Very High CMR, Wide V cc Logic Gate Optocouplers

Data Sheet

Description

The HCPL-22XX, HCPL-02XX, and HCNW22XX are optical-ly-coupled logic gates. The HCPL-22XX, and HCPL-02XX contain a GaAsP LED while the HCNW22XX contains an AIGaAs LED. The detectors have totem pole output stages and optical receiver input stages with built-in Schmitt triggers to provide logic-compatible waveforms, eliminating the need for additional waveshaping.

A superior internal shield on the HCPL-2211/12, HCPL0211, HCPL-2232 and HCNW2211 guarantees common mode transient immunity of $10 \mathrm{kV} / \mu \mathrm{s}$ at a common mode voltage of 1000 volts.

Functional Diagram

Features

- $10 \mathrm{kV} / \mu \mathrm{s}$ minimum Common Mode Rejection (CMR) at $\mathrm{V}_{\mathrm{cM}}=1000 \mathrm{~V}(\mathrm{HCPL}-2211 / 2212 / 0211 / 2232$, HCNW2211)
- Wide operating $\mathrm{V}_{\text {cc }}$ range: 4.5 to 20 Volts
- 300 ns propagation delay guaranteed over the full temperature range
- 5 Mbd typical signal rate
- Low input current (1.6 mA to 1.8 mA)
- Hysteresis
- Totem pole output (no pullup resistor required)
- Available in 8-Pin DIP, SOIC-8, widebody packages
- Guaranteed performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Safety approval
- UL recognized -3750 V rms for 1 minute (5000V rms for 1 minute for HCNW22XX) per UL1577
- CSAapproved
- IEC/EN/DIN EN 60747-5-5 approved with $\mathrm{V}_{\text {IORM }}=$ $630 \mathrm{~V}_{\text {peak }}$ (HCPL-2211/2212 Option 060 only) and $\mathrm{V}_{\text {IORM }}=1414 \mathrm{~V}_{\text {peak }}$ (HCNW22XX only)
- MIL-PRF-38534 hermetic version available (HCPL-52XX/62XX)

Applications

- Isolation of high speed logic systems
- Computer-peripheral interfaces
- Microprocessor system interfaces
- Ground loop elimination
- Pulse transformer replacement
- High speed line receiver
- Power control systems

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. The components featured in this datasheet are not to be used in military or aerospace applications or environments.

The electrical and switching characteristics of the HCPL-22XX, HCPL-02XX and HCNW22XX are guaranteed from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and a V_{CC} from 4.5 volts to 20 volts. Low I_{F} and wide V_{CC} range allow compatibility with TTL, LSTTL, and CMOS logic and result in lower power consumption compared to other high speed couplers. Logic signals are transmitted with a typical propagation delay of 150 ns .

Selection Guide

Minimum CMRInput		8-Pin DIP (300 Mil)			SmallOutline SO-8	Widebody (400 Mil)	Hermetic Single and Dual Channel Packages
dV/dt (V/ $/ \mathrm{Ls}$)	$\mathrm{V}_{\mathrm{cm}}(\mathrm{V})$	OnCurrent (mA)	Single Channel Package	Dual Channel Package	Single Channel Package	Single Channel Package	
1,000	50	1.6	$\begin{aligned} & \text { HCPL-2200 }{ }^{[1,2]} \\ & \text { HCPL-2201 } \\ & \text { HCPL-2202 } \end{aligned}$		HCPL-0201	HCNW2201	
		1.8		HCPL-2231			
2,500	400	1.6	HCPL-2219 ${ }^{[1,2]}$				
5,000 ${ }^{[3]}$	$300^{[3]}$	1.6	$\begin{aligned} & \text { HCPL-2211 } \\ & \text { HCPL-2212 } \end{aligned}$		HCPL-0211	HCNW2211	
		1.8		HCPL-2232			
1,000	50	2.0					$\begin{aligned} & \text { HCPL-52XX }{ }^{[2]} \\ & \text { HCPL-62XX }{ }^{[2]} \end{aligned}$

Notes:

1. HCPL-2200/2219 devices include output enable/disable function.
2. Technical data for the HCPL-2200/2219, HCPL-52XX and HCPL-62XX are on separate Avago publications.
3. Minimum CMR of $10 \mathrm{kV} / \mu \mathrm{s}$ with $\mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}$ can be achieved with input current, $\mathrm{I}_{\mathrm{F}^{\prime}}$, of 5 mA .

