54AC164245

Rad-hard 16-bit transceiver 3.3 V to 5 V bidirectional level shifter

Datasheet - production data

Features

- Fully compatible with 54ACS164245
- Dual supply bidirectional level shifter
- Extended voltage range from 2.3 V to 5.5 V
- \quad Separated enable pin for 3-state output
- Schmidt-triggered I/Os: 100 mV hysteresis
- Internal 26Ω limiting resistor on each I/O
- High speed: Tpd = 8 ns maximum
- Fail safe
- Cold spare
- Hermetic package
- $100 \mathrm{krad}(\mathrm{Si})$ at any Mil1019 dose rate
- SEL immune to $110 \mathrm{MeV} . \mathrm{cm}^{2} / \mathrm{mg}$ LET ions
- RHA QML-V qualified

Description

The 54AC164245 is a rad-hard advanced high-speed CMOS, Schmitt trigger, 16-bit, bidirectional, multi-purpose transceiver with 3 -state outputs and cold sparing.
Designed for use as an interface between a 5 V bus and a 3.3 V bus in mixed $5 \mathrm{~V} / 3.3 \mathrm{~V}$ supply systems, it achieves high-speed operation while maintaining the CMOS low-power dissipation.
All pins have cold spare buffers to change them to high impedance when V_{DD} is tied to ground.
This IC is intended for two-way asynchronous communication between the data buses. The direction of the data transmission is determined by the nDIR inputs.
The A port interfaces with the 3.3 V bus but can also operate at 2.3 V . The B port operates with the 5 V bus.

Table 1: Device summary

Parameter	RHFAC164245K1	RHFAC164245K01V
SMD	-	5962R9858008VYC
Quality level	Engineering model	QML-V flight
Package	Flat-48	
Lead finish	Gold	
Mass	1.50 g	
EPPL $^{(1)}$	-	Yes
Temp. range	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	

Notes:

${ }^{(1)}$ EPPL $=$ ESA preferred part list
Contents
1 Functional description 3
1.1 Cold spare 4
1.2 Power-up 4
1.3 Pin connections 4
2 Absolute maximum ratings and operating conditions 6
3 Electrical characteristics 8
4 Radiations 16
5 Test circuit 17
6 Package information 20
6.1 Ceramic Flat-48 package information 21
7 Ordering information 22
8 Other information 23
8.1 Data code 23
8.2 Documentation 23
9 Revision history 24

Functional description
Figure 1: Logic diagram

Table 2: Function table

Enable, OEx	Direction, DIRx	Operation
L	L	B data to A bus
	H	A data to B bus
H	X	Isolation

1.1 Cold spare

The 54AC164245 features a cold spare input and output buffer. In high reliability applications, cold sparing enables a redundant device to be tied to the data bus with its power supply at $0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}\right)$ without affecting the bus signals or injecting current from the I/Os to the power supplies. Cold sparing also allows redundant devices to be kept unpowered so that they can be switched on only when required. Power consumption is therefore reduced by switching off the redundant circuit. This has no impact on the application. Cold sparing is achieved by implementing a high impedance between I / Os and V_{DD}. The ESD protection is ensured through a non-conventional dedicated structure.

1.2 Power-up

During power-up, all outputs are forced to high impedance. The high-impedance state is maintained approximately until V_{DD} is high, thus avoiding any transient and erroneous signals during power-up.

1.3 Pin connections

Figure 2: Pin connections

Table 3: Pin descriptions

Pin number	Symbol	Name and function
1	DIR1	Direction control inputs
$2,3,5,6,8,9,11,12$	1 B 1 to 1B8	Side B inputs or 3-state outputs (5 V port)
$4,10,15,21,28,34,39,45$	$\mathrm{~V}_{\mathrm{SS}}$	Reference voltage to ground
7,18	$\mathrm{~V}_{\mathrm{DD} 1}$	Supply voltage (5 V)
$13,14,16,17,19,20,22,23$	2 B 1 to 2B8	Side B inputs or 3-state outputs (5 V port)
24	DIR2	Direction control inputs
25	nG2	Output enable inputs (active low)
31,42	$\mathrm{~V}_{\mathrm{DD} 2}$	Supply voltage (3.3 V)
$47,46,44,43,41,40,38,37$	1 A 1 to 1 A 8	Side A inputs or 3-state outputs (3.3 V port)
$36,35,33,32,30,29,27,26$	2 A 1 to 2A8	Side A inputs or 3-state outputs (3.3 V port)
48	nG1	Output enable inputs (active low)

