HMC534LP5 / 534LP5E

v03.0811
MMIC VCO w/ HALF FREQUENCY OUTPUT
\& DIVIDE-BY-4, 10.6-11.8 GHz

Typical Applications

Low noise MMIC VCO w/Half Frequency, Divide-by-4 Outputs for:

- Point to Point/Multipoint Radio
- Test Equipment \& Industrial Controls
- SATCOM
- Military End-Use

Functional Diagram

Features

Dual Output: Fo $=10.6-11.8 \mathrm{GHz}$
$\mathrm{Fo} / 2=5.3-5.9 \mathrm{GHz}$
Pout: +11 dBm
Phase Noise: - $110 \mathrm{dBc} / \mathrm{Hz}$ @100 kHz Typ.
No External Resonator Needed
32 Lead $5 \times 5 \mathrm{~mm}$ SMT Package: $25 \mathrm{~mm}^{2}$

General Description

The HMC534LP5 \& HMC534LP5E are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs. The HMC534LP5 \& HMC534LP5E integrate resonators, negative resistance devices, varactor diodes and feature half frequency and divide-by-4 outputs. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +11 dBm typical from a +5 V supply voltage. The prescaler and RF/2 functions can be disabled to conserve current if not required. The voltage controlled oscillator is packaged in a leadless QFN $5 \times 5 \mathrm{~mm}$ surface mount package, and requires no external matching components.

Electrical Specifications, $T_{A}=+25^{\circ} \mathrm{C}$, Vcc (Dig), Vcc (Amp), Vcc (RF) $=+\mathbf{5 V}$

Parameter	Min.	Typ.	Max.	Units
Frequency Range $\begin{array}{r}\text { Fo } \\ \text { Fo/2 }\end{array}$	$\begin{gathered} 10.6-11.8 \\ 5.3-5.9 \end{gathered}$			$\begin{aligned} & \mathrm{GHz} \\ & \mathrm{GHz} \end{aligned}$
RFOUT Power Output RFOUT/2 RFOUT/4	$\begin{aligned} & +9 \\ & +8 \\ & -9 \end{aligned}$		$\begin{gathered} +14 \\ +14 \\ -3 \end{gathered}$	dBm dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune=+5V @ RFOUT		-110		$\mathrm{dBc} / \mathrm{Hz}$
Tune Voltage Vtune	2		12	V
Supply Current $\quad \operatorname{Icc}($ Dig $)+\operatorname{Icc}($ Amp $)+\operatorname{Icc}(\mathrm{RF})$	310	350	380	mA
Tune Port Leakage Current (Vtune=12V)			10	$\mu \mathrm{A}$
Output Return Loss		2		dB
Harmonics/Subharmonics $1 / 2$ $3 / 2$ 3 nd 3 rd		$\begin{aligned} & 27 \\ & 23 \\ & 17 \\ & 31 \end{aligned}$		dBc dBc dBc dBc
Pulling (into a 2.0:1 VSWR)		2		MHz pp
Pushing @ Vtune=5V		20		$\mathrm{MHz} / \mathrm{V}$
Frequency Drift Rate		1.3		$\mathrm{MHz} /{ }^{\circ} \mathrm{C}$

03.0811

MMIC VCO w/ HALF FREQUENCY OUTPUT \& DIVIDE-BY-4, 10.6-11.8 GHz

Frequency vs. Tuning Voltage, Vcc $=+5 \mathrm{~V}$

Sensitivity vs. Tuning Voltage, Vcc = +5V

SSB Phase Noise vs. Tuning Voltage

Frequency vs. Tuning Voltage, $\boldsymbol{T}=25^{\circ} \mathrm{C}$

Output Power

vs. Tuning Voltage, Vcc = +5V

RFOUT/2 Frequency

vs. Tuning Voltage, Vcc = +5V

Divide-by-4 Frequency
vs. Tuning Voltage, Vcc $=+5 \mathrm{~V}$

Absolute Maximum Ratings

Vcc(Dig), Vcc(Amp), Vcc(RF)	+5.5 Vdc
Vtune	0 to +15 V
Junction Temperature	$135^{\circ} \mathrm{C}$
Continuous Pdiss $\left(\mathrm{T}=85^{\circ} \mathrm{C}\right.$) (derate $43.5 \mathrm{~mW} / \mathrm{C}$ above $85^{\circ} \mathrm{C}$	2.17 W
Thermal Resistance (junction to ground paddle)	$23^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
ESD Sensitivity (HBM)	Class 1 A