Schematic

Ordering Information

HCPL-2201, HCPL-2202, HCPL-2211, HCPL-2212, HCPL-2231, HCPL-2232, HCPL-0201, HCPL-0211 are UL Recognized with 3750 Vrms for 1 minute per UL1577.

HCNW2201 and HCNW2211 are UL Recognized with 5000 Vrms for 1 minute per UL1577.
All devices listed above are approved under CSA Component Acceptance Notice \#5, File CA 88324.

Part number	Option		Package	Surface Mount	Gull Wing	Tape \& Reel	UL 5000 Vrms/ 1 Minute rating	IEC/EN/DIN EN60747-5-5	Quantity
	RoHS Compliant	Non RoHS Compliant							
HCPL-2201 HCPL-2202 HCPL-2211 HCPL-2212	-000E	No option	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$						50 per tube
	-300E	\#300		X	X				50 per tube
	-500E	\#500		X	X	X			1000 per reel
	-060E	\#060						X	50 per tube
	-360E	\#360		X	X			X	50 per tube
	-560E	\#560		X	X	X		X	1000 per reel
$\begin{aligned} & \text { HCPL-2231 } \\ & \text { HCPL-2232 } \end{aligned}$	-000E	No option							50 per tube
	-300E	\#300		X	X				50 per tube
	-500E	\#500		X	X	X			1000 per reel
$\begin{aligned} & \text { HCPL-0201 } \\ & \text { HCPL-0211 } \end{aligned}$	-000E	No option	SO-8	X					100 per tube
	-500E	\#500		X		X			1500 per reel
	-060E	\#060		X				X	100 per tube
	-560E	\#560		X		X		X	1500 per reel
HCNW2201 HCNW2211	-000E	No option	400 mil Widebody DIP-8				X	X	42 per tube
	-300E	\#300		X	X		X	X	42 per tube
	-500E	\#500		X	X	X	X	X	750 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:
HCPL-2202-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.
Example 2:
HCPL-2202 to order product of 300 mil DIP package in tube packaging and non RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Remarks: The notation '\#XXX' is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use'-XXXE'.

Package Outline Drawings

8 -Pin DIP Package (HCPL-2201/02/11/12/31/32)

8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-2201/02/11/12/31/32)

DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY $=0.10 \mathrm{~mm}$ (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

Small-Outline S0-8 Package (HCPL-0201/11)

LEAD COPLANARITY $=\mathbf{0 . 1 0} \mathbf{~ m m}$ (0.004 INCHES) MAX.
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.

8-Pin Widebody DIP Package (HCNW2201/11)

8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW2201/11)

Solder Reflow Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Regulatory Information

The HCPL-22XX/02XX and HCNW22XX have been approved by the following organizations:
UL Recognized under UL 1577, Component Recognition Program, File E55361.
CSA Approved under CSA Component Acceptance Notice \#5, File CA 88324.
IEC/EN/DIN EN 60747-5-5 (Option 060 and HCNW only)

Insulation and Safety Related Specifications

8-pin DIP Package

Parameter	Symbol	8-Pin DIP (300 Mil) Value	$\begin{aligned} & \text { SO-8 } \\ & \text { Value } \end{aligned}$	Widebody (400 Mil) Value	Units	Conditions
Minimum External Air Gap (External Clearance)	L(101)	7.1	4.9	9.6	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	7.4	4.8	10.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	0.08	1.0	mm	Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity.
Minimum Internal Tracking (Internal Creepage)		NA	NA	4.0	mm	Measured from input terminals to output terminals, along internal cavity.
Tracking Resistance (Comparative Tracking Index)	CTI	200	200	200	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group		IIIa	Illa	IIIa		Material Group (DIN VDE 0110, 1/89, Table 1)

