

PBRP113ZT

PNP 800 mA, 40 V BISS RET; R1 = 1 kΩ, R2 = 10 kΩ

Rev. 01 — 16 January 2008 Produc

Product data sheet

Product profile

1.1 General description

800 mA PNP low V_{CEsat} Breakthrough In Small Signal (BISS) Resistor-Equipped Transistor (RET) in a small SOT23 (TO-236AB) Surface-Mounted Device (SMD) plastic package.

NPN complement: PBRN113ZT.

1.2 Features

- 800 mA repetitive peak output current
- High current gain h_{FF}
- Built-in bias resistors
- Simplifies circuit design
- Low collector-emitter saturation voltage
- Reduces component count
- Reduces pick and place costs
- ±10 % resistor ratio tolerance

1.3 Applications

- Digital application in automotive and industrial segments
- Medium current peripheral driver
- Switching loads

1.4 Quick reference data

Table 1. **Quick reference data**

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{CEO}	collector-emitter voltage	open base		-	-	-40	V
Io	output current		[1][2]	-	-	-600	mA
I _{ORM}	repetitive peak output current	$\begin{array}{l} t_p \leq 1 \text{ ms;} \\ \delta \leq 0.33 \end{array}$	[3]	-	-	-800	mA
R1	bias resistor 1 (input)			0.7	1	1.3	kΩ
R2/R1	bias resistor ratio			9	10	11	

^[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated, mounting pad for collector 1 cm².

^[2] Device mounted on a ceramic PCB, Al₂O₃, standard footprint.

^[3] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.

PNP 800 mA, 40 V BISS RET; R1 = 1 k Ω , R2 = 10 k Ω

2. Pinning information

Table 2. Pinning

Table 2.	riiiiiig		
Pin	Description	Simplified outline	Symbol
1	input (base)		
2	GND (emitter)	3	3
3	output (collector)	1 2	1 R1 R2
			evm003

3. Ordering information

Table 3. Ordering information

Type number	Package		
	Name	Description	Version
PBRP113ZT	-	plastic surface-mounted package; 3 leads	SOT23

4. Marking

Table 4. Marking codes

Type number	Marking code ^[1]
PBRP113ZT	*7M

[1] * = -: made in Hong Kong

* = p: made in Hong Kong

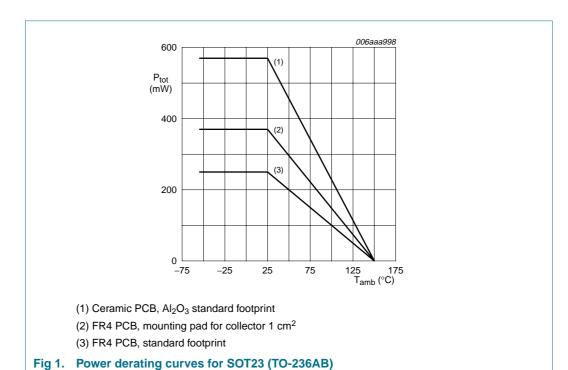
* = t: made in Malaysia

* = W: made in China

5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions	Min	Max	Unit
V_{CBO}	collector-base voltage	open emitter	-	-40	V
V_{CEO}	collector-emitter voltage	open base	-	-40	V
V_{EBO}	emitter-base voltage	open collector	-	-5	V
V_{I}	input voltage				
	positive		-	+5	V
	negative		-	-10	V
I _O	output current		[1][2]	-600	mA
I _{ORM}	repetitive peak output current	$t_p \le 1 \text{ ms};$ $\delta \le 0.33$	[3] -	-800	mA

PNP 800 mA, 40 V BISS RET; R1 = 1 k Ω , R2 = 10 k Ω

Table 5. Limiting values ...continued In accordance with the Absolute Maximum Rating System (IEC 60134).

		0 , ,	,		
Symbol	Parameter	Conditions	Min	Max	Unit
P _{tot} total power dissipa	total power dissipation	$T_{amb} \le 25 ^{\circ}C$			
			[3] _	250	mW
			<u>[1]</u> -	370	mW
			[2] -	570	mW
Tj	junction temperature		-	150	°C
T _{amb}	ambient temperature		-55	+150	°C
T _{stg}	storage temperature		-65	+150	°C

- [1] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1 cm².
- [2] Device mounted on a ceramic PCB, Al₂O₃, standard footprint.
- [3] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.

PBRP113ZT_1

© NXP B.V. 2008. All rights reserved.

