Highly Accurate, Ultra Small, Low Power Consumption Voltage Detector

GENERAL DESCRIPTION

The XC6120 series are highly precise, low power consumption voltage detectors, manufactured using CMOS and laser trimming technologies. With low power consumption and high accuracy, the series is suitable for precision mobile equipment. The XC6120 in ultra small packages are ideally suited for high-density mounting. The XC6120 is available in both CMOS and N -channel open drain output configurations.

APPLICATIONS

- Microprocessor reset circuitry
- Memory battery back-up circuits
-Power-on reset circuits
- Power failure detection
- System battery life and charge voltage monitors

FEATURES

Highly Accurate	$: \pm 2 \%\left(V_{D F} \geqq 1.5 \mathrm{~V}\right)$
	$: \pm 30 \mathrm{mV}\left(\mathrm{V}_{\mathrm{DF}}<1.5 \mathrm{~V}\right)$

Low Power Consumption : $0.6 \mu \mathrm{~A}\left[\mathrm{~V}_{\mathrm{DF}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.97 \mathrm{~V}\right]$
Detect Voltage Range : $1.0 \mathrm{~V} \sim 5.0 \mathrm{~V}$ (0.1 V increments)
Operating Voltage Range : $0.7 \mathrm{~V} \sim 6.0 \mathrm{~V}$
Detect Voltage Temperature Characteristics
$: \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (TYP.)
Output Configuration : CMOS (XC6120C)
: N -channel open drain (XC6120N)
Operating
Temperature Range : $-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$
Packages
:USP-3, SSOT-24, SOT-25
Environmentally Friendly : EU RoHS Compliant, Pb Free

■TYPICALAPPLICATION CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

Supply Current vs. Input Voltage

PIN CONFIGURATION

PIN ASSIGNMENT

PIN NUMBER			PIN NAME	FUNCTION
USP-3	SSOT-24	SOT-25		
1	4	2	VIN	Ground
3	2	3	Vss	Output (Detect "Low")
2	3	1	Vout	No Connection
-	1	4,5	NC	

PRODUCT CLASSIFICATION

-Ordering Information
XC6120(1)(2)(3)(4)(6)-(7) ${ }^{\left({ }^{(1)}\right.}$

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
(1)	Output Configuration	C	CMOS output
		N	N -ch open drain output
(2)(3)	Detect Voltage (VDF)	10~50	For example 1.0V \rightarrow (21, (3) 0
(4)	Detect Accuracy	2	$\pm 2 \%$
(5)(6)-(7) ${ }^{\left({ }^{(1)}\right.}$	Packages (Order Unit)	HR	USP-3 (3,000/Reel)
		HR-G	USP-3 (3,000/Reel)
		NR	SSOT-24 (3,000/Reel)
		NR-G	SSOT-24 (3,000/Reel)
		SR-G	SOT-25 (3,000/Reel) Standard feed ${ }^{(* 2)}$
		SL-G	SOT-25 (3,000/Reel) Reverse feed ${ }^{\left({ }^{* 2}\right)}$

${ }^{(* 1)}$ The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.
${ }^{(* 2)}$ Taping Specifications

- SR-G
direction of feed
\longrightarrow

- SL-G

BLOCK DIAGRAMS

(1) XC6120C

(2) XC6120N

-ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATING	UNITS
Input Voltage		VIN	Vss-0.3~7.0	V
Output Current		lout	10	mA
Output Voltage	CMOS Output	Vout	$\mathrm{V}_{\text {ss }}-0.3 \sim \mathrm{~V}_{\text {IN }}+0.3$	V
	N-ch Open Drain Output		Vss-0.3~7.0	
Power Dissipation	USP-3	Pd	120	mW
	SSOT-24		150	
	SOT-25		250	
Operating Temperature Range		Topr	-40~+85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		Tstg	-55~+125	${ }^{\circ} \mathrm{C}$

- ELECTRICAL CHARACTERISTICS

*1: VDF (T): Nominal detect voltage
*2: For XC6120C only.
*3: A time taking from the time at $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DF}}$ to the time at $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ when $\mathrm{V}_{\text {IN }}$ falls from 6.0 V to 0.7 V .
*4: $V_{D R}$: Release voltage $\left(V_{D R}=V_{D F}+V_{H Y S}\right)$
*5: A time taking from the time at $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DR}}$ to the time at $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DR}}$ when $\mathrm{V}_{\text {IN }}$ rise from 0.7 V to 6.0 V .

