Lead-free Green

Features

Mechanical Data

- $\mathrm{BV}_{\text {CEO }}>-100 \mathrm{~V}$
- $B V_{\mathrm{ECO}}>-7 \mathrm{~V}$
- $\mathrm{I}_{\mathrm{C}}=-2 \mathrm{~A}$ Continuous Collector Current
- $\mathrm{V}_{\mathrm{CE}(\text { (SAT })}<-130 \mathrm{mV}$ @ -1A

Case: SOT23

- Case Material: Molded Plastic, "Green" Molding Compound. UL

Flammability Classification Rating 94V-0

- Moisture Sensitivity: Level 1 per J-STD-020
- \quad RCE(SAT) $=108 \mathrm{~m} \Omega$ Typical
- $\mathrm{PD}_{\mathrm{D}}=1.25 \mathrm{~W}$
- High Peak Current
- Complementary Part Number ZXTN25100BFH
- Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability
- Terminals: Finish - Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 © ${ }^{\text {e3 }}$
- Weight: 0.008 grams (Approximate)

Applications

- MOSFET and IGBT Gate Driving
- DC-DC Converters
- Motor Drive
- Relay, Lamp and Solenoid Drive

Ordering Information (Note 4)

Part Number	Marking	Reel Size (inches)	Tape Width (mm)	Quantity Per Reel
ZXTP25100BFHTA	056	7	8	3,000

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.
4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

Absolute Maximum Ratings $\left(@ T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	-140	V
Collector-Emitter Voltage (Forward Blocking)	$\mathrm{V}_{\text {CEO }}$	-100	V
Emitter-Collector Voltage (Reverse Blocking)	$\mathrm{V}_{\text {ECO }}$	-7	V
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	-7	V
Continuous Collector Current (Note 5)	I_{C}	-2	A
Peak Pulse Current	$\mathrm{I}_{\text {CM }}$	-5	A

Thermal Characteristics (@ $\mathrm{T}_{\mathrm{A}}=+22^{\circ} \mathrm{C}$, unless otherwise specified.)

Characteristic		Symbol	Value	Unit
Power Dissipation Linear Derating Factor	(Note 5)	PD	$\begin{aligned} & 0.73 \\ & 5.84 \end{aligned}$	W
	(Note 6)		$\begin{gathered} 1.05 \\ 8.4 \end{gathered}$	
	(Note 7)		$\begin{gathered} 1.25 \\ 9.6 \end{gathered}$	
	(Note 8)		$\begin{aligned} & 1.81 \\ & 14.5 \end{aligned}$	
Thermal Resistance, Junction to Ambient	(Note 5)	$\mathrm{R}_{\text {өJA }}$	171	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	(Note 6)		119	
	(Note 7)		100	
	(Note 8)		69	
Thermal Resistance, Junction to Lead	(Note 9)	$\mathrm{R}_{\text {өJL }}$	74.95	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range	-	$\mathrm{T}_{\text {J, }}$ TSTG	-55 to +150	${ }^{\circ} \mathrm{C}$

Notes: $\quad 5$. For a device surface mounted on $15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR-4 PCB with high coverage of single sided $10 z$ copper, in still air conditions; the device is measured when operating in a steady-state condition.
6. Same as note (5), except the device is surface mounted on $25 \mathrm{~mm} \times 25 \mathrm{~mm}$ with 2 oz copper.
7. Same as note (5), except the device is surface mounted on $50 \mathrm{~mm} \times 50 \mathrm{~mm}$ with 2 oz copper.
8. Same as note (6), except the device is measured at $\mathrm{t}<5 \mathrm{secs}$.
9. Thermal resistance from junction to solder-point (at the end of the collector lead).

ESD Ratings (Note 10)

Characteristic	Symbol	Value	Unit	JEDEC Class
Electrostatic Discharge - Human Body Model	ESD HBM	4,000	V	3 A
Electrostatic Discharge - Machine Model	ESD MM	400	V	C

Note: 10. Refer to JEDEC specification JESD22-A114 and JESD22-A115.

