

RHRPM4424

Rad-hard 4.5 A dual low-side MOSFET driver

Datasheet - preliminary data

Features

- Wide operating voltage range: 4.65 V to 18 V
- Parallel driving capability up to 9 A
- Non-inverting configuration
- Input 5 V logic level compatibility
- 110 ns typical propagation delay
- Matched propagation delays between the two channels (5 ns max.)
- 20 mV maximum low level output voltage
- 30 ns rise and fall times
- +/-5 V common mode bouncing between signal and power grounds
- TID:
 - 100 krad HDR
 - 100 krad LDR
- QML-V qualification planned
- Hermetic package

Applications

- Switch mode power supply
- DC-DC converters
- Motor controllers
- Line drivers

Description

The RHRPM4424 is a flexible, high-frequency dual low-side driver specifically designed to work with high capacitive MOSFETs and IGBTs in an environment with high levels of radiation such as aerospace. The RHRPM4424 outputs can sink and source 4.5 A of peak current independently. By putting in parallel the two PWM outputs, a higher driving current (up to 9 A peak) can be obtained. The RHRPM4424 works with CMOS/TTL compatible PWM signal so it can be driven by an external PWM controller, such as the ST1843 or the ST1845. The FLAT-16 version conforms to an industry standard pinout and can dissipate up to 550 mW per channel, while FLAT-10 version optimizes the PCB real estate. Since both of packages are hermetic, this device is suitable for any kind of harsh-environment.

Table	e 1: Dev	ice summai	·у

Order code	SMD pin	Quality level	EPPL	Package	Max. power dissipation [mW] ⁽¹⁾	Mass [g]	Temperature range		
RHRPM4424K01V (2)(3)		QML-V							
RHRPM4424K02V (2)(3)				FLAT-16	550	0.7			
RH-PM4424K1 ⁽³⁾	-	Engineering	-			0.7	-55 to 125 °C		
RH-PM4424LK1 ⁽²⁾⁽³⁾		model				FLAT-10	350		

Notes:

⁽¹⁾ Per channel at $T_a = 70 \ ^{\circ}C$

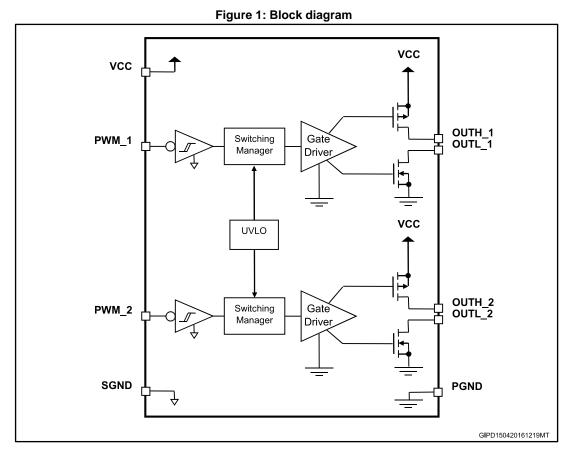
⁽²⁾ Under development.

⁽³⁾ Contact ST sales office for information about die specific conditions and other quality levels.