2 Absolute maximum ratings and operating conditions

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.
Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

Unless otherwise noted, all voltages are referenced to $\mathrm{V}_{\text {SS }}$.
The limits for the parameters specified in Table 4: "Absolute maximum ratings" apply over the full specified $\mathrm{V}_{D D}$ range and case temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Table 4: Absolute maximum ratings

Symbol	Parameter	Value	Unit
VD1	5 V supply voltage ${ }^{(1)}$	-0.3 to 6	V
$V_{\text {DD2 }}$	3 V supply voltage		
$V_{\text {IA }}$	DC input voltage range port A	-0.3 to $\mathrm{V}_{\mathrm{DD} 1}+0.3 \mathrm{~V}$	
$\mathrm{V}_{1 B}$	DC input voltage range port B		
$\mathrm{V}_{\text {OA }}$	DC output voltage range port A		
$\mathrm{V}_{\text {OB }}$	DC output voltage range port B		
$I_{\text {I }}$	DC input currents port A, anyone input	± 10	mA
$I_{\text {IB }}$	DC input currents port B, anyone input		
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead temperature (10 s)	300	
TJ	Junction temperature range	175	
$\mathrm{R}_{\text {thic }}$	Thermal resistance junction to case ${ }^{(2)}$	8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	HBM: human body model ${ }^{(3)}$	2	kV

Notes:

${ }^{(1)} V_{\text {DD1 }}(5 \mathrm{~V})$ may remain disconnected.
${ }^{(2)}$ Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
${ }^{(3)}$ Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a $1.5 \mathrm{k} \Omega$ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

In Table 5: "Operating conditions", unless otherwise noted, all voltages are referenced to V_{SS}.

Table 5: Operating conditions

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{DD} 1}$	Supply voltage	4.5 to 5.5 or 2.3 to 3.6	V
$\mathrm{~V}_{\mathrm{DD} 2}$		2.3 to 3.6 or 4.5 to 5.5	
$\mathrm{~V}_{\mathrm{l}}$	Input voltage		
V_{O}	Output voltage	-55 to 125	${ }^{\circ} \mathrm{C}$
T_{op}	Operating temperature	0 to 8	$\mathrm{~ns} / \mathrm{V}$
$\mathrm{d}_{\mathrm{t}} / \mathrm{d}_{\mathrm{v}}$	Input rise and fall time $\mathrm{V}_{\mathrm{CC}}=3.0,4.5$ or $5.5^{(1)}$		

Notes:

${ }^{(1)}$ Derates system propagation delays by difference in rise time to switch point for t_{r} or $t_{f}>1 \mathrm{~ns} / \mathrm{V}$.

3 Electrical characteristics

In the table below, $\mathrm{T}_{\mathrm{op}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=2.7 \mathrm{~V}$ to 3.6 V , unless otherwise specified. Each input/output, as applicable, is tested at the specified temperature, for the specified limits, according to the tests specified in TABLE IA from the SMD 5962-98580 DLA Agency Spec. Non-designated output terminals are high-level logic, low-level logic or open, except for all $I_{D D}$ tests, where the output terminals are open. When performing these tests, the current meter must be placed in the circuit so that all current flows through the meter.

