40V PNP HIGH GAIN LOW SATURATION MEDIUM POWER TRANSISTOR IN SOT89

SUMMARY

$B V_{C E O}=-40 \mathrm{~V}: R_{S A T}=29 \mathrm{~m} \Omega ; \mathrm{I}_{\mathrm{C}}=-5.5 \mathrm{~A}$

DESCRIPTION

Packaged in the SOT89 outline this new low saturation 40V PNP transistor offers low on state losses making it ideal for use in DC-DC circuits, line switching and various driving and power management functions.

FEATURES

- Extremely low equivalent on-resistance

- 5.5 amps continuous current
- Up to 15 amps peak current
- Very low saturation voltages <-60mV @ -1A

APPLICATIONS

- DC - DC converters
- MOSFET gate drivers
- Charging circuits
- Power switches

- Motor control

ORDERING INFORMATION

DEVICE	REEL SIZE	TAPE WIDTH	QUANTITY PER REEL
ZXTP2009ZTA	$7^{\prime \prime}$	12 mm	1,000 units

DEVICE MARKING

$53 Z$

[^0]
ZXTP2009Z

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	LIMIT	UNIT
Collector-base voltage	$\mathrm{BV}_{\mathrm{CBO}}$	-50	V
Collector-base voltage	$\mathrm{BV}_{\mathrm{CBS}}$	-50	V
Collector-emitter voltage	$\mathrm{BV}_{\mathrm{CEO}}$	-40	V
Emitter-base voltage	$\mathrm{BV}_{\text {EBO }}$	-7.5	V
Continuous collector current ${ }^{(\mathrm{b})}$	I_{C}	-5.5	A
Peak pulse current	I_{CM}	-15	A
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(\mathrm{a})}$	P_{D}	0.9	W
Linear derating factor		7.2	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{\text {(b) }}$	P_{D}	1.5	W
Linear derating factor		12	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{\text {(c) }}$	P_{D}	2.1	W
Linear derating factor		16.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}{ }^{\text {(d) }}$	P_{D}	3	W
Linear derating factor		24	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating and storage temperature range	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
J unction to ambient ${ }^{(a)}$	$\mathrm{R}_{\text {®J } \mathrm{A}}$	139	${ }^{\circ} \mathrm{C} / \mathrm{W}$
J unction to ambient ${ }^{(b)}$	$\mathrm{R}_{\text {Ө J }} \mathrm{A}$	83	${ }^{\circ} \mathrm{C} / \mathrm{W}$
J unction to ambient ${ }^{\text {(c) }}$	$\mathrm{R}_{\text {ӨJ } \mathrm{A}}$	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
J unction to ambient ${ }^{(d)}$	$\mathrm{R}_{\text {ӨJ } \mathrm{A}}$	42	${ }^{\circ} \mathrm{C} / \mathrm{N}$

NOTES

(a) For a device surface mounted on $15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with high coverage of single sided $10 z$ copper, in still air conditions.
(b) For a device surface mounted on $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with high coverage of single sided loz copper, in still air conditions (c) For a device surface mounted on $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with high coverage of single sided $10 z$ copper, in still air conditions. (d) For a device surface mounted on $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB measured at $\mathrm{t}<5$ secs.