October 2016

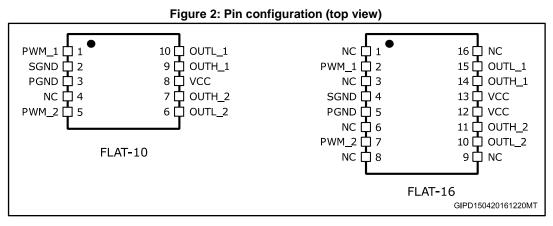
DocID028881 Rev 4

www.st.com


This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

Contents

Con	tents		
1	Block dia	agram	3
2	Pin confi	guration	4
3	Typical a	pplication diagram	6
4		n ratings	
5		I characteristics	
6		۱۶	
•	6.1	Total ionizing dose (MIL-STD-883 test method 1019)	
	6.2	Heavy lons	
7	Device d	escription	
	7.1	Overview	
	7.2	Input stage	11
	7.3	Output stage	12
	7.4	Parallel output operation	12
	7.5	Gate driver voltage flexibility	12
8	Design g	uidelines	13
	8.1	Output series resistance	13
	8.2	Power dissipation	13
9	Layout a	nd application guidelines	17
10	Typical p	performance characteristics	19
11	Package	information	22
	11.1	FLAT-16 package information	22
	11.2	FLAT-10 package information	23
12	Ordering	information	25
13	Other inf	ormation	26
	13.1	Data code	26
	13.2	Documentation	26
14	Revision	history	27



1 Block diagram

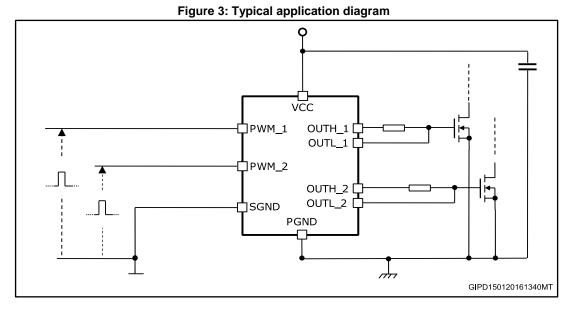
2 Pin configuration

FLAT-10: the upper metallic package lid is connected to pin 4.

FLAT-16: the upper metallic package lid and the bottom metallization are electrically floating.

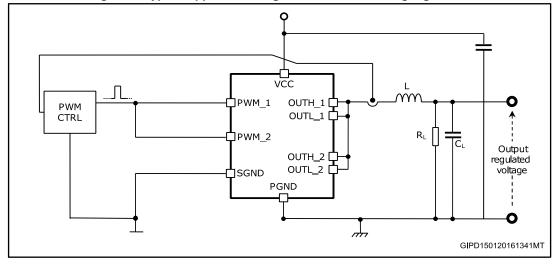
Pin r	name	Name	Turno	Description	
FLAT-10	FLAT-16	Name	Туре	Description	
8	12 13	VCC	Supply	Supply voltage. Bypass with low ESR (for example MLCC type) capacitor to the PCB ground plane.	
3	5	PGND	Ground	Ground reference for output drivers. Connect this pir to the PCB ground plane.	
2	4	SGND	Ground	Ground reference for PWM input pins. Input pin (PWM_1, PWM_2 and SGND) common mode can range +/-5 V versus PGND.Ground reference for PWM input pins. Input pin (PWM_1, PWM_2 and SGND) common mode can range +/-5 V versus PGND.	
1	2	PWM_1	I	PWM input signal (non-inverting) for driver 1 featuring TTL/CMOS compatible threshold and hysteresis. Don't leave the pin floating.	
5	7	PWM_2	I	PWM input signal (non-inverting) for driver 2 featuring TTL/CMOS compatible threshold and hysteresis. Don't leave the pin floating.	
9	14	OUTH_1	ο	High-side open drain pin of driver 1. Connect this pin to OUTL_1 either directly or by an external resistor if an asymmetric ON/OFF switching time is desired.	
10	15	OUTL_1	О	Low-side open drain pin of driver 1. Connect this pin to OUTH_1 either directly or by an external resistor if an asymmetric ON/OFF switching time is desired.	
7	11	OUTH_2	0	High-side open drain pin of driver 2. Connect this pin to OUTL_2 either directly or by an external resistor if an asymmetric ON/OFF switching time is desired.	

Table 2: Pin description


RHRPM4424

Pin configuration

Pin r	name	Name	Turno	Description			
FLAT-10	FLAT-16	Name	Туре	Description			
6	10	OUTL_2	0	Low-side open drain pin of driver 2. Connect this pin to OUTH_2 either directly or by an external resistor if an asymmetric ON/OFF switching time is desired.			
4	1 3 6 9 16	NC		Not connected pin. Leave it floating or connect it to any potential.			