Table 6: DC specifications

Symbol	Parameter	Port voltage	Test condition (VDD) ${ }^{(1)}$	Limits		Unit
				Min.	Max.	
I_{H}	Input current high port A (for input under test $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD} 2}$ other inputs,$\left.V_{I}=V_{D D 2} \text { or } V_{S S}\right)$	3.3 V	$V_{\text {DD1 }}=5.5 \mathrm{~V}$		3	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD} 2}=3.6 \mathrm{~V}$			
		5 V	$V_{\text {DD1 }}=5.5 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V}$			
	Input current high port B (for input under test $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD} 1}$ other inputs,$\left.V_{I}=V_{D D 1} \text { or } V_{S S}\right)$	3.3 V	$\mathrm{V}_{\mathrm{DD} 1}=3.6 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=3.6 \mathrm{~V}$			
		5 V	$V_{\text {DD1 }}=5.5 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=3.6 \mathrm{~V}$			
$1 / 1$	Input current low port A (for input under test $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$ other inputs,$\left.V_{I}=V_{D D 2} \text { or } V_{S S}\right)$	3.3 V	$V_{\text {DD } 1}=5.5 \mathrm{~V}$	-1		
			$\mathrm{V}_{\mathrm{DD} 2}=3.6 \mathrm{~V}$			
		5 V	$\mathrm{V}_{\mathrm{DD} 1}=5.5 \mathrm{~V}$			
			$V_{\text {DD2 } 2}=5.5 \mathrm{~V}$			
	Input current low port B (for input under test $\mathrm{V}_{1}=\mathrm{V}_{S S}$ other inputs,$\left.V_{I}=V_{D D 1} \text { or } V_{S S}\right)$	3.3 V	$\mathrm{V}_{\mathrm{DD} 1}=3.6 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=3.6 \mathrm{~V}$			
		5 V	$\mathrm{V}_{\mathrm{DD} 1}=5.5 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=3.6 \mathrm{~V}$			
Ics	Input current cold spare mode $\begin{gathered} \text { port } \mathrm{A}=\text { port } \mathrm{B}=5.5 \mathrm{~V}=\mathrm{V}_{\text {I }} \\ \text { DIRn }=5.5 \mathrm{~V}, \overline{\mathrm{OEn}}=5.5 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{DD} 1}=0 \mathrm{~V}$	-1	5	
	Input current cold spare mode port $\mathrm{A}=$ port $\mathrm{B}=5.5 \mathrm{~V}=\mathrm{V}_{\text {I }}$ $\mathrm{DIRn}=0 \mathrm{~V}, \overline{\mathrm{OEn}}=5.5 \mathrm{~V}$					
	Input current cold spare mode port $\mathrm{A}=$ port $\mathrm{B}=5.5 \mathrm{~V}=\mathrm{V}_{\text {I }}$ DIRn $=5.5 \mathrm{~V}, \overline{\mathrm{OEn}}=0 \mathrm{~V}$					
	Input current cold spare mode port $\mathrm{A}=$ port $\mathrm{B}=5.5 \mathrm{~V}=\mathrm{V}_{\text {I }}$ $\mathrm{DIRn}=0 \mathrm{~V}, \overline{\mathrm{OEn}}=0 \mathrm{~V}$					
$\mathrm{V}_{\text {OL1 }}$	Low level output voltage port A, $\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$ for all inputs affecting output under test, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD} 2}$ or V_{SS}	3.3 V	$\mathrm{V}_{\mathrm{DD} 1}=4.5 \mathrm{~V}$		0.5	V
			$\mathrm{V}_{\mathrm{DD} 2}=2.7 \mathrm{~V}$			
		5 V	$\mathrm{V}_{\mathrm{DD} 1}=4.5 \mathrm{~V}$		0.4	
			$\mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V}$			
	Low level output voltage port B, $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ for all inputs affecting output under test, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD} 1}$ or V_{SS}	3.3 V	$\mathrm{V}_{\mathrm{DD} 1}=2.7 \mathrm{~V}$		0.5	
			$\mathrm{V}_{\mathrm{DD} 2}=2.7 \mathrm{~V}$			
		5 V	$\mathrm{V}_{\mathrm{DD} 1}=4.5 \mathrm{~V}$		0.4	
			$\mathrm{V}_{\mathrm{DD} 2}=2.7 \mathrm{~V}$			

