RY/RM Series Miniature Relays

Key features:

- RY2 (3A), RY4 (5A), RM2 (5A)
- General purpose miniature relays
- 3A or 5A contact capacity
- Wide variety of terminal styles and coil voltages meet a wide range of applications
- All 4PDT types have arc barriers.

Part Number Selection

	Part Number			
Contact	Model	Plug-in Terminal	PC Board Terminal	Coil Voltage Code
DPDT (Slim) 3A	Standard	RY2S-U \square	RY2V-U \square	$\begin{aligned} & \text { AC6V, AC12V, AC24V, AC110V, AC120V, } \\ & \text { AC220V, AC240V } \\ & \text { DC6V, DC12V, D24V, DC48V, DC110V } \end{aligned}$
	With Indicator	RY2S-UL \square	RY2V-UL \square	
	With Check Button	RY2S-UC \square	-	
	With Indicator and Check Button	RY2S-ULC \square		
	Top Bracket Mounting	RY2S-UT \square		
	With Diode (DC coil only)	RY2S-UD \square	RY2V-UD \square	DC6V, DC12V, DC24V, DC48V, DC110V
DPDT (Wide) 5A	Standard	RM2S-U \square	RM2V-U \square	RYAC6V, AC12V, AC24V, AC110-120V, AC220-240V DC6V, DC12V, DC24V, DC48V, DC100-110V
	With Indicator	RM2S-UL \square	RM2V-UL \square	
	With Check Button	RM2S-UC \square	-	
	With Indicator and Check Button	RM2S-ULC \square		
	Top Bracket Mounting	RM2S-UT \square		
	With Diode (DC coil only)	RM2S-UD \square		DC6V, DC12V, DC24V, DC48V, DC100-110V
	With Indicator and Diode (DC coil only)	RM2S-ULD \square		
4PDT 5A	Standard	RY4S-U \square	RY4V-U \square	$\begin{aligned} & \text { AC6V, AC12V, AC24V, AC110-120V, } \\ & \text { AC220-240V } \\ & \text { DC6V, DC12V, DC24V, DC48V, DC100-110V } \end{aligned}$
	With Indicator	RY4S-UL \square	RY4V-UL \square	
	With Check Button	RY4S-UC \square	-	
	With Indicator and Check Button	RY4S-ULC \square		
	Top Bracket Mounting	RY4S-UT \square		
	With Diode (DC coil only)	RY4S-UD \square		DC6V, DC12V, DC24V, DC48V, DC100-110V
	With Indicator and Diode (DC coil only)	RY4S-ULD \square		

Ordering Information

When ordering, specify the Part No. and coil voltage code: (example) RY4S-U AC110-120V

Relays	Standard DIN Rail Mount	Finger-safe DIN Rail Mount	Through Panel Mount	PCB Mount
RY2S	SY2S-05	SY2S-05C	SY2S-51	SY2S-61
RM2	SM2S-05	SM2S-05C	SM2S-51	$\begin{aligned} & \text { SY4S-61 } \\ & \text { SY4S-62 } \end{aligned}$
RY4S	SY4S-05	SY4S-05C	SY4S-51	

Hold Down Springs \& Clips

1. Not available for PCB mount socket SY4S-62.
2. Order 2 pieces per relay.

Accessories

$\begin{aligned} & \infty \\ & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Item	Appearance	Use with	Part No.	Remarks
	Aluminum DIN Rail (1 meter length)		All DIN rail sockets	BNDN1000	The BNDN1000 is designed to accommodate DIN mount sockets. Made of durable extruded aluminum, the BNDN1000 measures 0.413 $(10.5 \mathrm{~mm})$ in height and $1.37(35 \mathrm{~mm})$ in width (DIN standard). Standard length is $39^{\prime \prime}(1,000 \mathrm{~mm})$.
	DIN Rail End Stop		DIN rail	BNL5	9.1 mm wide.
$\begin{aligned} & \stackrel{\infty}{\ddot{0}} \\ & \text { o } \end{aligned}$	Replacement Hold-Down Spring Anchor		Horseshoe clip for all DIN rail sockets	Y778-011	For use on DIN rail mount socket when using pullover wire hold down spring. 2 pieces included with each socket.

