.	Typ.	Max.	Unit
-	Forward voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}= \pm 10 \mathrm{~mA}$	1.0	1.15	1.3	V
	Forward current	I_{F}	$\mathrm{V}_{\mathrm{F}}= \pm 0.7 \mathrm{~V}$	-	2.5	20	$\mu \mathrm{A}$
	Capacitance	C_{\top}	$V=0, \mathrm{f}=1 \mathrm{MHz}$	-	60	-	pF
$\begin{aligned} & \overline{0} \\ & \text { O} \\ & \text { © } \\ & \hline 0 \end{aligned}$	Collector-emitter breakdown voltage	V (BR) CEO	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}$	55	-	-	V
	Emitter-collector breakdown voltage	$V(B R) E C O$	$\mathrm{I}_{\mathrm{E}}=0.1 \mathrm{~mA}$	7	-	-	V
	Collector dark current	ICEO	$\mathrm{V}_{\text {CE }}=24 \mathrm{~V}$	-	10	100	nA
			$V_{C E}=24 \mathrm{~V}, \mathrm{Ta}=85^{\circ} \mathrm{C}$	-	2	50	$\mu \mathrm{A}$
	Capacitance (collector to emitter)	$\mathrm{C}_{\text {CE }}$	$V_{C E}=0, \mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF

Coupled Electrical Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic	Symbol	Test Condition	MIn.	Typ.	Max.	Unit
Current transfer ratio	I_{C} / I_{F}	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}= \pm 5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \text { Rank } \mathrm{GB} \end{aligned}$	50	-	600	\%
			100	-	600	
Saturated CTR	$I_{C} / I_{\text {F }}$ (sat)	$\begin{aligned} & \mathrm{IF}= \pm 1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=0.4 \mathrm{~V} \\ & \text { Rank } \mathrm{GB} \end{aligned}$	-	60	-	\%
			30	-	-	
Collector-emitter saturation voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=2.4 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}= \pm 8 \mathrm{~mA}$	-	-	0.4	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.2 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}= \pm 1 \mathrm{~mA} \\ & \text { Rank GB } \end{aligned}$	-	0.2	-	
			-	-	0.4	
Off-state collector current	I_{C} (off)	$\mathrm{V}_{\mathrm{F}}= \pm 0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=24 \mathrm{~V}$	-	1	10	$\mu \mathrm{A}$
CTR symmetry	IC (ratio)	$\mathrm{I}_{\mathrm{C}}\left(\mathrm{I}_{\mathrm{F}}=-5 \mathrm{~mA}\right) / \mathrm{I}_{\mathrm{C}}\left(\mathrm{I}_{\mathrm{F}}=+5 \mathrm{~mA}\right)$	0.33	1	3	-

Isolation Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Capacitance input to output	Cs	$V_{S}=0, f=1 \mathrm{MHz}$	-	0.8	-	pF
Isolation resistance	R_{S}	$\mathrm{V}_{\mathrm{S}}=500 \mathrm{~V}$	1×10^{12}	10^{14}	-	Ω
Isolation voltage	$B V_{S}$	AC, 1 minute	5000	-	-	$\mathrm{V}_{\text {rms }}$
		AC, 1 second, in oil	-	10000	-	
		DC, 1 minute, in oil	-	10000	-	V_{dc}

Switching Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	Test Condition		Min.	Typ.	Max.	Unit
Rise time	tr_{r}	$\begin{aligned} & V_{C C}=10 V \\ & I_{C}=2 m A \\ & R_{L}=100 \Omega \end{aligned}$		-	2	-	$\mu \mathrm{s}$
Fall time	tf_{f}			-	3	-	
Turn-on time	$\mathrm{t}_{\text {on }}$			-	3	-	
Turn-off time	$\mathrm{t}_{\text {off }}$			-	3	-	
Turn-on time	ton	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}= \pm 16 \mathrm{~mA} \end{aligned}$	(Fig.1)	-	2	-	$\mu \mathrm{s}$
Storage time	$\mathrm{t}_{\text {s }}$			-	15	-	
Turn-off time	tofF			-	25	-	

Fig. 1 Switching time test circuit

Forward voltage $\mathrm{V}_{\mathrm{F}}(\mathrm{V})$

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before creating and producing designs and using, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application that Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Transistor Output Optocouplers category:
Click to view products by Toshiba manufacturer:
Other Similar products are found below :
LTV-814S-TA LTV-815S-TA LTV-8241S LTV-824HS LTV-852S 66095-001 6N136-X017T 6N136-X019T MCT6-X007 MCT6-X007T MOC8101-X009 MOC8101-X017T PS2561-1-A PS2561A-1-W-A PS2561B-1-L-A PS2561DL-1Y-V-A PS2561L1-1-A PS2561L-1-V-A PS2581AL2-A PS2706-1-A PS2815-1-A MRF658 ELD207(TA) IL755-1X007 IL755-2 ILD2-X006 ILD74-X001 ILQ615-2X017 ILQ6153 X016 LDA102S LDA110S LDA202 SFH601-4X007T SFH615A-2X009T SFH615A-4X001 SFH615AGR-X007T SFH618A-3X006 SFH620A-2X007 SFH690BT3 PS2561-1-V-W-A PS2561A-1-V-A PS2561AL1-1-V-A PS2561AL-1-H-A PS2561AL-1-V-A PS2561BL-1-F3-Q-A PS2561DL-1Y-F3-A PS2561L1-1-L-A PS2561L1-1-V-Q-A PS2562-1-V-A PS2565L-1-A