[^0]
IEC/EN/DIN EN 60747-5-5 Insulation Characteristics (Option 060)

Description	Symbol	Characteristic HCPL-2201/02/ 11/12/31/32	HCPL- 0201/11	Unit
```Installation classification per DIN VDE 0110, Table 1 for rated mains voltage \leq 150 Vrms for rated mains voltage }\leq300\mathrm{ Vrms for rated mains voltage \leq600 Vrms```		$\begin{aligned} & \text { I - IV } \\ & \text { I - IV } \\ & \text { I IV } \end{aligned}$	$\begin{aligned} & \text { I - IV } \\ & \text { I - IV } \\ & \text { I - III } \end{aligned}$	
Climatic Classification		0/70/21	0/70/21	
Pollution Degree (DIN VDE 0110/39)		2	2	
Maximum Working Insulation Voltage	$\mathrm{V}_{\text {IORM }}$	630	567	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method b*   $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR' }} 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\text {PR }}$	1181	1063	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method a*   $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR' }}$ Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\text {PR }}$	1008	907	$\mathrm{V}_{\text {peak }}$
Highest Allowable Overvoltage (Transient Overvoltage $\mathrm{t}_{\text {ini }}=60 \mathrm{sec}$ )	$\mathrm{V}_{\text {Іотм }}$	8000	6000	$\mathrm{V}_{\text {peak }}$
Safety-limiting values   (Maximum values allowed in the event of a failure, also see Figure 12, Thermal Derating curve.)				
Case Temperature	$\mathrm{T}_{\text {s }}$	175	150	${ }^{\circ} \mathrm{C}$
Input Current	$\mathrm{I}_{\text {S, INPUT }}$	230	230	mA
Output Power	$\mathrm{P}_{\mathrm{s}, \text { OUTPut }}$	600	600	mW
Insulation Resistance at TS, $\mathrm{V}_{10}=500 \mathrm{~V}$	$\mathrm{R}_{\mathrm{s}}$	$\geq 10^{9}$	$\geq 10^{9}$	$\Omega$

## IEC/EN/DIN EN 60747-5-5 Insulation Characteristics

(HCNW22xx Option 060 ONLY)

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110, Table 1   for rated mains voltage $\leq 150$ Vrms   for rated mains voltage $\leq 300 \mathrm{Vrms}$   for rated mains voltage $\leq 600 \mathrm{Vrms}$   for rated mains voltage $\leq 1000$ Vrms		$\begin{aligned} & \mathrm{I} \text { - IV } \\ & \text { I IV } \\ & \text { I- IV } \\ & \text { I III } \\ & \hline \end{aligned}$	
Climatic Classification		-40/85/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	$\mathrm{V}_{\text {IORM }}$	1414	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method b* $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}^{\prime}} 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1$ sec, Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	2651	$V_{\text {peak }}$
Input to Output Test Voltage, Method a*   $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR' }}$ Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	2262	$\mathrm{V}_{\text {peak }}$
Highest Allowable Overvoltage* (Transient Overvoltage $\mathrm{t}_{\text {ini }}=60 \mathrm{sec}$ )	$\mathrm{V}_{\text {IOTM }}$	8000	$\mathrm{V}_{\text {peak }}$
Safety-limiting values   (Maximum values allowed in the event of a failure, also see Figure 12, Thermal Derating curve.)			
Case Temperature   Input Current   Output Power	$\mathrm{T}_{\mathrm{s}}$   $\mathrm{I}_{\mathrm{s} \text {, INPUT }}$   $\mathrm{P}_{\text {S. OUTPUT }}$	$\begin{aligned} & 150 \\ & 400 \\ & 700 \end{aligned}$	${ }^{\circ} \mathrm{C}$ mA mW
Insulation Resistance at TS, $\mathrm{V}_{10}=500 \mathrm{~V}$	$\mathrm{R}_{5}$	$\geq 10^{9}$	$\Omega$

[^1]
## Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Note
Storage Temperature		$\mathrm{T}_{\text {S }}$	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature		$\mathrm{T}_{\text {A }}$	-40	85	${ }^{\circ} \mathrm{C}$	
Average Forward Input Current		$I_{\text {F(AVG) }}$		10	mA	1
```Peak Transient Input Current ( }\leq1\mu\textrm{s}\mathrm{ Pulse Width, 300 pps) (\leq200 \mus Pulse Width, < 1% Duty Cycle)```		$I_{\text {F(tran) }}$		1.0	A	1
	HCNW22XX			40	mA	
Reverse Input Voltage		$V_{\text {R }}$		5	V	1
	HCNW22XX		3			
Average Output Current		I_{0}		25	mA	1
Supply Voltage		$\mathrm{V}_{\text {cc }}$	0	20	V	
Output Voltage		V_{0}	-0.5	20	V	1
Total Package Power Dissipation		$\mathrm{P}_{\text {T }}$	210		mW	2
	HCPL-223X			294		
Output Power Dissipation		P_{0}	See Figure 7			1
Lead Solder Temperature (Through Hole Parts Only)			$260^{\circ} \mathrm{C}$ for 10 sec ., 1.6 mm below seating plane			
	HCNW22XX		$260^{\circ} \mathrm{C}$ for 10 sec ., up to seating plane			
Solder Reflow Temperature Profile (Surface Mount Parts Only)			See Package Outline Drawings section			