Symbol	Parameter	Port voltage	Test condition (VDD) ${ }^{(1)}$	Limits		Unit
				Min.	Max.	
IoL ${ }^{(2)}$	Output current (sink) port A ,$V_{I}=V_{S S}$	3.3 V	$\mathrm{V}_{\mathrm{DD} 1}=4.5 \mathrm{~V}$	8.0		mA
			$\mathrm{V}_{\mathrm{DD} 2}=2.7 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$			
		5 V	$\mathrm{V}_{\mathrm{DD} 1}=4.5 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V}$			
			V OL $=0.4 \mathrm{~V}$			
	Output current (sink) port B,$V_{I}=V_{S S}$	3.3 V	$\mathrm{V}_{\mathrm{DD} 1}=2.7 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=2.7 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$			
		5 V	$\mathrm{V}_{\mathrm{DD} 1}=4.5 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=2.7 \mathrm{~V}$			
			V OL $=0.4 \mathrm{~V}$			
Іон ${ }^{(3)}$	Output current (source) port A , $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD} 2}$ or V_{SS}	3.3 V	$\mathrm{V}_{\mathrm{DD} 1}=4.5 \mathrm{~V}$	-8.0		
			$\mathrm{V}_{\mathrm{DD} 2}=2.7 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD2} 2}-0.9 \mathrm{~V}$			
		5 V	$\mathrm{V}_{\mathrm{DD} 1}=4.5 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD2} 2}=4.5 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD2} 2}-0.7 \mathrm{~V}$			
	Output current (source) port B,$V_{I}=V_{D D 2} \text { or } V_{S S}$	3 V	$\mathrm{V}_{\mathrm{DD} 1}=2.7 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=2.7 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD2} 2}-0.9 \mathrm{~V}$			
		5 V	$\mathrm{V}_{\mathrm{DD} 1}=4.5 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=2.7 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\text {DD2 } 2}-0.7 \mathrm{~V}$			
lozh	Three-state output leakage current high port A, for input under test, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD} 2}$ other inputs, $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD} 2}$ $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD} 2}$ or V_{SS}	3.3 V	$\mathrm{V}_{\mathrm{DD} 1}=5.5 \mathrm{~V}$		3.0	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD} 2}=3.6 \mathrm{~V}$			
			$V_{\text {DD1 }}=5.5 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V}$			
	Three-state output leakage current high port B , for input under test, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD} 1}$ other inputs, $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD} 1}$ $V_{I}=V_{D D 1}$ or $V_{S S}$	3.3 V	$\mathrm{V}_{\mathrm{DD} 1}=3.6 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=3.6 \mathrm{~V}$			
		5 V	$\mathrm{V}_{\mathrm{DD} 1}=5.5 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=3.6 \mathrm{~V}$			