3 Typical application diagram

SGND and PGND can be shorted or decoupled up to +/-5 V.

Figure 4: Typical application diagram as buck switching regulator

SGND and PGND can be shorted or decoupled up to +/-5 V.

In *Figure 4: "Typical application diagram as buck switching regulator"*, the output stage of the RHRPM4424 device directly drives an inductor; in this configuration, the RHRPM4424 output stages are in parallel to exploit the maximum current capability of the device. The MOSFET driver works as a synchronous buck converter.

4 Maximum ratings

Symbol	Parameter	Va	Unit	
Symbol	Farameter	FLAT-10	FLAT-16	Unit
Rthjc	Max. thermal resistance, junction-to-case	25	8	°C/W
R _{thja} ⁽¹⁾	Max. thermal resistance, junction-to-ambient	117	70	°C/W
Ртот	Maximum power dissipation @ Tamb = 70 °C	0.70	1.10	W
Ртот	Maximum power dissipation @ Tamb = 125 °C	0.21	0.36	W

Notes:

⁽¹⁾ Measured on 2s2p board as per std Jedec (JESD51-7) in natural convection.

Symbol	Parameter	Value	Unit
Vcc	Supply voltage	PGND-0.3 to PGND+20	V
PGND	Power ground	-	V
SGND	Signal ground	PGND-5 to PGND+5	V
PWM_1			
PWM_2	PWM input	SGND-0.3 to VCC+0.3	V
OUT_1			
OUT_2	Driver output	PGND-0.3 to VCC+0.3	V
Іоит	DC output current (for each driver)	750	mA
T _{stg}	Storage temperature	-65 to 150	°C
TJ	Maximum operating junction temperature	150	°C
TLEAD	Lead temperature (soldering, 10 seconds) ⁽¹⁾	300	°C
VHBM	ESD capability, human body model	2000	V
V _{MM}	ESD capability, machine model	200	V

Table 4: Absolute maximum ratings

Notes:

 $^{\left(1\right)}$ The distance is 1.5 mm far from the device body and the same lead is resoldered after 3 minutes.

5 Electrical characteristics

 V_{CC} = 4.65 V to 18 V and $T_{\rm J}$ = -55 to 125 °C, unless otherwise specified.

Table 5: Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
lcc	Vcc quiescent current	VCC = 18 V Inputs not switching OUTH_1 = OUTL_1 OUTH_2 = OUTL_2 $T_J = 25 \ ^{\circ}C$		1.6	2.1	mA
Vuvlo	Undervoltage lockout threshold for turn-on	VCC rising		4.3	4.65	V
	Undervoltage lockout hysteresis			300		mV
Input stage	•					
	Input at high level – VIH	Rising threshold	2.0			V
PWM_x	Input at low level – VIL	Falling threshold			0.8	V
		PWM_x = SGND	-1		+1	
Ірум	PWM_x input pin current	PWM_x = 3.3 V VCC = 10 V and 18 V	0		+2	μA
		PWM_x = VCC-0.5 V VCC = 18 V	0		+5	
dVPWM/dt	PWM_x input pin transient (1)		100			mV/s
Output stag	ge		•	•		•
R _{hi}	Source resistance	VCC = 10 V Inputs at high level $I_{OUT} = 100 \text{ mA}$ $T_J = 25 \text{ °C}$		0.7	1.1	Ω
		VCC = 10 V Inputs at high level I _{OUT} = 100 mA			1.4	Ω
Rio	Sink resistance	VCC = 10 V Inputs at low level $I_{OUT} = 100 \text{ mA}$ $T_J = 25 \text{ °C}$		1.0	1.4	Ω
		VCC = 10 V Inputs at low level I _{OUT} =100 mA			1.9	Ω
Isource	Source peak current ⁽¹⁾	VCC = 10 V Inputs at high level C _{OUT} to GND = 10 nF		5.5		A
Isink	Sink peak current ⁽¹⁾	VCC = 10 V Inputs at low level C _{OUT} to GND = 10 nF		4.5		A

