January 2006

FDN359BN N-Channel Logic Level PowerTrench[™] MOSFET

General Description

SEMICONDUCTOR IM

This N-Channel Logic Level MOSFET is produced using Fairchild's Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features

• 2.7 A, 30 V. $R_{\text{DS(ON)}}$ = 0.046 Ω @ V_{GS} = 10 V

 $R_{DS(ON)}$ = 0.060 Ω @ V_{GS} = 4.5 V

- Very fast switching speed.
- Low gate charge (5nC typical)
- High performance version of industry standard SOT-23 package. Identical pin out to SOT-23 with 30% higher power handling capability.

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Maximum Drain Current – Continuous	(Note 1a)	2.7	A
	– Pulsed		15	
P _D	Maximum Power Dissipation	(Note 1a)	0.5	W
		(Note 1b)	0.46	
T _J , T _{STG}	Operating and Storage Temperature Range	e	-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	250	°C/W		
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	75	°C/W		

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
359B	FDN359BN	7"	8mm	3000 units

FDN359BN

Symbol	Parameter	Test C	Conditi	ons	Min	Тур	Мах	Units
Off Char	acteristics							
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$,	I _D = 2	50 µA	30			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA,Re	eference	d to 25°C		21		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 V$,	$V_{GS} = 0$	V			1	μΑ
				$T_J = -55^{\circ}C$			10	μΑ
I _{GSS}	Gate–Body Leakage	$V_{GS} = \pm 20 V$,	$V_{DS} = 0$	V			±100	nA
On Char	acteristics (Note 2)							
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS},$	I _D = 2	50 µA	1	1.8	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I _D = 250 μA,Re	eference	d to 25°C		-4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 10 V,$ $V_{GS} = 4.5 V,$ $V_{GS} = 10 V, I_D$	I _D = 2 I _D = 2 = 2.7 A,	.7 A .4 A T」= 125°C		0.026 0.032 0.033	0.046 0.060 0.075	Ω
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 V$,	V _{DS} =	5 V	15			Α
g _{FS}	Forward Transconductance	$V_{DS} = 5V$,	I _D = 2	7 A		11		S
Dynamic	Characteristics							
Ciss	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$, f = 1.0 MHz		0 V,		485	650	pF
C _{oss}	Output Capacitance					105	140	pF
C _{rss}	Reverse Transfer Capacitance					65	100	pF
R _G	Gate Resistance	f = 1.0 MHz				1.8		Ω
Switchin	g Characteristics (Note 2)							
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 15V$,	I _D = 1	A,		7	14	ns
t _r	Turn–On Rise Time	$V_{GS} = 10 V$,	10 V, $R_{GEN} = 6 \Omega$		5	10	ns	
t _{d(off)}	Turn-Off Delay Time				20	35	ns	
t _f	Turn-Off Fall Time					2	4	ns
Qg	Total Gate Charge	$V_{DS} = 15 V$,	I _D = 2	7 A,		5	7	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 5 V$				1.3		nC
-	Gate-Drain Charge					1.8		nC

Т
D
Ζ
ω
S I
9
μ
2

Electric	Electrical Characteristics T _A = 25°C unless otherwise noted							
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units		
Drain–Source Diode Characteristics and Maximum Ratings								
Is	Maximum Continuous Drain–Source Diode Forward Current				0.42	А		
V_{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 0.42 A$ (Note 2)		0.7	1.2	V		
trr	Diode Reverse Recovery Time	IF = 2.7A, diF/dt = 100 A/µs		12	20	ns		
Qrr	Diode Reverse Recovery Charge			3	5	nC		

otes:

 R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

> î No

 a) 250°C/W when mounted on a 0.02 in² pad of 2 oz. copper. b) 270°C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width $\leq 300~\mu\text{s},$ Duty Cycle $\leq 2.0\%$

FDN359BN Rev A(W)

FDN359BN

FDN359BN Rev A(W)

FDN359BN

FDN359BN Rev A(W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TCM™
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics [™]	TinyLogic [®]
CROSSVOLT™	GTO™	MICROWIRE™	Quiet Series™	TINYOPTO™
DOME™	HiSeC™	MSX™	RapidConfigure™	TruTranslation™
EcoSPARK™	I²C™	MSXPro™	RapidConnect™	UHC™
E ² CMOS [™]	i-Lo™	OCX™	µSerDes™	UltraFET [®]
EnSigna™	ImpliedDisconnect™	OCXPro™	ScalarPump™	UniFET™
FACT™	IntelliMAX™	OPTOLOGIC [®]	SILENT SWITCHER [®]	VCX™
FACT Quiet Serie	S TM	OPTOPLANAR™	SMART START™	Wire™
A success the beard. A record the success TM		PACMAN™	SPM™	
Across the board. Around the world.		POP™	Stealth™	
		Power247™	SuperFET™	
Programmable Active Droop ¹		PowerEdae™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. I18

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for on semiconductor manufacturer:

Other Similar products are found below :

FGH40T70SHD-F155 MMBTA42 FDD8424H_F085A LV8760T-MPB-E BAT42XV2 007851X 702607H MC33079DG MC34151P MC78L08ACDG MC78M08ABDTG FAN3111ESX FDMC86262P FDMD8530 FDS86252 FEBFL7733A_L53U021A FEBFOD8333 MMBZ5233B FPAB30BH60B FSBB20CH60C 1.5KE16AG EMI4193MTTAG MT9V115EBKSTCH-GEVB NB7L1008MNGEVB NC7WZ126K8X NCL30000LED2GEVB NCN9252MUGEVB NCP1075PSRGEVB HMHA2801AV NCV20072DR2G BZX84C3V9LT1G 1N5339B NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU S3JB 2SC5569-TD-E LM324M FEBFL7734_L55L008A 1V5KE39CA FOD817D3SD AMIS30422DBGEVB AMIS3062XGEVK AR0230CSSC00SUEAD3-GEVK AR0331SRSC00XUEAH-GEVB QEE123 LV8549MGEVB LV8714TAGEVK RFD3055LESM9A