Symbol	Parameter	Port voltage	Test condition ($\left.\mathrm{V}_{\mathrm{DD}}\right)^{(1)}$	Limits		Unit
				Min.	Max.	
lozl	Three-state output leakage current low port A, for input under test, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$ other inputs, $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SS}}$ $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD} 2}$ or V_{SS}	3.3 V	$\mathrm{V}_{\mathrm{DD} 1}=5.5 \mathrm{~V}$	-1.0		$\mu \mathrm{A}$
			$\mathrm{V}_{\text {DD2 }}=3.6 \mathrm{~V}$			
		5 V	$V_{\text {DD1 }}=5.5 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V}$			
	Three-state output leakage current low port B, for input under test, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$ other inputs, $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SS}}$ $V_{I}=V_{D D 1}$ or $V_{S S}$	3.3 V	$V_{D D 1}=3.6 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=3.6 \mathrm{~V}$			
		5 V	$\mathrm{V}_{\mathrm{DD} 1}=5.5 \mathrm{~V}$			
			$\mathrm{V}_{\mathrm{DD} 2}=3.6 \mathrm{~V}$			
los ${ }^{(4)}$	Short circuit output current port A,$V_{O}=V_{D D 2} \text { or } V_{S S}$	3.3 V	$\mathrm{V}_{\mathrm{DD} 1}=4.5$ to 5.5 V	-100	100	mA
			$\mathrm{V}_{\text {DD2 } 2}=2.7$ to 3.6 V			
		5 V	$V_{\text {DD1 } 1}=4.5$ to 5.5 V	-200	200	
			$\mathrm{V}_{\text {DD2 } 2}=4.5$ to 5.5 V			
	Short circuit output current port B,$V_{O}=V_{D D 1} \text { or } V_{S S}$	3.3 V	$V_{\text {DD1 } 1}=2.7$ to 3.3 V	-100	100	
			$\mathrm{V}_{\text {DD2 }}=2.7$ to 3.6 V			
		5 V	$\mathrm{V}_{\mathrm{DD} 1}=4.5$ to 5.5 V	-200	200	
			$\mathrm{V}_{\mathrm{DD} 2}=2.7$ to 3.6 V			
$\mathrm{PD}^{(3)(4)(5)}$	Power dissipation, port A, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ per switching output	3.3 V	$\mathrm{V}_{\mathrm{DD} 1}=4.5$ to 5.5 V		1.5	$\mathrm{mW} / \mathrm{MHz}$
			$\mathrm{V}_{\text {DD2 } 2}=2.7$ to 3.6 V			
		5 V	$V_{\text {DD1 }}=4.5$ to 5.5 V		2.0	
			$\mathrm{V}_{\text {DD2 }}=4.5$ to 5.5 V			
	Power dissipation, port B, $C_{L}=50 \mathrm{pF}$ per switching output	3.3 V	$\mathrm{V}_{\mathrm{DD} 1}=2.7$ to 3.3 V		1.5	
			$\mathrm{V}_{\text {DD2 }}=2.7$ to 3.6 V			
		5 V	$\mathrm{V}_{\mathrm{DD} 1}=4.5$ to 5.5 V		2.0	
			$\mathrm{V}_{\mathrm{DD} 2}=2.7$ to 3.6 V			
$I_{\text {DDQ }}$	Quiescent supply current port A, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD} 2}$ or V_{SS}	5 V	$\mathrm{V}_{\mathrm{DD} 1}=5.5 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$		10	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {DD2 } 2}=5.5 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$			
			$\begin{aligned} V_{D D 1} & =5.5 \mathrm{~V} \text { at }-55 \text { to } \\ & 125^{\circ} \mathrm{C} \end{aligned}$			
			$\begin{aligned} & V_{D D 2}= 5.5 \mathrm{~V} \text { at }-55 \text { to } \\ & 125^{\circ} \mathrm{C} \end{aligned}$			
	Quiescent supply current port B, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD} 1}$ or V_{SS}	5 V	$\mathrm{V}_{\mathrm{DD} 1}=5.5 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$		10	
			$\mathrm{V}_{\text {DD2 } 2}=5.5 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$			
			$\begin{aligned} & V_{D D 1}= 5.5 \mathrm{~V} \text { at }-55 \text { to } \\ & 125^{\circ} \mathrm{C} \end{aligned}$		100	
			$\begin{aligned} & V_{D D 2}= 5.5 \mathrm{~V} \text { at }-55 \text { to } \\ & 125^{\circ} \mathrm{C} \end{aligned}$			

Symbol	Parameter	Port voltage	Test condition (VDD) ${ }^{(1)}$	Limits		Unit
				Min.	Max.	
C_{1}	Input capacitance		$\begin{aligned} f & =1 \mathrm{MHz} \\ V_{D D 1} & =V_{D D 2}=0 \mathrm{~V} \end{aligned}$		15	pF
Co	Output capacitance		$\begin{aligned} f & =1 \mathrm{MHz} \\ V_{D D 1} & =V_{D D 2}=0 \mathrm{~V} \end{aligned}$			
(6)	Functional test $\mathrm{V}_{\mathrm{IH}}=0.7 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=$ $0.3 \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\mathrm{DD} 1}=4.5$ to 5.5 V	L	H	
			$\mathrm{V}_{\mathrm{DD2}}=2.7$ to 3.6 V			