CHARACTERISTICS

ZXTP2009Z

ELECTRICAL CHARACTERISTICS (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Collector-base breakdown voltage	$\mathrm{BV}_{\text {CBO }}$	-50	-90		V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
Collector-emitter breakdown voltage	$B V_{\text {CES }}$	-50	-90		V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
Collector-emitter breakdown voltage	$\mathrm{BV}_{\text {CEO }}$	-40	-58		V	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} *$
Emitter-base breakdown voltage	$\mathrm{BV}_{\text {EBO }}$	-7.5	-8.3		V	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$
Collector cut-off current	$\mathrm{I}_{\text {cbo }}$		<1	-20	nA	$\mathrm{V}_{\mathrm{CB}}=-40 \mathrm{~V}$
Collector cut-off current	$\mathrm{I}_{\text {CES }}$		<1	-20	nA	$\mathrm{V}_{\mathrm{CB}}=-32 \mathrm{~V}$
Emitter cut-off current	$\mathrm{I}_{\text {ebo }}$		<1	-20	nA	$\mathrm{V}_{\mathrm{EB}}=6 \mathrm{~V}$
Collector-emitter saturation voltage	$\mathrm{V}_{\text {CE(SAT) }}$		$\begin{gathered} \hline-15 \\ -44 \\ -50 \\ -120 \\ -70 \\ -125 \\ -130 \\ -162 \end{gathered}$	$\begin{gathered} \hline-30 \\ -60 \\ -70 \\ -165 \\ -80 \\ -175 \\ -175 \\ -185 \end{gathered}$	mV mV	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{I}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{I}, \mathrm{I}_{\mathrm{B}}=200 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{C}}=3.5 \mathrm{I}, \mathrm{I}_{\mathrm{B}}=175 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{C}}=5.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=550 \mathrm{~mA}^{*} \\ & \hline \end{aligned}$
Base-emitter saturation voltage	$\mathrm{V}_{\text {BE(SAT }}$		$\begin{aligned} & \hline-820 \\ & -1000 \\ & \hline \end{aligned}$	$\begin{gathered} \hline-900 \\ -1075 \end{gathered}$	$\begin{aligned} & \mathrm{mv} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{C}}=5.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=550 \mathrm{~mA}^{*} \end{aligned}$
Base-emitter turn-on voltage	$\mathrm{V}_{\text {BE(ON })}$		$\begin{aligned} & \hline-778 \\ & -869 \end{aligned}$	$\begin{aligned} & \hline-850 \\ & -950 \end{aligned}$	$\begin{aligned} & \mathrm{mv} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{*} \\ & \mathrm{I}_{\mathrm{C}}=5.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} * \end{aligned}$
Static forward current transfer ratio	$\mathrm{H}_{\text {FE }}$	$\begin{aligned} & \hline 200 \\ & 200 \\ & 170 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 390 \\ & 350 \\ & 290 \\ & 175 \\ & \hline \end{aligned}$	550		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{*} \\ & \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{*} \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{*} \\ & \mathrm{I}_{\mathrm{C}}=5.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{*} \end{aligned}$
Transition frequency	f_{T}		152		M Hz	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V} \\ & \mathrm{f}=100 \mathrm{M} \mathrm{~Hz} \end{aligned}$
Output capacitance	$\mathrm{C}_{\text {OBO }}$		53		pF	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}^{*}$
Switching times	$\begin{aligned} & \mathrm{t}_{\mathrm{d}} \\ & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{r}} \end{aligned}$		$\begin{gathered} 18 \\ 17 \\ 325 \\ 60 \end{gathered}$		ns	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=100 \mathrm{~mA} \end{aligned}$
Switching times	$\begin{aligned} & \mathrm{t}_{\mathrm{d}} \\ & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{r}} \end{aligned}$		$\begin{gathered} \hline 55 \\ 107 \\ 264 \\ 103 \end{gathered}$		ns	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{B} 1} \mathrm{I}_{\mathrm{B} 2}=20 \mathrm{~mA} \end{aligned}$

[^1]
ZXTP2009Z

TYPICAL CHARACTERISTICS

ISSUE 1-J UNE 2005

ZXTP2009Z

PACKAGE OUTLINE

PAD LAYOUT DETAILS

SOT89 pattern.
Minimum Pad Size (dimensions in mm)

Controlling dimensions are in millimeters. Approximate conversions are given in inches

PACKAGE DIMENSIONS

DIM	Millimeters		Inches		DIM	Millimeters		Inches	
	Min	Max	Min	Max		Min	Max	Min	Max
A	1.40	1.60	0.550	0.630	e	1.40	1.50	0.055	0.059
b	0.38	0.48	0.015	0.019	E	3.75	4.25	0.150	0.167
b1	-	0.53	-	0.021	E1	-	2.60	-	0.102
b2	1.50	1.80	0.060	0.071	G	2.90	3.00	0.114	0.118
c	0.28	0.44	0.011	0.017	H	2.60	2.85	0.102	0.112
D	4.40	4.60	0.173	0.181	-	-	-	-	-

© Zetex Semiconductors plc 2005

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd	Zetex Semiconductors plc
Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza Tower 1	Zetex Technology Park
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Chadderton, Oldham, OL9 9LL
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 894549490	Telephone: (1) 6313602222	Telephone: (852) 26100611	Telephone (44) 1616224444
Fax: (49) 8945494949	Fax: (1) 6313608222	Fax: (852) 24250494	Fax: (44) 1616224446
europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com	hq@zetex.com

These offices are supported by agents and distributors in major countries world-wide.
This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services
reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B

[^0]: TOP VIEW

[^1]: * Measured under pulsed conditions. Pulse width $\leq 300 \mu \mathrm{~s}$; duty cycle $\leq 2 \%$.