ZXTP25100BFH

Thermal Characteristics and Derating Information

Electrical Characteristics ($@ \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Characteristic	Symbol	Min	Typ	Max	Unit	Test Condition
Collector-Base Breakdown Voltage	BV ${ }_{\text {CBO }}$	-140	-165	-	V	$\mathrm{IC}=-100 \mu \mathrm{~A}$
Collector-Emitter Breakdown Voltage (Note 11)	BV ${ }_{\text {CEO }}$	-100	-125	-	V	$\mathrm{IC}=-10 \mathrm{~mA}$
Collector-Emitter Breakdown Voltage	BVCEX	-140	-165	-	V	$\begin{aligned} & \mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{BC}}<1 \mathrm{k} \Omega \text { or } \\ & -0.25<\mathrm{V}_{\mathrm{BE}}<1 \mathrm{~V} \end{aligned}$
Emitter-Base Breakdown Voltage	$\mathrm{BV}_{\text {EBO }}$	-7	-8.2	-	V	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{~A}$
Collector-Base Cutoff Current	Icbo	-	<-1	-50	nA	$\mathrm{V}_{\mathrm{CB}}=-112 \mathrm{~V}$
		-	-	-20	$\mu \mathrm{A}$	$\mathrm{V}_{C B}=-112 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$
Emitter-Base Cutoff Current	$\mathrm{I}_{\text {EBO }}$	-	<-1	-50	nA	$\mathrm{V}_{\text {EB }}=-5.6 \mathrm{~V}$
Static Forward Current Transfer Ratio (Note 11)	$h_{\text {FE }}$	100	200	300	-	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-2 \mathrm{~V}$
		55	105	-		$\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-2 \mathrm{~V}$
		15	25	-		$\mathrm{I}_{\mathrm{C}}=-2 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-2 \mathrm{~V}$
Collector-Emitter Saturation Voltage (Note 11)	$\mathrm{V}_{\text {CE(SAT }}$	-	-60	-90	mV	$\mathrm{I}_{\mathrm{C}}=-0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}$
		-	-240	-350		$\mathrm{I}_{\mathrm{C}}=-0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-10 \mathrm{~mA}$
		-	-100	-130		$\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-100 \mathrm{~mA}$
		-	-215	-295		$\mathrm{I}_{\mathrm{C}}=-2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-200 \mathrm{~mA}$
Base-Emitter Saturation Voltage (Note 11)	$\mathrm{V}_{\text {BE(SAT }}$	-	-900	-1000	mV	$\mathrm{I}_{\mathrm{C}}=-2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-200 \mathrm{~mA}$
Base-Emitter Voltage (Note 11)	$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	-	-830	-950	mV	$\mathrm{I}_{\mathrm{C}}=-2 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-2 \mathrm{~V}$
Output Capacitance	Сово	-	15	25	pF	$\mathrm{V}_{C B}=-10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Transition Frequency	f_{T}	-	200	-	MHz	$\begin{aligned} & V_{C E}=-5 \mathrm{~V}, \mathrm{IC}=-100 \mathrm{~mA}, \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$
Turn-on Time	$\mathrm{t}_{(\mathrm{ON})}$	-	31	-	ns	$\mathrm{V}_{\mathrm{CC}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}$,
Turn-off Time	t(OFF)	-	384	-	ns	$\mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=-50 \mathrm{~mA}$

Note: \quad 11. Measured under pulsed conditions. Pulse width $\leq 300 \mu$ s. Duty cycle $\leq 2 \%$.

ZXTP25100BFH
Typical Electrical Characteristics $\left(@ T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT23

SOT23			
Dim	Min	Max	Typ
A	0.37	0.51	0.40
B	1.20	1.40	1.30
C	2.30	2.50	2.40
D	0.89	1.03	0.915
F	0.45	0.60	0.535
G	1.78	2.05	1.83
H	2.80	3.00	2.90
J	0.013	0.10	0.05
K	0.890	1.00	0.975
K1	0.903	1.10	1.025
L	0.45	0.61	0.55
L1	0.25	0.55	0.40
M	0.085	0.150	0.110
a	0°	8°	--
All Dimensions in $\mathbf{~ m m}$			

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT23

Dimensions	Value (in mm)
\mathbf{C}	2.0
\mathbf{X}	0.8
$\mathbf{X 1}$	1.35
\mathbf{Y}	0.9
$\mathbf{Y 1}$	2.9

ZXTP25100BFH

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B