RHRPM4424

Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vон	High level output voltage, VCC-V _{OUT}	Inputs at high level OUTH_1 \equiv OUTL_1 OUTH_2 \equiv OUTL_2 $I_{OUT} = 1 \text{ mA}$			10	mV
V _{OL}	Low level output voltage, Vour	Inputs at low level OUTH_1 \equiv OUTL_1 OUTH_2 \equiv OUTL_2 I _{OUT} $=$ 1 mA			10	mV
t _R	Output rise time	VCC = 10 V OUTH_1 = OUTL_1 OUTH_2 = OUTL_2 Cour to GND = 10 nF		30		ns
tF	Output fall time	VCC = 10 V OUTH_1 = OUTL_1 OUTH_2 = OUTL_2 Cout to GND = 10 nF		30		ns
Propagatio	n delay					
to	Input- to-output delay time	VCC = 10 V OUTH_1 = OUTL_1 OUTH_2 = OUTL_2 C_{OUT} to GND = 10 nF		110		ns
	Matching between propagation delays ⁽¹⁾		-5		5	ns

Notes:

 $^{\left(1\right)}$ Parameter guaranteed at design level, not tested in production.

6 Radiations

6.1 Total ionizing dose (MIL-STD-883 test method 1019)

The products that are guaranteed in radiation within RHA QML-V system, fully comply with the MIL-STD-883 test method 1019 specification. The RHRPM4424 is being RHA QML-V qualified, tested and characterized in full compliance with the MIL-STD-883 specification, both below 10 mrad/s (low dose rate) and between 50 and 300 rad/s (high dose rate).

- Testing is performed in accordance with MIL-PRF-38535 and the test method 1019 of the MIL-STD-883 for total ionizing dose (TID).
- ELDRS characterization is performed in qualification only on both biased and unbiased parts, on a sample of ten units from two different wafer lots.
- Each wafer lot is tested at high dose rate only, in the worst bias case condition, based on the results obtained during the initial qualification.

Туре	Conditions	Value	Unit
	50 rad(Si)/s high dose rate up to	100	
TID	10 mrad(Si)/s low dose rate up to	100	krad
	ELDRS free up to	100	
Output stage source resistance drift	From 0 krad to 100 krad at 50 rad/s	< 0.3	Ω
Output stage sink resistance drift	From 0 krad to 100 krad at 50 rad/s	< 0.3	Ω

Tab	le	6:	TI	D

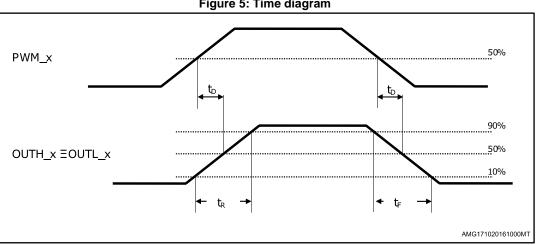
6.2 Heavy lons

The heavy ions trials are performed on qualification lots only. No additional test is performed. Table x summarizes the results of heavy ions tests.

Feature	Conditions	Value	Unit	
SEL/SEB	$LET = 60 \text{ MeV.cm}^2/\text{mg V}_{CC} = 18 \text{ V}$	No latchup/burnout		
SEL/SED	LET = 70 MeV.cm ² /mg V _{CC} = 16 V	No latchup/burnout	-	
SET		$LET_{TH} = 0$	MeV*cm²/mg	
	$V_{CC} = 4.5 V$	$\sigma_{SAT} = 7^* 10^{-6}$	Cm ²	
	N 40.V	LET _{TH} = 18	MeV*cm²/mg	
	Vcc = 18 V	$\sigma_{SAT} = 2^* 10^{-6}$	CM ²	