- XC6120N recommended pull-up resistance

Input Voltage Range	Pull-up Resistance
$0.7 \mathrm{~V} \sim 6.0 \mathrm{~V}$	$\geqq 220 \mathrm{k} \Omega$
$0.8 \mathrm{~V} \sim 6.0 \mathrm{~V}$	$\geqq 100 \mathrm{k} \Omega$
$1.0 \mathrm{~V} \sim 6.0 \mathrm{~V}$	$\geqq 33 \mathrm{k} \Omega$

■ELECTRICAL CHARACTERISTICS (Continued)

- DETECT VOLTAGE ACCURACY AND SUPPLY CURRENT SPECIFICATIONS

SYMBOL	E-1		E-2		E-3	
PARAMETER NOMINAL DETECT VOLTAGE	DETECT VOLTAGE $V_{D F}(V)$ XC6120xxx2 Series		SUPPLY CURRENT 1 $I_{s s 1}(\mu \mathrm{~A})$		SUPPLY CURRENT 2$\mathrm{I}_{\mathrm{ss} 2}(\mu \mathrm{~A})$	
$\mathrm{V}_{\mathrm{DF} \text { (T) }}$	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.
1.0	0.970	1.030	0.5	1.4	0.4	1.35
1.1	1.070	1.130				
1.2	1.170	1.230				
1.3	1.270	1.330				
1.4	1.370	1.430				
1.5	1.470	1.530				
1.6	1.568	1.632				
1.7	1.666	1.734				
1.8	1.764	1.836				
1.9	1.862	1.938				
2.0	1.960	2.040	0.6	1.7	0.5	1.60
2.1	2.058	2.142				
2.2	2.156	2.244				
2.3	2.254	2.346				
2.4	2.352	2.448				
2.5	2.450	2.550				
2.6	2.548	2.652				
2.7	2.646	2.754				
2.8	2.744	2.856	0.7	1.9	0.6	1.80
2.9	2.842	2.958				
3.0	2.940	3.060				
3.1	3.038	3.162				
3.2	3.136	3.264				
3.3	3.234	3.366				
3.4	3.332	3.468				
3.5	3.430	3.570				
3.6	3.528	3.672				
3.7	3.626	3.774				
3.8	3.724	3.876				
3.9	3.822	3.978				
4.0	3.920	4.080				
4.1	4.018	4.182				
4.2	4.116	4.284				
4.3	4.214	4.386				
4.4	4.312	4.488				
4.5	4.410	4.590				
4.6	4.508	4.692				
4.7	4.606	4.794				
4.8	4.704	4.896				
4.9	4.802	4.998				
5.0	4.900	5.100				

${ }^{(* 6)}$ When detect voltage is $1.0 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{DF}(\mathrm{T})}<1.5 \mathrm{~V}$, detect accuracy is $\pm 30 \mathrm{mV}$.
When detect voltage is $1.5 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{DF}(\mathrm{T})} \leqq 5.0 \mathrm{~V}$, detect accuracy is $\pm 2 \%$.

TEST CIRCUITS

Circuit 1

Circuit 2

Circuit 4

OPERATIONAL EXPLANATION

-Typical Application Circuit

-Timing Charge

Note: For explaining in a simplified case, an operation time of the circuit is not counted.