PNP 800 mA, 40 V BISS RET; R1 = 1 k Ω , R2 = 10 k Ω

6. Thermal characteristics

Table 6. Thermal characteristics

Symbol	Parameter	Conditions	M	lin	Тур	Max	Unit
ui(j a)	thermal resistance from	in free air					
	junction to ambient		<u>[1]</u> _		-	500	K/W
			[2] _		-	338	K/W
			[3]		-	219	K/W
$R_{th(j-sp)}$	thermal resistance from junction to solder point		-		-	105	K/W

- [1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.
- [2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1 cm².
- [3] Device mounted on a ceramic PCB, Al₂O₃, standard footprint.

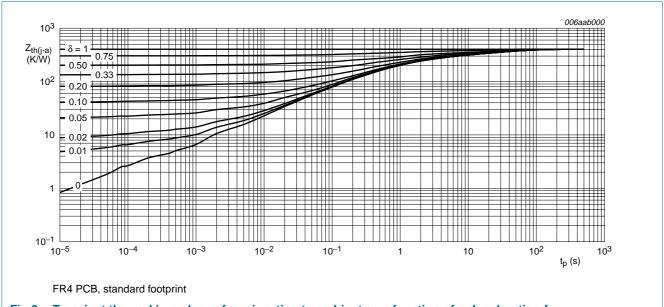
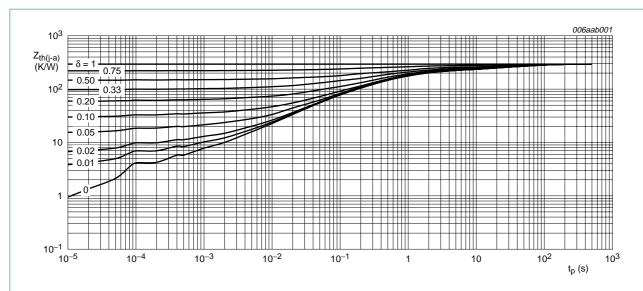
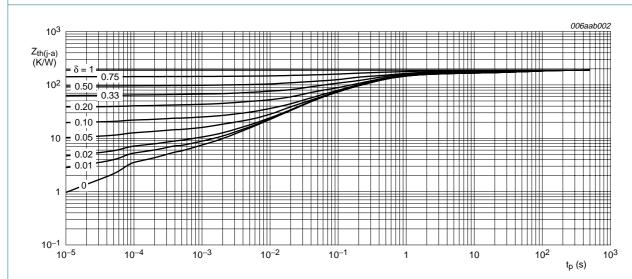



Fig 2. Transient thermal impedance from junction to ambient as a function of pulse duration for SOT23 (TO-236AB); typical values


4 of 12

PNP 800 mA, 40 V BISS RET; R1 = 1 k Ω , R2 = 10 k Ω

FR4 PCB, mounting pad for collector 1 cm²

Fig 3. Transient thermal impedance from junction to ambient as a function of pulse duration for SOT23 (TO-236AB); typical values

Ceramic PCB, Al₂O₃ standard footprint

Fig 4. Transient thermal impedance from junction to ambient as a function of pulse duration for SOT23 (TO-236AB); typical values

PNP 800 mA, 40 V BISS RET; R1 = 1 k Ω , R2 = 10 k Ω

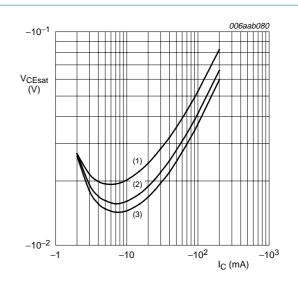
7. Characteristics


Table 7. Characteristics

 $T_{amb} = 25 \,^{\circ}C$ unless otherwise specified.