Table 7: HI

7 Device description


7.1 Overview

The RHRPM4424 is a dual low-side driver suitable to charge and discharge big capacitive loads like MOSFETs or IGBTs used in power supplies and DC-DC modules. The RHRPM4424 can sink and source 4.5 A on each low-side driver branch but a higher driving current can be obtained by paralleling its outputs. Even though this device has been designed to cope with loads requiring high peak current and fast switching time, the ultimate driving capability depends on the power dissipation in the device which must be kept below the power dissipation capability of the package. This aspect is met in Section 8.2: "Power dissipation". The RHRPM4424 uses VCC pin to supply and two ground pins (SGND signal ground and PGND power ground) for return. SGND is used as reference ground for the input stage and it can be connected to ground of the remote controller. PGND is the reference ground for the output stage; SGND can bounce +/-5 V versus PGND so that PWM input pin common mode can range +/-5 V versus PGND. The dual low-side driver has been designed to work with supply voltage in the range from 4.65 V to 18 V. Before VCC overcomes UVLO threshold (VUVLO), the RHRPM4424 keeps off both low-side MOSFETs (OUTL x outputs are grounded) then, after UVLO threshold has crossed, PWM input keeps the control of the driver operations. Input pins (PWM 1 and PWM 2) are CMOS/TTL compatible with capability to work with voltages up to VCC.

7.2 Input stage

57

PWM inputs of the RHRPM4424 dual low-side driver are compatible to CMOS/TTL levels with capability to be pulled up to VCC. The relation between PWM_1 and PWM_2 input pins and the corresponding PWM output is depicted in *Figure 5: "Time diagram"*. In the worst case, input levels above 2.0 V are recognized as high logic values and values below 0.8 V are recognized as low logic values. Input-to-output propagation delays (tD) and also rise (tR) and fall (tF) times have been designed to assure the operation in fast switching environment. The matching between delays in the two branches of the RHRPM4424 assures symmetry in the operations and allows the parallel output functionality. SGND input stage ground reference can bounce versus PGND of +/-5 V.

7.3 Output stage

The RHRPM4424 output stage uses ST's proprietary lateral DMOS. Both NDMOS and PDMOS have been sized to exhibit high driving peak current as well as low on-resistance. When OUTL_x and OUTH_x are connected together, the typical peak current is 4.5 A. The device features the adaptive anti-cross-conduction protection. The RHRPM4424 continuously monitors the status of the internal NDMOS and PDMOS: in case of a PWM transition, before the desired DMOS switches on, the device awaits until the other DMOS completely turns off. No static current flows from VCC to ground.

7.4 Parallel output operation

For applications demanding high driving current capability (over 4.5 A provided by the single branch), the RHRPM4424 allows the two drivers to be in parallel to reach the highest current, up to 9 A. This configuration is depicted in *Figure 6: "Parallel output connection"* where PWM_1 and PWM_2 and OUTH_x and OUTL_x are tied together. The matching of internal propagation delays guarantees that the two drivers switch on and off simultaneously.

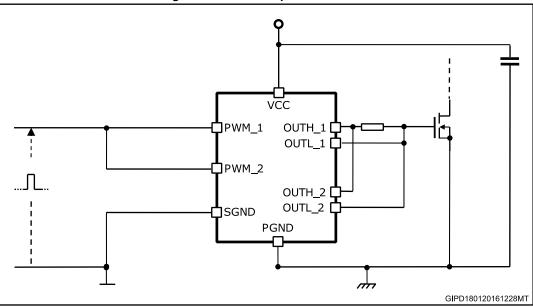
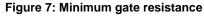


Figure 6: Parallel output connection

7.5 Gate driver voltage flexibility


The RHRPM4424 allows the user to select the gate drive voltage so to optimize the efficiency of the application. The low-side MOSFET driving voltage depends on the voltage applied to VCC and can range from 4.65 V to 18 V.