Notes:

${ }^{(1)}$ This device requires both $V_{D D 1}$ and $V_{D D 2}$ power supplies for operation. The power supply is indicated and followed by the voltage to which the power supply is set to the given test
${ }^{(2)}$ This parameter is supplied as a design limit but not guaranteed or tested
${ }^{(3)}$ Power does not include power contribution of any CMOS output sink current
${ }^{(4)}$ No more than one output should be shorted at a time for a maximum duration of one second
${ }^{(5)}$ Power dissipation specified per switching output
${ }^{(6)}$ Tests must be performed in sequence and include attribute data only. Functional tests should include the truth table and other logic patterns used for fault detection. The test vectors used to verify the truth table must, at the minimum, test all the functions of each input and output. All possible input to output logic patterns per function should be guaranteed, if not tested, to the function table, Table 2. Functional tests are performed in sequence as approved by the qualifying activity on qualified devices. Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: $\mathrm{V}_{\mathbb{I H}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{min}+20 \%,-0 \%)$; $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}(\max +0 \%,-50 \%)$, as specified herein, for TTL, CMOS, or Schmitt compatible inputs. Devices are guaranteed to $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and V_{IL} (max).

In the table below, data are guaranteed by design but, not tested.

Table 7: AC electrical characteristics

4 Radiations

Total dose (Mil1019 dose rate): all parameters are post-irradiation guaranteed by wafer-lot acceptance (after dose, all guaranteed electrical parameters are tested on a sample of units of each wafer lot).
All parameters provided in Table 6 and Table 7 apply to both pre- and post-irradiation. The 54 AC 164245 is a pure CMOS product. Irradiation is performed at high dose rates.

Heavy ions: the behavior of the product when submitted to heavy ions is guaranteed by qualification and is not tested in production. Heavy-ion trials are performed on qualification lots only.

Table 8: Radiations

Type	Features	Value	Unit
TID	Total ionizing dose, high-dose rate $(50-300$ rad/sec) up to:	100	krad
	SEL immune (at $\left.125^{\circ} \mathrm{C}\right)$ up to:	110	$\mathrm{MeV}^{2} . \mathrm{cm}^{2} / \mathrm{mg}$
	SEU immune up to:	64	

5 Test circuit

Figure 3: Test circuit

1. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance), $\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω), $\mathrm{V}_{\mathrm{REF}}=0.5 \mathrm{~V}_{\mathrm{DD}}$. $\mathrm{I}_{\mathrm{SRC}}$ is set to -1.0 mA and $\mathrm{I}_{\mathrm{SNK}}$ is set to 1.0 mA for $\mathrm{t}_{\text {PHL }}$ and $\mathrm{t}_{\text {PLH }}$ measurements. Input signal from pulse generator: $\mathrm{V}_{\mathrm{I}}=0.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}} ; \mathrm{f}=10 \mathrm{MHz} ; \mathrm{t}_{\mathrm{r}}=1.0 \mathrm{~V} / \mathrm{ns} " 0.3 \mathrm{~V} / \mathrm{ns} ; \mathrm{t}_{\mathrm{f}}=1.0 \mathrm{~V} / \mathrm{ns}$ " $0.3 \mathrm{~V} / \mathrm{ns} ; \mathrm{tr}$ and tf are measured from $0.1 \mathrm{~V}_{\mathrm{DD}}$ to $0.9 \mathrm{~V}_{\mathrm{DD}}$ and from $0.9 \mathrm{~V}_{\mathrm{DD}}$ to $0.1 \mathrm{~V}_{\mathrm{DD}}$ respectively.

Figure 4: Waveform 1: propagation delay

Figure 5: Waveform 2: enable and disable times (port A = port B, 5 V operation)

Figure 6: Waveform 3: enable and disable times (port A = port B, 3.3 V operation)

Figure 7: Waveform 4: enable and disable times (port A = 3.3 V, port B = 5 V)

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

6.1 Ceramic Flat-48 package information

Figure 8: Ceramic Flat-48 package outline

1. The upper metallic lid is not electrically connected to any pins, nor to the IC die inside the package. Connecting any unused pins or the metal lid to ground or to the power supply will not affect the electrical characteristics.