The following explains the operation of the typical application circuit along number symbols shown in the timing chart.
(1) When input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ is higher than detect voltage (V_{DF}), output voltage ($\mathrm{V}_{\text {OUT }}$) will be equal to input voltage ($\mathrm{V}_{\text {IN }}$). (A condition of high impedance exists with N -ch open drain output configurations.)
(2) When input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ falls below detect voltage (V_{DF}), output voltage ($\mathrm{V}_{\text {OUT }}$) will be equal to the ground voltage (Vss) level.
(3) When input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ falls to a level below that of the minimum operating voltage $\left(\mathrm{V}_{\text {mis }}\right)$, output will become unstable. If In this condition, V_{IN} will equal the pulled-up output (should output be pulled-up.) (Input voltage, V_{IN}, in the typical application circuit.)
(4) When input voltage ($\mathrm{V}_{\mathbf{I N}}$) rises above the minimum operating voltage ($\mathrm{Vmin}^{\mathrm{m}}$) level until it achieves a release voltage (V_{DR}), output keeps the ground voltage level (V_{ss}).
(5) When the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ rises above the release voltage $\left(\mathrm{V}_{\mathrm{DR}}\right)$, output voltage ($\mathrm{V}_{\text {out }}$ will be equal to input voltage $\left(V_{I N}\right)$. (A condition of high impedance exists with N -ch open drain output configurations.)
(6) The difference between $V_{D R}$ and $V_{D F}$ represents the hysteresis width.

NOTE ON USE

1. Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
2. In order to stabilize the IC's operations, please ensure that VIN pin's input frequency's rise and fall times are more than several $\mu \mathrm{s} / \mathrm{V}$.
3. With a resistor connected between the V_{IN} pin and the power supply V_{DD} some errors may be observed from the input voltage at the detect and release voltage. Those errors are not constant because of the fluctuation of the supply current.
4. When a resistor is connected between the $V_{I N}$ pin and the power supply $V_{D D}$, oscillation may occur as a result of through current and voltage drop at the Rin at the time of voltage release. (refer to the Oscillation Description (1) below) Especially in the CMOS output configurations, oscillation may occur regardless of detect/release operation if load current (lout) exists. (refer to the Oscillation Description (2) below)
5. Please use N -ch open drains configuration, when a resistor R_{IN} is connected between the V_{IN} pin and the power supply $V_{D D}$ power source. In such cases, please ensure that R_{IN} is less than $10 \mathrm{k} \Omega$ and that C is more than $0.1 \mu \mathrm{~F}$.
6. Torex places an importance on improving our products and its reliability.

However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.

[Figure 1: Circuit connected with the input resistor]

- Oscillation Description

(1) Oscillation as a result of through current

Since the XC6120 series are CMOS ICs, transient through current will flow when the IC's internal circuit switching operates regardless of output configuration. Consequently, oscillation is liable to occur as a result of the similar operations as in (1) above. This oscillation does not occur during the detect operation.
(2) Output current oscillation with the CMOS output configuration

As shown in figure 2, when the voltage applied at the power supply (VDD) rises from below detect voltage to above release voltage, the IC commence release operations and the internal P-ch driver transistor will be on. The output current (lout) flows the input resistor (Rin) via the P-ch driver transistor. Because of the input resistor (Rin) and the output current (lout), an input pin voltage drops RiN X lout. If the voltage drop level is larger than the IC's hysteresis width ($\mathrm{V}_{\text {HYs }}$), the input pin voltage will falls below the VDF and detect operations will commerce so that the internal P-ch driver transistor will be off. The voltage drop will stop because the output current (lout) which was flowing the P-ch driver transistor will run down. The input pin voltage will become the same voltage level as the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$. For this, the input pin voltage will rise above the release voltage (V_{DR}), therefore, the release operations will begin over again. Oscillation may occur with this repetition. Further, this condition will also appear via means of a similar mechanism during detect operations.

[Figure 2: Oscillation caused by the input resistor of the CMOS output product and the output current]

■TYPICAL PERFORMANCE CHARACTERISTICS

(1) Supply Current vs. Input Voltage

XC6120x102xx

(2) Output Voltage vs. Input Voltage

XC6120C202xx

(3) Detect Voltage, Release Voltage vs. Ambient Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) Output Current (Nch Driver) vs. Input Voltage

XC6120x502xx

XC6120x502xx

XC6120C102xx

XC6120x502xx

(5) Output Current (Pch Driver) vs. Input Voltage

XC6120C102xx

XC6120C102xx

PACKAGING INFORMATION

-USP-3

(unit:mm)