8 Design guidelines

8.1 Output series resistance

The output resistance allows the high frequency operation without exceeding the maximum power dissipation of the driver package. See Section 8.2: "Power dissipation" to understand how the output resistance value is obtained. For applications with VCC supply voltage greater than 10 V and high capacitive loads (Cg > 10 nF), the dissipated power in the output stage of the device has to be limited, therefore at least 2.2 Ω Rg gate resistor has to be added. *Figure 7: "Minimum gate resistance"* is a synthetic view of the boundaries for the safe operation of the RHRPM4424.

8.2 **Power dissipation**

The RHRPM4424 embeds two high current low-side drivers which drive high capacitive MOSFETs. This section estimates the power dissipated inside the device in normal applications. Two main terms contribute to the device power dissipation: bias power and driver power.

• PDC bias power depends on the static consumption of the device through the supply pins and it is given by below equation:

Equation 1

 $P_{DC} = V_{CC} * I_{CC}$

- The driver power is the necessary power to continuously switch on and off the external MOSFETs; it is a function both of the switching frequency and total gate charge of the selected MOSFETs. P_{SW} total dissipated power is given by three main factors:
 - external gate resistance (when present)
 - intrinsic MOSFET resistance
 - intrinsic driver resistance

It is indicated in the below equation:

Equation 2

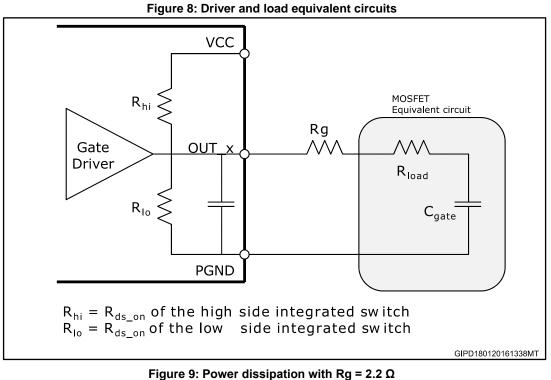
$P_{SW} = F_{SW} * (Q_G * V_{CC})$

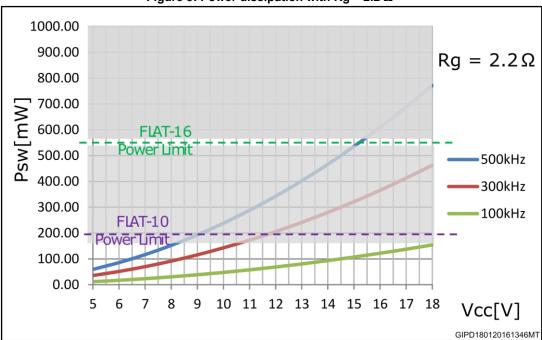
When an application is designed using the RHRPM4424, the effect of external gate resistors on the power dissipated by the driver has to be taken into account. External gate resistors help the device to dissipate the switching power since the same power, PSW, is shared between the internal driver impedance and the external resistor.

In *Figure 7: "Minimum gate resistance"*, the MOSFET driver can be represented by a pushpull output stage with two different MOSFETs:

- PDMOS to drive the external gate to high level
- NDMOS to drive the external gate to low level (with R_{DS(on)}: R_{hi}, R_{lo})

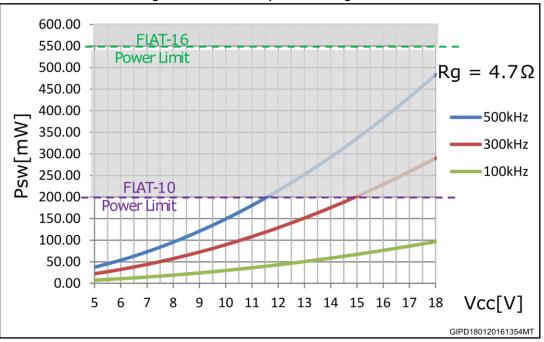
The external MOSFET can be represented as C_{gate} capacitance, which stores QG gate charge required by the external MOSFET to reach VCC driving voltage. This capacitance is charged and discharged at F_{SW} frequency.