Recommended Operating Conditions

Parameter		Symbol	Min.	Max.	Units
Power Supply Voltage		$\mathrm{V}_{\text {cc }}$	4.5	20	V
Forward Input Current (ON)		$\mathrm{I}_{\text {FOON }}$	1.6*	5	mA
	HCPL-223X		$1.8 \dagger$		
Forward Input Voltage (OFF)		$\mathrm{V}_{\text {F(OFF) }}$	-	0.8	V
Operating Temperature		T_{A}	-40	85	${ }^{\circ} \mathrm{C}$
Junction Temperature		TJ	-40	125	${ }^{\circ} \mathrm{C}$
Fan Out		N		4	TTL Loads

*The initial switching threshold is 1.6 mA or less. It is recommended that 2.2 mA be used to permit at least a 20% LED degradation guardband. \dagger The initial switching threshold is 1.8 mA or less. It is recommended that 2.5 mA be used to permit at least a 20% LED degradation guardband.

Electrical Specifications

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})}{ }^{*} \leq 5 \mathrm{~mA}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}$, unless otherwise specified. All Typicals at $T_{A}=25^{\circ} \mathrm{C}$. See Note 7 .

*For HCPL-223X, $1.8 \mathrm{~mA} \leq \mathrm{I}_{\text {F(ON) }} \leq 5 \mathrm{~mA}$.
**Typical $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$.

Switching Specifications (AC)

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(O N)}{ }^{*} \leq 5 \mathrm{~mA}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(O F F)} \leq 0.8 \mathrm{~V}$.
All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=3 \mathrm{~mA}$ unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to Logic Low Output Level	$\mathrm{t}_{\text {PHL }}$		150		ns	Without Peaking Capacitor	5,6	1,6
			160			HCNW22XX		
			150	300		With Peaking Capacitor		
Propagation Delay Time to Logic High Output Level	$\mathrm{t}_{\text {PLH }}$		110		ns	Without Peaking Capacitor	5,6	1,6
			180			HCNW22XX		
			90	300		With Peaking Capacitor		
Output Rise Time (10-90\%)	t_{r}		30		ns		5,9	1
Output Fall Time (90-10\%)	t_{f}		7		ns		5,9	1