Specifications

Contact Model	Standard Contact		
	RY2 - DPDT Slim	RM2 - DPDT Wide	RY4-4PDT
Contact Material	Gold-plated silver	Silver	Gold-plated silver
Contact Resistance ${ }^{1}$	$50 \mathrm{~m} \Omega$ maximum	$30 \mathrm{~m} \Omega$ maximum	$50 \mathrm{~m} \Omega$ maximum
Minimum Applicable Load	24V DC, 5 mA; 5V DC, 10 mA (reference value)	$24 \mathrm{~V} D \mathrm{C}, 10 \mathrm{~mA} ; 5 \mathrm{~V}$ DC, 20 mA (reference value)	$24 \mathrm{~V} D \mathrm{C}, 5 \mathrm{~mA}$; 5 V DC, 10 mA (reference value)
Operating Time ${ }^{2}$	20 ms maximum		
Release Time ${ }^{2}$	20 ms maximum		
Power Consumption (approx.)	$\text { AC: } 1.1 \mathrm{VA}(50 \mathrm{~Hz}), 1 \mathrm{VA}(60 \mathrm{~Hz})$ $\text { DC: } 0.8 \mathrm{~W}$	$\begin{aligned} & \text { AC: 1.4 VA }(50 \mathrm{~Hz}), 1.2 \mathrm{VA}(60 \mathrm{~Hz}) \\ & \text { DC: } 0.9 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { AC: 1.4 VA }(50 \mathrm{~Hz}), 1.2 \mathrm{VA}(60 \mathrm{~Hz}) \\ & \text { DC: } 0.9 \mathrm{~W} \end{aligned}$
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500V DC megger)		
Dielectric Strength	Between live and dead parts:		
	1500 V AC, 1 minute	2000 V AC, 1 minute	2000 V AC, 1 minute
	Between contact and coil:		
	1500 V AC, 1 minute	2000 V AC, 1 minute	2000 V AC, 1 minute
	Between contacts of different poles:		
	1500 V AC, 1 minute	2000 V AC, 1 minute	2000 V AC, 1 minute
	Between contacts of the same pole:		
	1000 V AC, 1 minute	1000 V AC, 1 minute	1000 V AC, 1 minute
Operating Frequency	Electrical: 1800 operations/h maximum Mechanical: 18,000 operations/h maximum		
Vibration Resistance	Damage limits: 10 to 55 Hz , amplitude 0.5 mm Operating extremes: 10 to 55 Hz , amplitude 0.5 mm		
Shock Resistance	Damage limits: $1000 \mathrm{~m} / \mathrm{s}^{2}$ Operating extremes: $100 \mathrm{~m} / \mathrm{s}^{2}$ (DPDT Slim), $200 \mathrm{~m} / \mathrm{s}^{2}$ (4PDT, DPDT Wide)		
Mechanical Life	50,000,000 operations		
Electrical Life	200,000 operations (220V AC, 3A)	500,000 operations (220V AC, 5A)	100,000 operations (220V AC, 5A) 200,000 operations (220V AC, 3A)
Operating Temperature ${ }^{3}$	-25 to $+55^{\circ} \mathrm{C}$ (no freezing)	-25 to $+45^{\circ} \mathrm{C}$ (no freezing)	-25 to $+55^{\circ} \mathrm{C}$ (no freezing) ${ }^{4}$
Operating Humidity	45 to 85\% RH (no condensation)		
Weight (approx.)	23g	35 g	34 g
Note: Above values are initial values. 1. Measured using 5 V DC, 1 A voltage drop method 2. Measured at the rated voltage (at $20^{\circ} \mathrm{C}$), excluding contact bouncing Release time of relays with diode: 40 ms maximum		3. For use under different temperature conditions, refer to Continuous Load Current vs. Operating Temperature Curve. The operating temperature range of relays with indicator or diode is -25 to $+40^{\circ} \mathrm{C}$. 4. When the total current of 4 contacts is less than 15 A , the operating temperature range is -25 to $+70^{\circ} \mathrm{C}$.	