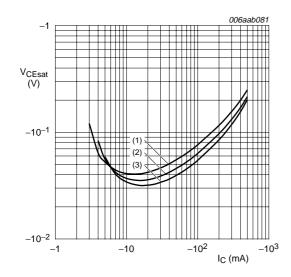
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{CBO}	collector-base cut-off current	$V_{CB} = -30 \text{ V};$ $I_{E} = 0 \text{ A}$		-	-	-100	nA
I _{CEO}	collector-emitter cut-off current	$V_{CE} = -30 \text{ V};$ $I_{B} = 0 \text{ A}$		-	-	-0.5	μΑ
I _{EBO}	emitter-base cut-off current	$V_{EB} = -5 \text{ V};$ $I_{C} = 0 \text{ A}$		-	-	-0.8	mA
h _{FE}	DC current gain	$V_{CE} = -5 \text{ V};$ $I_{C} = -50 \text{ mA}$		190	270	-	
		$V_{CE} = -5 \text{ V};$ $I_{C} = -300 \text{ mA}$	<u>[1]</u>	230	320	-	
		$V_{CE} = -5 \text{ V};$ $I_{C} = -600 \text{ mA}$	[1]	190	270	-	
V _{CEsat}	collector-emitter saturation voltage	$I_C = -50 \text{ mA};$ $I_B = -2.5 \text{ mA}$		-	-35	-45	mV
		$I_C = -200 \text{ mA};$ $I_B = -10 \text{ mA}$		-	-70	-100	mV
		$I_C = -500 \text{ mA};$ $I_B = -10 \text{ mA}$	<u>[1]</u>	-	-200	-300	mV
		$I_C = -600 \text{ mA};$ $I_B = -6 \text{ mA}$	<u>[1]</u>	-	-450	-750	mV
$V_{I(off)}$	off-state input voltage	$V_{CE} = -5 \text{ V};$ $I_{C} = -100 \mu\text{A}$		-0.3	-0.5	-1	V
$V_{I(on)}$	on-state input voltage	$V_{CE} = -0.3 \text{ V};$ $I_{C} = -20 \text{ mA}$		-0.4	-0.7	-1.4	V
R1	bias resistor 1 (input)			0.7	1	1.3	kΩ
R2/R1	bias resistor ratio			9	10	11	
C _c	collector capacitance	$V_{CB} = -10 \text{ V};$ $I_E = i_e = 0 \text{ A};$ $f = 1 \text{ MHz}$		-	11	-	pF

^[1] Pulse test: $t_p \le 300~\mu s;~\delta \le 0.02.$


PNP 800 mA, 40 V BISS RET; R1 = 1 k Ω , R2 = 10 k Ω

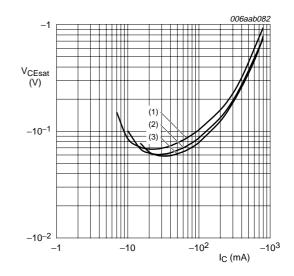
$$V_{CE} = -5 \text{ V}$$

- (1) $T_{amb} = 100 \, ^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = -40 \, ^{\circ}C$


Fig 5. DC current gain as a function of collector current; typical values

$$I_{\rm C}/I_{\rm B} = 20$$

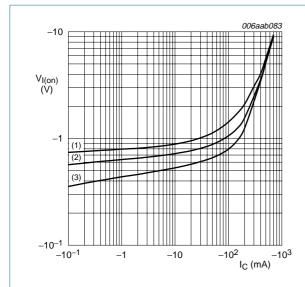
- (1) $T_{amb} = 100 \, ^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = -40 \, ^{\circ}C$


Fig 6. Collector-emitter saturation voltage as a function of collector current; typical values

$$I_{\rm C}/I_{\rm B} = 50$$

- (1) $T_{amb} = 100 \, ^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = -40 \, ^{\circ}C$

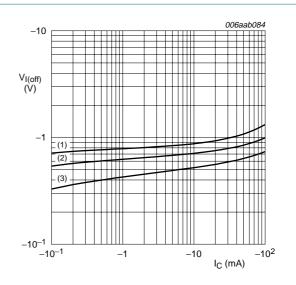
Fig 7. Collector-emitter saturation voltage as a function of collector current; typical values



$$I_{\rm C}/I_{\rm B} = 100$$

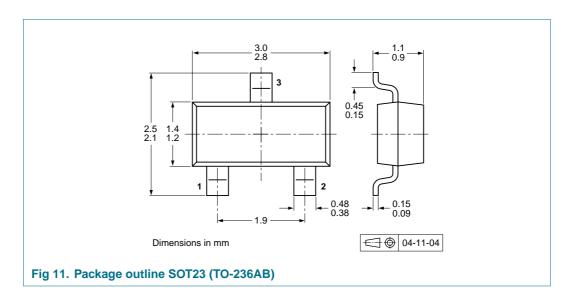
- (1) $T_{amb} = 100 \, ^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = -40 \, ^{\circ}C$

Fig 8. Collector-emitter saturation voltage as a function of collector current; typical values