RFOUT/2 Output Power

vs. Tuning Voltage, Vcc $=\mathbf{+ 5 V}$

Divide-by-4 Output Power
vs. Tuning Voltage, Vcc $=\mathbf{+ 5 V}$

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	320
5.00	350
5.25	380

Note: VCO will operate over full voltage range shown above.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

MMIC VCO w/ HALF FREQUENCY OUTPUT

 \& DIVIDE-BY-4, 10.6-11.8 GHz
Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[3]}$
HMC534LP5	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL3 ${ }^{[1]}$	H534 XXXX
HMC534LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 $^{[2]}$	$\underline{\text { H534 }}$

[1] Max peak reflow temperature of $235^{\circ} \mathrm{C}$
[2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
[3] 4-Digit lot number XXXX
Pin Descriptions

Pin Number	Function	Description	Interface Schematic
$1-3,8-10,13-18$, $20,22-28,30-32$	$\mathrm{~N} / \mathrm{C}$	No Connection. These pins may be connected to RF/ DC ground. Performance will not be affected.	
4	RFOUT/4	Divide-by-4 output. DC block required	
6	Vcc (Dig)	Supply voltage for prescaler. If prescaler is not required, this pin may be left open to conserve approximately 65 mA of current.	

For price, delivery, and to place orders: Analog Devices, Inc.,
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
7	Vcc (Amp)	Supply voltage, for RFOUT/2 output. If RFOUT/2 is not required. This pin may be left open to conserve approximately 30 mA of current.	
12	RFOUT/2	Half frequency output (AC coupled).	
19	RF OUT	RF output (AC coupled).	
21	Vcc (RF)	Supply Voltage, +5V	
29	VTUNE	Control voltage and modulation input. Modulation bandwidth dependent on drive source impedance. See "Determining the FM Bandwidth of a Wideband Varactor Tuned VCO" application note.	
5, 11, Paddle	GND	Package bottom has an exposed metal paddle that must be connected to RF/DC ground.	OGND

Typical Application Circuit

MMIC VCO w/ HALF FREQUENCY OUTPUT
 \& DIVIDE-BY-4, 10.6-11.8 GHz

Evaluation PCB

List of Materials for Evaluation PCB $110227{ }^{[1]}$

Item	Description
J1-J4	PCB Mount SMA RF Connector
J5- J6	2 mm DC Header
C1- C3	100 pF Capacitor, 0402 Pkg.
C4	$1,000 \mathrm{pF}$ Capacitor, 0402 Pkg.
C5 - C7	2.2μ F Tantalum Capacitor
U1	HMC534LP5 / HMC534LP5E VCO
PCB [2]	110225 Eval Board

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for VCO Oscillators category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
MAOC-009268-PKG003 MAOC-009260-SMB003 CPLL58-2400-2500 HMC389LP4ETR MAX2750EUA+T MAX2754EUA MAX2623EUA+T CVCO55CC-4000-4000 HMC384LP4ETR CRBV55CWQ-0800-1600 CVCO33CL-0110-0150 CVCO33CL-0415-0435 CVCO33CL-0435-0470 CVCO33CL-0750-0770 HMC507LP5ETR CPLL66-3900-4300 CVCO55CC-0430-0480 CVCO55CC-0445-0508 CVCO55CC-0827-0840 CVCO55CC-1515-1600 CVCO55CC-1680-1680 CVCO55CC-1690-1750 CVCO55CC-2032-2032 CVCO55CC-2122-2242 CVCO55CC-2140-2140 CVCO55CC-2290-2410 CVCO55CC-2300-2400 CVCO55CC-2310-2320 CVCO55CC-2328-2536 CVCO55CC-2400-2415 CVCO55CC-2400-2600 CVCO55CC-2440-2540 CVCO55CC-2594-3026 CVCO55CC-2620-2710 CVCO55CC-2970-3230 CVCO55CC-3180-3710 CVCO55CC-3350-3500 CVCO55CC-3901-4101 CVCO55CC-4267-4442 CEVAL-055 CVCO55CC-0787-0805 CVCO55CC-0971-0975 CVCO55CC-1260-1400 CVCO55CC-1372-1427 CVCO55CC-1420-1480 CVCO55CC-1435-1491 CVCO55CC-1443-1523 CVCO55CC-1490-1550 CVCO55CC-1560-1615 CVCO55CC-1581-1581