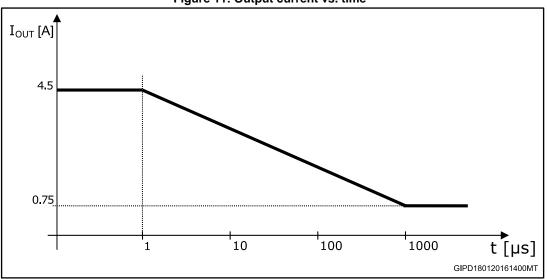

 P_{SW} total power is dissipated among the resistive components distributed along the driving path. According to the external gate resistance and the intrinsic MOSFET gate resistance, the driver only dissipates a P_{SW} portion as follows (per driver):

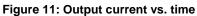

Equation 3

$$\mathsf{P}_{SW} = \frac{1}{2} \cdot \mathsf{C}_{gate} \cdot \left(\mathsf{V}_{CC}\right)^2 \cdot \mathsf{F}_{SW} \cdot \frac{\mathsf{R}_{hi}}{\mathsf{R}_{hi} + \mathsf{R}_g + \mathsf{R}_{Ioad}} + \frac{\mathsf{R}_{Io}}{\mathsf{R}_{Io} + \mathsf{R}_g + \mathsf{R}_{Ioad}}$$

The total dissipated power from the driver is given by $P_{TOT} = P_{DC} + 2^*P_{SW}$.







With regard to the power dissipation and current capability purpose, a profile, for the curve output current versus time, is recommended. See the one depicted in *Figure 11: "Output current vs. time"*:

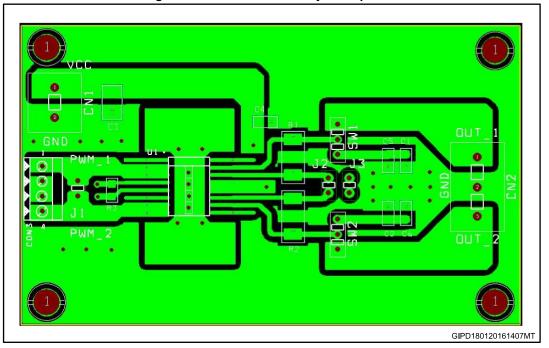
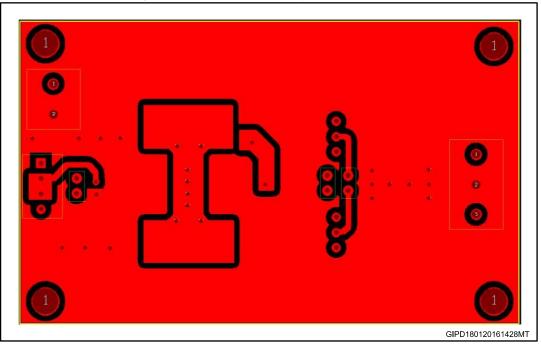
9 Layout and application guidelines

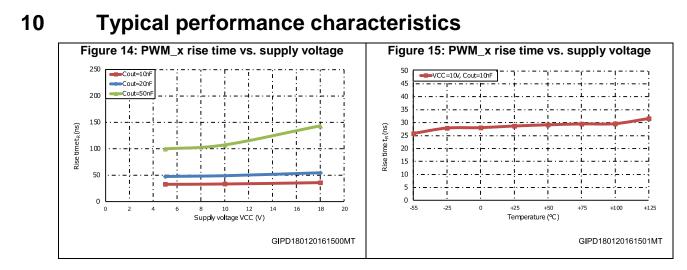
The first priority, when components are placed for these applications, is the power section, minimizing the length of each connection and loop. To minimize noise and voltage spikes (EMI and losses as well) power connections have to be a part of a power plane with wide and thick conductor traces: loop has to be minimized. The capacitor on VCC, as well as the output inductor should be placed as closer as possible to IC. Traces between the driver and the external MOSFETs should be short to reduce the inductance of the trace and the ringing in the driving signals. Moreover, the number of vias has to be minimized to reduce the related parasitic effect.