AC Coil Ratings

Voltage (V)	Rated Current (mA) $\pm 15 \%$ at $20^{\circ} \mathrm{C}$				Coil Resistance (Ω) $\pm 10 \%$ at $20^{\circ} \mathrm{C}$		Operation Characteristics (against rated values at $20^{\circ} \mathrm{C}$)		
	AC 50Hz		AC 60Hz						
	$\begin{aligned} & \text { DPDT } \\ & \text { Slim } \end{aligned}$	DPDT Wide \& 4PDT	$\begin{aligned} & \text { DPDT } \\ & \text { Slim } \end{aligned}$	DPDT Wide \& 4PDT	$\begin{aligned} & \text { DPDT } \\ & \text { Slim } \end{aligned}$	DPDT Wide \& 4PDT	Max. Continuous Applied Voltage	Pickup Voltage	Dropout Voltage
6	170	240	150	200	18.8	9.4			
12	86	121	75	100	76.8	39.3			
24	42	60.5	37	50	300	153			
110	9.6	-	8.4	-	6,950	-			
110-120	-	9.4-10.8	-	8.0-9.2	-	4,290	110\%	80\% maximum	30\%
120	8.6	-	7.5	-	8,100	-			
220	4.7	-	4.1	-	25,892	-			
220-240	-	4.7-5.4	-	4.0-4.6	-	18,820			
240	4.9	-	4.3	-	26,710	-			

DC Coil Ratings

Voltage (V)	Rated Current (mA) $\pm 15 \%$ at $20^{\circ} \mathrm{C}$		Coil Resistance (Ω) $\pm 10 \%$ at $20^{\circ} \mathrm{C}$		Operation Characteristics (against rated values at $20^{\circ} \mathrm{C}$)		
	DPDT Slim	DPDT Wide \& 4PDT	DPDT Slim	DPDT Wide \& 4PDT	Max. Continuous Applied Voltage	Pickup Voltage	Dropout Voltage

6	128	150	47	40
12	64	75	188	160
24	32	36.9	750	650
48	18	18.5	2,660	2,600
$100-110$	-	$8.2-9.0$	-	12,250
110	8	-	13,800	-

$110 \% \quad 80 \%$ maximum $\quad 10 \%$ minimum

Contact Ratings

Note: Inductive load for the rated load - $\cos \varnothing=0.3, L / R=7 \mathrm{~ms}$

TÜV Ratings

Voltage	DPDT Slim	DPDT Wide	4PDT
240 V AC	$3 A$	$5 A$	$5 A$
30 V DC	$3 A$	$5 A$	$5 A$

[^0]
Socket Specifications

	Sockets	Terminal	Electrical Rating	Wire Size	Torque
DIN Rail Mount Sockets	SY2S-05	M3 screws with captive wire clamp	300V, 7A	Maximum up to 2-\#14AWG	5.5-9 in \bullet lbs
	SM2S-05	M3 screw with captive wire clamp	300V, 10A	Maximum up to 2-\#14AWG	$5.5-9 \mathrm{in} \bullet \mathrm{lbs}$
	SY4S-05	M3 screw with captive wire clamp	300V, 7A*	Maximum up to 2-\#14AWG	5.5-9 in•lbs
Finger-safe DIN Rail Mount	SY2S-05C	M3 screws with captive wire clamp, fingersafe	300V, 7A	Maximum up to 2-\#14AWG	5.5-9 in \bullet lbs
	SM2S-05C	M3 screw with captive wire clamp, fingersafe	300V, 10A	Maximum up to 2-\#14AWG	$5.5-9 \mathrm{in} \bullet \mathrm{lbs}$
	SY4S-05C	M3 screw with captive wire clamp, fingersafe	300V, 7A*	Maximum up to 2-\#14AWG	5.5-9 in \bullet lbs
Through Panel Mount Socket	SY2S-51	Solder	250V, 7A	-	-
	SM2S-51	Solder	250V, 10A	-	-
	SY4S-51	Solder	250V, 7A*	-	-
PCB Mount Socket	SY2S-61	PCB Mount	300V, 7A	-	-
	SY4S-61	PCB Mount	300V, 7A	-	-
	SY4S-62	PCB Mount	250V, 7A	-	-