PNP 800 mA, 40 V BISS RET; R1 = 1 k Ω , R2 = 10 k Ω

- (1) $T_{amb} = -40 \, ^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = 100 \, ^{\circ}C$

Fig 9. On-state input voltage as a function of collector current; typical values



$$V_{CE} = -5 \text{ V}$$

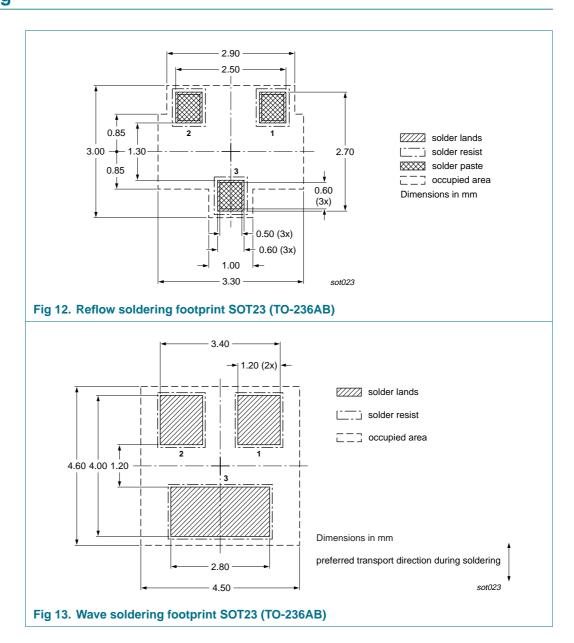
- (1) $T_{amb} = -40 \, ^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = 100 \, ^{\circ}C$

Fig 10. Off-state input voltage as a function of collector current; typical values

8. Package outline

PNP 800 mA, 40 V BISS RET; R1 = 1 k Ω , R2 = 10 k Ω

9. Packing information


Table 8. Packing methods

The indicated -xxx are the last three digits of the 12NC ordering code.[1]

Type number	Package	kage Description		Packing o	uantity
				3000	10000
PBRP113ZT	SOT23	4 mm pitch, 8 mm tape and reel		-215	-235

^[1] For further information and the availability of packing methods, see $\underline{\text{Section 13}}$.

10. Soldering

PNP 800 mA, 40 V BISS RET; R1 = 1 k Ω , R2 = 10 k Ω

11. Revision history

Table 9. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PBRP113ZT_1	20080116	Product data sheet	-	-

PNP 800 mA, 40 V BISS RET; R1 = 1 k Ω , R2 = 10 k Ω

12. Legal information

12.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

12.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

13. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

NXP Semiconductors

PBRP113ZT

PNP 800 mA, 40 V BISS RET; R1 = 1 k Ω , R2 = 10 k Ω

14. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
1.4	Quick reference data
2	Pinning information 2
3	Ordering information 2
4	Marking 2
5	Limiting values 2
6	Thermal characteristics 4
7	Characteristics 6
8	Package outline 8
9	Packing information9
10	Soldering 9
11	Revision history
12	Legal information
12.1	Data sheet status
12.2	Definitions
12.3	Disclaimers
12.4	Trademarks11
13	Contact information
14	Contents 12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for nxp manufacturer:

Other Similar products are found below:

MC13211R2 PCA9518PW,112 LFSTBEB865X MC33399PEFR2 PCA9551PW,112 MC34825EPR2 PCF8583P MC68340AB16E

MC8640DTVJ1250HE EVBCRTOUCH MC9S08PT16AVLC MC9S08PT8AVTG MC9S08SH32CTL MCF54415CMJ250 MCIMX6Q-SDB

MCIMX6SX-SDB 74ALVC125BQ,115 74HC4050N 74HC4514N MK21FN1M0AVLQ12 MKV30F128VFM10 FRDM-K66F FRDM
KW40Z FRDM-MC-LVBLDC PESD18VF1BSFYL PMF63UNEX PSMN4R0-60YS,115 HEF4028BPN RAPPID-567XFSW

MPC565MVR56 MPC574XG-176DS MPC860PCVR66D4 BT137-600E BT139X-600.127 BUK7628-100A118 BUK765R0-100E.118

BZT52H-B9V1.115 BZV85-C3V9.113 BZX79-C47.113 P5020NSE7VNB S12ZVML12EVBLIN SCC2692AC1N40 LPC1785FBD208K

LPC2124FBD64/01 LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB LS1043ASE7PQA T1023RDB-PC FRDM-KW24D512