-SOT-25
(unit: mm)

-SSOT-24

(unit : mm)

■PACKAGING INFORMATION(Continued)
-USP-3 Reference Pattern Layout

- USP-3 Reference Metal Mask Design

MARKING RULE

-SSOT-24

(1) represents output configuration and detect voltage Range

MARK	OUTPUT CONFIGURATION	OUTPUT VOLTAGE	PRODUCT SERIES
K	CMOS	$1.0 \mathrm{~V} \sim 2.9 \mathrm{~V}$	
		$3.0 \mathrm{~V} \sim 5.0 \mathrm{~V}$	
L	Nch open drain	$1.0 \mathrm{~V} \sim 2.9 \mathrm{~V}$	X XC6120N
		$3.0 \mathrm{~V} \sim 5.0 \mathrm{~V}$	
M			

SSOT-24 (TOP VIEW)
(2) represents detect voltage

MARK	DETECT VOLTAGE (V)		MARK		DETECT VOLTAGE (V)	
0	-	3.0	F	1.5	4.5	
1	-	3.1	H	1.6	4.6	
2	-	3.2	K	1.7	4.7	
3	-	3.3	L	1.8	4.8	
4	-	3.4	M	1.9	4.9	
5	-	3.5	N	2.0	5.0	
6	-	3.6	P	2.1	-	
7	-	3.7	R	2.2	-	
8	-	3.8	S	2.3	-	
9	-	3.9	T	2.4	-	
A	1.0	4.0	U	2.5	-	
B	1.1	4.1	V	2.6	-	
C	1.2	4.2	X	2.7	-	
E	1.3	4.3	Y	2.8	-	

(3), (4) represents production lot number

01 to 09, 10, 11, $\cdots, 99,0 \mathrm{~A}, \cdots, 0 Z, 1 \mathrm{~A}, \cdots$ repeated.
(G, I, J, O, Q, W excluded. Reversed character is not used.)

MARKING RULE (Continued)

-USP-3

MARK	DETECT VOLTAGE (V)	PRODUCT SERIES
3	X .3	$\mathrm{XC6120**} 3^{* * *}$
0	X .0	$\mathrm{XC6120**} 0^{* * *}$

(4), (5) represents production lot number

01 to 09, 10, 11, $\cdots, 99,0 A, \cdots, 0 Z, 1$ A, \cdots repeated.
(G, I, J, O, Q, W excluded.)

1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
3. Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.
5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
6. Our products are not designed to be Radiation-resistant.
7. Please use the product listed in this datasheet within the specified ranges.
8. We assume no responsibility for damage or loss due to abnormal use.
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Microprocessors - MPU category:
Click to view products by Torex Semiconductor manufacturer:
Other Similar products are found below :
MC68302EH20C MC7457RX1000LC MC7457RX1267LC A2C00010998 A A2C52004004 R5F117BCGNA\#20 R5F52106BDLA\#U0 R5S72690W266BG\#U0 ADJ3400IAA5DOE MPC8245TVV266D MPC8245TZU300D MPC8260ACVVMHBB MPC8323ECVRAFDCA MPC8536ECVJAVLA BOXNUC5PGYH0AJ 20-668-0024 P1010NSN5DFB P2020NXE2HHC P5020NSE7TNB P5020NSE7VNB LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB A2C00010729 A A2C00039344 T1022NSE7MQB T1022NXN7PQB T1023NSE7MQA T1024NXE7PQA T1042NSN7MQB T1042NXN7WQB T2080NSN8PTB T2080NXE8TTB T2081NXN8TTB R5F101AFASP\#V0 MC68302CEH20C TS68040MF33A MPC8260ACVVMIBB MPC8280CZUUPEA MPC8313ECVRAFFC MPC8313ECVRAGDC MPC8313EVRADDC MPC8313EVRAFFC MPC8313VRADDC MPC8323EVRAFDCA BOXSTCK1A8LFCL UPD78F0503AMCA-CAB-G UPD78F0513AGA-8EU-AT UPD78F0730MC-CAB-AX DF2134BFA20V

