1N5614	S2M
1N5616	S4M
1N5618	S6M
1N5620	S8M
1N5622	S0M

QUICKREFERENCE AXIALLEADED HERMETICALLYSEALED DATA STANDARDRECOVERY RECTIFIERDIODE

- $V_{R}=200-1000 \mathrm{~V}$
- Low reverse leakage current
- $\mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~A}$
- Hermetically sealed in Metoxilite fused metal oxide
- $t_{\mathrm{rr}}=2 \mu \mathrm{~S}$
- Good thermal shock resistance
- $V_{F}=1.1 \mathrm{~V}$
- Low forward voltage drop
- Avalanche capability.

ABSOLUTE MAXIMUM RATINGS (@ $25^{\circ} \mathrm{C}$ unless otherwise specified)

These products are qualified to MIL-PRF-19500/427 and are preferred parts as listed in MIL-STD-701. They can be supplied fully released as JAN, JANTX, JANTXV and JANS versions.

These products are available in Europe to DEF STAN 59-61 (PART 80)/029 to F and $F X$ levels.

MECHANICAL

January 7, 1998
CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise specified)

	Symbol	1N5614 1N5616 1N5618 1N5620 1N5622				Unit
		S2M S4M	S6M	S8M	S0M	
Average forward current (sine wave)						
- max. pcb mounted; $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	IF (AV)				\rightarrow	A
- max. $\mathrm{L}=3 / 8^{\prime \prime} ; \mathrm{T}_{\mathrm{L}}=55^{\circ} \mathrm{C}$	IF (AV)					A
$I^{2} t$ for fusing ($t=8.3 \mathrm{mS}$) max.	$\mathrm{I}^{2} \mathrm{t}$					$A^{2} S$
Forward voltage drop max. @ $\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	VF					V
Reverse current max. @ VRWM, $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	IR					$\mu \mathrm{A}$
$@ V_{R W M} \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$	I_{R}					$\mu \mathrm{A}$
Reverse recovery time max. $0.5 \mathrm{~A} \mathrm{I}_{\mathrm{F}}$ to $1.0 \mathrm{~A} \mathrm{I}_{\mathrm{R}}$. Recovers to 0.25 A IRR.	trr		2.0	-		$\mu \mathrm{S}$
Junction capacitance typ. © $\mathrm{VR}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	C_{j}					$\rho \mathrm{F}$
Thermal resistance - junction to lead Lead length $=0.375^{\prime \prime}$	$\mathrm{R}_{\theta \mathrm{JL}}$					${ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead length $=0 "$	Rejl			-		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance - junction to amb. on $0.06^{\prime \prime}$ thick pcb. 1 oz . copper.	$\mathrm{R}_{\theta \mathrm{J} A}$			-		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Fig 1. Transient thermal impedance characteristic.

Fig 2. Typical junction capacitance as a function of reverse voltage.

1N5614	S2M
1N5616	S4M
1N5618	S6M
1N5620	S8M
1N5622	S0M

January 7, 1998

Fig 3. Forward voltage drop as a function of forward current.

Fig 5. Forward power dissipation as a function of forward current, for sinusoidal operation.

Fig 4. Maximum power versus lead temperature.

Fig 6. Maximum ratings for capacitive loads.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Rectifiers category:
Click to view products by Microsemi manufacturer:
Other Similar products are found below :
D91A DA24F4100L DD89N1600K-A DD89N16K-K RL252-TP DLA11C-TR-E DSA17G DSEI2X30-06C 1N4005-TR BAV199-TP UFS120Je3/TR13 JANS1N6640US DD89N16K DD89N16K-A 481235F DSP10G-TR-E 067907F MS306 ND104N08K SPA2003-B-DA01 VGF0136AB US2JFL-TP UFS105Je3/TR13 A1N5404G-G ACGRA4007-HF ACGRB207-HF RF301B2STL RF501B2STL UES1306 UES1302 BAV199E6433HTMA1 ACGRC307-HF ACEFC304-HF JANTXV1N5660A UES1106 GS2K-LTP D126A45C D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K STTH20P035FP VS-8EWS12S-M3 VS-12FL100S10 ACGRA4001-HF MUR420GP-TP 1N5404GP-E3/54 ND89N08K