* When using only 2 poles of the 4 -poles, the UL recognized current is 10 A .

Electrical Life Curves

AC Load
(RY2)

(RM2)

DC Load
(RY2)

(RM2)

Load Current (A)
(RY4)

(RY4)

Characteristics (Reference Data)

Maximum Switching Capacity

Continuous Load Current vs. Operating Temperature Curve (Standard Type, With Check Button, and Top Bracket Mounting Type)
(RY2)

(RY4)

(RM2)

$\begin{array}{ll}\text { 2 } & \text { Internal Connection (View from Bottom) } \\ \text { : Standard Type }\end{array}$
 Standard Type

DPDT Slim (RY2)	DPDT Wide (RM2)	4PDT (RY4)
$\frac{\frac{7}{\frac{1}{9}}}{\frac{5}{9}} \underset{\frac{4}{3}(-)}{\frac{\frac{4}{12}}{12}}$		

With Indicator (-L type)

With Diode (-D type)
DPDT Slim (RY2) \quad DPDT Wide (RM2) 4PDT (RY4)

4PDT (RY4)

Contains a diode to absorb the back emf generated when the coil is de-energized. The release time is slightly longer.

- Diode Characteristics

Reverse withstand voltage: $1,000 \mathrm{~V}$ Forward current: 1A

With Indicator and Diode (-LD type)

Dimensions

SM2S-05

Through Panel Mount Socket

SY2S-51

SY4S-51

SM2S-51

PCB Mount Sockets

SY2S-61

SY4S-62

Driving Circuit for Relays

1. To ensure correct relay operation, apply rated voltage to the relay coil.
2. Input voltage for the DC coil:

A complete DC voltage is best for the coil power to make sure of stable relay operation. When using a power supply containing a ripple voltage, suppress the ripple factor within 5%. When power is supplied through a rectification circuit, the relay operating characteristics, such as pickup voltage and dropout voltage, depend on the ripple factor. Connect a smoothing capacitor for better operating characteristics as shown below.
3. Leakage current while relay is off:

When driving an element at the same time as the relay operation, special consideration is needed for the circuit design. As shown in the incorrect circuit below, leakage current (lo) flows through the relay coil while the relay is off. Leakage current causes coil release failure or adversely affects the vibration resistance and shock resistance. Design a circuit as shown in the correct example.

Incorrect

4. Surge suppression for transistor driving circuits:

When the relay coil is turned off, a high-voltage pulse is generated, causing a transistor to deteriorate and sometimes to break. Be sure to connect a diode to suppress the back electromotive force. Then, the coil release time becomes slightly longer. To shorten the coil release time, connect a Zener diode between the collector and emitter of the transistor. Select a Zener diode with a Zener voltage slightly higher than the power voltage.

Operating Instructions

Protection for Relay Contacts

1. The contact ratings show maximum values. Make sure that these values are not exceeded. When an inrush current flows through the load, the contact may become welded. If this is the case, connect a contact protection circuit, such as a current limiting resistor.
2. Contact protection circuit:

When switching an inductive load, arcing causes carbides to form on the contacts, resulting in increased contact resistance. In consideration of contact reliability, contact life, and noise suppression, use of a surge absorbing circuit is recommended. Note that the release time of the load becomes slightly longer. Check the operation using the actual load. Incorrect use of a contact protection circuit will adversely affect switching characteristics. Four typical examples of contact protection circuits are shown in the following table:

3. Do not use a contact protection circuit as shown below:
This protection circuit is very effective in arc suppression when
opening the contacts. But, the capacitor is charged while the
contacts are opened. When the contacts are closed, the capacitor
is discharged through the contacts, increasing the possibility of
contact welding.