Parameter	Sym.	Device	Min.	Units	Test Conditions Fig.		Note	
Logic High	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	HCPL-2201/02	1,000	V/ $\mu \mathrm{s}$	$\left\|\mathrm{V}_{\text {cm }}\right\|=50 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	10	1,7
Common Mode		HCPL-0201			$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}^{+}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
Transient		HCPL-2231						
Immunity		HCNW2201						
		HCPL-2211/12	5,000	V/ $\mu \mathrm{s}$	$\left\|\mathrm{V}_{\text {cM }}\right\|=300 \mathrm{~V}$			
		HCPL-0211			$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}^{\ddagger}$			
		HCPL-2232	10,000	V/ $\mu \mathrm{s}$	$\left\|\mathrm{V}_{\mathrm{cm}}\right\|=1 \mathrm{kV}$			
		HCNW2211			$\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}$			
Logic Low	$\left\|C M_{L}\right\|$	HCPL-2201/02	1,000	V/ $\mu \mathrm{s}$	$\left\|\mathrm{V}_{\mathrm{cm}}\right\|=50 \mathrm{~V}$	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$	10	1,7
Common Mode		HCPL-0201				$\mathrm{V}_{\text {cc }}=5 \mathrm{~V}$		
Transient		HCPL-2231				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
		HCNW2201						
		HCPL-2211/12	10,000	V/ $\mu \mathrm{s}$	$\left\|\mathrm{V}_{\mathrm{cm}}\right\|=1 \mathrm{kV}$			
		HCPL-0211						
		HCPL-2232						
		HCNW2211						

*For HCPL-223X, $1.8 \mathrm{~mA} \leq \mathrm{I}_{\text {F(ON) }} \leq 5 \mathrm{~mA}$.
$\dagger_{\mathrm{F}}=1.8 \mathrm{~mA}$ for HCPL-2231.
$\not \ddagger_{\mathrm{F}}=1.8 \mathrm{~mA}$ for HCPL-2232.

Package Characteristics

Parameter	Sym.	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary	V_{150}	3750			V rms	$\mathrm{RH}<50 \%, \mathrm{t}=1 \mathrm{~min}$.		5,10
Withstand Voltage		5000				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5,11
Input-Output Resistance	$\mathrm{R}_{1-\mathrm{O}}$		10^{12}		Ω	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{Vdc}$		5
HCNW22XX		10^{12}	10^{13}			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
		10^{11}				$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		
Input-Output Capacitance	$\mathrm{C}_{\text {-0 }}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$,		5
HCNW22XX			0.5	0.6		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1-\mathrm{O}}=0 \mathrm{Vdc}$		
Input-Input Insulation Leakage Current	$I_{\text {H-I }}$		0.005		$\mu \mathrm{A}$	$\begin{aligned} & \text { Relative Humidity }=45 \% \text {, } \\ & t=5 \mathrm{~s}, \mathrm{~V}_{\mathrm{t}-1}=500 \mathrm{~V} \end{aligned}$		12
Resistance (Input-Input)	R_{H}		10^{11}		Ω	$\mathrm{V}_{\mathrm{lH}}=500 \mathrm{~V}$		12
Capacitance (Input-Input)	C_{H}		0.25		pF	$\mathrm{f}=1 \mathrm{MHz}$		12

*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table (if applicable), your equipment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage," publication number 5963-2203

Notes:

1. Each channel.
2. Derate total package power dissipation, P_{T}, linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Duration of output short circuit time should not exceed 10 ms .
4. For single devices, input capacitance is measured between pin 2 and pin 3.
5. Device considered a two-terminal device: pins $1,2,3$, and 4 shorted together and pins $5,6,7$, and 8 shorted together.
6. The $t_{\text {PLH }}$ propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The $\mathrm{t}_{\text {PHL }}$ propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.
7. CM_{H} is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$. CM_{L} is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$.
8. For HCPL-2202/12, V_{o} is on pin 6.
9. Use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 5 and 8 is recommended.
10. In accordance with UL 1577 , each optocoupler is proof tested by applying an insulation test voltage $\geq 4500 \mathrm{~V}$ rms for one second (leakage detection current limit, $I_{1-0} \leq 5 \mu \mathrm{~A}$). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/ EN/DIN EN 60747-5-5 Insulation Characteristics Table, if applicable.
11. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{~V}$ rms for one second (leakage detection current limit, $I_{1-0} \leq 5 \mu \mathrm{~A}$). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/ EN/DIN EN 60747-5-5 Insulation Characteristics Table.
12. For HCPL-2231/32 only. Measured between pins 1 and 2, shorted together, and pins 3 and 4, shorted together.

Figure 1. Typical logic low output voltage vs. temperature.

Figure 2. Typical logic high output current vs. temperature.

Figure 3. Typical output voltage vs. forward input current.

Figure 4. Typical input diode forward characteristic.

Figure 5. Circuit for $\mathrm{t}_{\mathrm{PH}} \mathrm{t}_{\mathrm{PHI}} \mathrm{t}_{\mathrm{f}} \mathrm{t}_{\mathrm{f}}$

Figure 6. Typical propagation delays vs. temperature.

Figure 7. Maximum output power per channel vs. supply voltage.

Figure 8. Typical logic high output voltage vs. supply voltage.

Figure 9. Typical rise, fall time vs. temperature.

IV
OUTPUT V_{O} SWITCH AT B: $\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$

* SEE NOTE 7, 9.
${ }^{* *} I_{F}=1.8 \mathrm{~mA}$ FOR HCPL-2231/32 DEVICES.
Figure 10. Test circuit for common mode transient immunity and typical waveforms.

Figure 11. Typical input threshold current vs. temperature.

Figure 12. Thermal derating curve, dependence of safety limiting value with case temperature per IEC/EN/DIN EN 60747-5-5.

Figure 13a. Recommended LSTTL to LSTTL circuit where 500 ns propagation delay is sufficient.

Figure 13b. Recommended LSTTL to LSTTL circuit for applications requiring a maximum allowable propagation delay of 300 ns .

Figure 14. LSTTL to CMOS interface circuit.

Figure 15. Alternative LED drive circuit.
Figure 16. Series LED drive with open collector gate (4.7 k resistor shunts $\mathrm{I}_{\text {OH }}$ from the LED).

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for broadcom manufacturer:
Other Similar products are found below :
MGA-634P8-TR1G ACPL-7900-000E ACPL-P343-000E AFBR-390550RZ PEX9749-AARDK HEDS-8904 ASMT-JR10-ARS01
BCM5720A0KFBG ACPL-K75T-000E HEDL-5640\#A13 HFBR-2406Z HCPL-5430 HCPL-5731 HCPL-M601-000E HFBR-5911LZ
HCPL-0720 HLMP-EG24-PS000 BCM5389IFBG PEX8750-AB RDK BCM53405A0KFSBG AFBR-S20M2WV A25E-0030 LP16-LW-OPT-2 AFBR-HUS500Z ACPL-054L-500E ALMD-EG3D-WY002 AFBR-S20W2UV AFBR-S20W2VI AFBR-S20W2NI HDSP-2113 BCM54285C1KFBG HDSP-815E BCM54618SEA2IFBG HSMS-8209-BLKG 5962-8767901EC 5962-8876903FC HCNW4506-000E HEDS-8949 05-25704-00 AFBR-S20M2UV AFBR-S20M2NI L5-00219-00 HCPL-6231 05-25420-10 05-25420-08 QCPL-7847-500E PEX-CABLEAD-KIT-8732 HDSP-0762 BCM5482SHA2IFBG AFBR-5905Z

[^0]: Option 300 - surface mount classification is Class A in accordance with CECC 00802.

[^1]: * Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-5, for a detailed description.
 Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.