Table 9: Ceramic Flat-48 mechanical data

Di (im	mm			inches		
	Typ	Min	Max	Typ	Min	Max
A	2.47	2.18	2.72	0.097	0.086	0.107
b	0.254	0.20	0.30	0.010	0.008	0.012
c	0.15	0.12	0.18	0.006	0.005	0.007
D	15.75	15.57	15.92	0.620	0.613	0.627
E	9.65	9.52	9.78	0.380	0.375	0.385
E2	6.35	6.22	6.48	0.250	0.245	0.255
E3	1.65	1.52	1.78	0.065	0.060	0.070
e	0.635			0.025		
f	0.20			0.008		
L	8.38	6.85	9.40	0.330	0.270	0.370
Q	0.79	0.66	0.92	0.031	0.026	0.036
S1	0.43	0.25	0.61	0.017	0.010	0.024

7 Ordering information

Table 10: Order codes

Order code	Description	Temp. range	Package	Marking	Packing
RHFAC164245K1	Engineering model	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Flat-48	RHFAC164245K1	Conductive strip pack

8 Other information

8.1 Data code

The date code is structured as shown below:

- EM xyywwz
- QML-V yywwz
where:

	yy	ww
Assembly location (EM only) 3: Rennes (France)		
Last two digits of year		
Week digits		
Lot index in the week		

8.2 Documentation

Table 11: Documentation provided for ESCC flight

Quality level	Documentation
Engineering model	-
	Certificate of conformance
QCI ${ }^{(1)}$ (groups A, B, C, D, and E)	
Screening electrical data	
PML-V flight	Precap report
	SIND ${ }^{(2)}$ test
	SEM ${ }^{(3)}$ inspection report
X-Ray report	

Notes:

${ }^{(1)}$ QCI = quality conformance inspection
${ }^{(2)}$ PIND = particle impact noise detection
${ }^{(3)}$ SEM = scanning electron microscope

$9 \quad$ Revision history

Table 12: Document revision history

Date	Revision	Changes
23-Sep-2011	1	Initial release.
06-Apr-2012	2	Added Pin 4 description to Table 3: "Pin descriptions".
29-Aug-2013	3	Minor changes to layout Features: removed "Bus hold" Table 1: updated order codes, quality level, and EPPL data. Table 10: "Order codes": updated order codes and description data. Added Section 8: "Other information"
28-Apr-2014	4	Table 11: "Documentation provided for ESCC flight": removed documentation for engineering model (there is none). Updated disclaimer
27-Jul-2015	5	Table 4: "Absolute maximum ratings": removed R thja updated Rthic

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for stmicroelectronics manufacturer:
Other Similar products are found below :
LD29300D2T25R M24M02-DWMN3TP/K AI-JTAGOPTO-1 BUV48A BZW04-15B LDK320AM33R SPC564A80CAL176
SPC56XVTOP-M STEVAL-ILL076V2 STEVAL-ISA175V1 STEVAL-VNH5050A STM32F207IGT7 STR91X-SK/RAI STTH12003TV1
STVNIM-EVAL M24C02-FDW6TP 417989F SG3525A ST7FLITE25F2M6 STEVAL-ILL079V1 STEVAL-ISF003V1 STL140N4F7AG
STM32F031F4P7 STM32F071CBU6 STM32F303VBT6 STM32F765ZIT6 STM32PRIM-LABUPG STM8A128-EVAL STW56N65DM2
LD29150DT18R LF50ABV P-NUCLEO-IHM002 VIPER38HDTR VIPER27LD VIPER16HN PD57070-E PD55003-E EVAL6226QR
EVAL6227PD EVAL6228QR EVALSP1340HDM EVLVIP16L-4WFL EV-VN7050AJ EV-VND5E025AK EV-VND7030AJ ANT2-
M24LR16E T1610T-8T STY60NM50 STW23N85K5 STR736FV2T6