Generally, switching a DC inductive load is more difficult than switching a DC resistive load. Using an appropriate arc suppressor, however, will improve the switching characteristics of a DC inductive load.

Soldering

1. When soldering the relay terminals, use a soldering iron of 30 to 60 W , and quickly complete soldering (within approximately 3 seconds).
2. Use a non-corrosive rosin flux.

Operating Instructions con't

Other Precautions

1. General notice:

To maintain the initial characteristics, do not drop or shock the relay.
The relay cover cannot be removed from the base during normal operation. To maintain the initial characteristics, do not remove the relay cover

Use the relay in environments free from condensation, dust, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, and hydrogen sulfide ($\left.\mathrm{H}_{2} \mathrm{~S}\right)$.

Make sure that the coil voltage does not exceed applicable coil voltage range.
2. UL and CSA ratings may differ from product rated values determined by IDEC.
3. Do not use relays in the vicinity of strong magnetic field, as this may affect relay operation.

- Turn off the power to the relay before starting installation, removal, wiring, maintenance, and inspection of the relays. Failure to turn power off may cause electrical shock or fire hazard.
- Observe specifications and rated values, otherwise electrical shock or fire hazard may be caused.
- Use wires of the proper size to meet voltage and current requirements. Tighten the terminal screws on the relay socket to the proper tightening torque.
- Surge absorbing elements on AC relays with RC or DC relays with diode are provided to absorb the back electromotive force generated by the coil. When the relay is subject to an excessive external surge voltage, the surge absorbing element may be damaged. Add another surge absorbing provision to the relay to prevent damage.

Precautions for the RU Relays

- Before operating the latching lever of the RU relay, turn off the power to the RU relay. After checking the circuit, return the latching lever to the original position.
- Do not use the latching lever as a switch. The durability of the latching lever is a minimum of 100 operations.
- When using DC loads on 4PDT relays, apply a positive voltage to terminals of neighboring poles and a negative voltage to the other terminals of neighboring poles to prevent the possibility of short circuits.
- DC relays with a diode have a polarity in the coil terminals. Apply the DC voltage to the correct terminals.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for idec manufacturer:
Other Similar products are found below :
LT7A-XE-G LT7A-XE-R LT7B-A250 LT7B-A250FB LW1B-M1C6-W LW6L-M1C24MG FB1T-000Z FB1W-XW1E-BV411MR FB3W$413 Z$ FC2A-KP1C FC4A-J8AT1 FC4A-T16S3 FC5A-C16R2C MM-SMART-24 MM-SMART-40 FT1A-C12RA-S FT1A-C12RA-W FT1A-C14SA-B PF3S-BP12 PS3X-D24AFG PS3X-Q12AFG GT3A-3AD24 GT3F-2EAD24 GT3S-2AF20 GT3W-A16AD24 ABD302N-R ABD410N-R ABFD411N-G ABN4F11-G ABPD201N-R HE2B-M211PB HE2G-21SH HE9Z-D3B HG9Z-2A1 HG9Z-XC300 ACSNO-6123-FB-C6002 RH3V2-UAC240V DFAN-031-B AL6M-LK1-G AL6M-P3-R AL6Q-M13-W AL6Q-M23P-QG ALFD29901DN-G-24V ALFN22211DNG-U ALFW224611D-W ALNE8811-G ALQW2B24611D-G ALW212611-G ALW22211DG ALW29902D-G-12V

[^0]: AC: $\cos \varnothing=1.0, D C: L / R=0 \mathrm{~ms}$