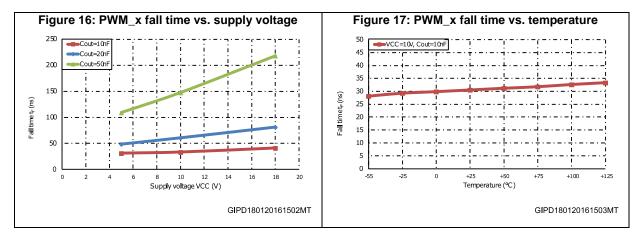
Small signal components and connections to critical nodes of the application as well as bypass capacitors for the device supply are also important. The bypass capacitor (VCC capacitors) has to be placed close to the device with the shortest loop to minimize the parasitic inductance.

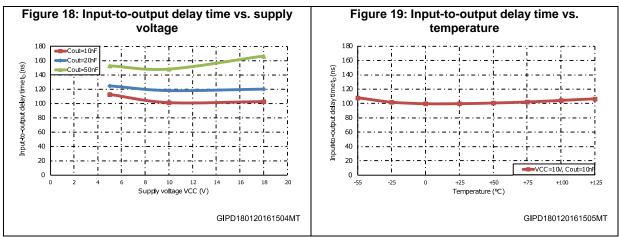
To improve heat dissipation, the copper area has to be placed under the IC. This copper area may be connected to other layers (if available) through vias so to improve the thermal conductivity: the combination of copper pad, copper plane and vias under the driver allows the device to reach its best thermal performance. It is important for the power device to have a thermal path compatible with the dissipated power: both the driver and the external MOSFET have to be mounted on a dedicated heat sink (for example, the driver should be soldered on the copper area of the PCB, which is in strict thermal contact to an aluminum frame) sticking each part to the frame (without using any screw for the MOSFET). The glue could be the resin ME7158 (space approved resin). Moreover, two small FR4 spacers could be added to guarantee the electrical isolation of the package from the frame.

A recommended PCB layout is shown in Figure 12: "Evaluation board layout: top view".

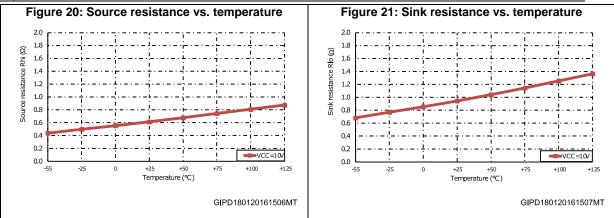



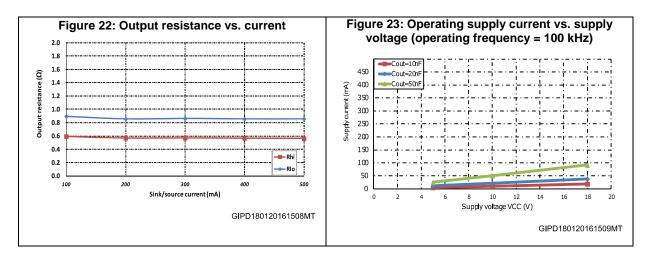



Figure 13: Evaluation board layout: bottom view



18/28




DocID028881 Rev 4

57

RHRPM4424

Typical performance characteristics

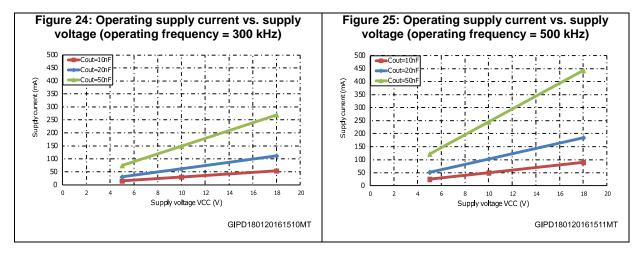
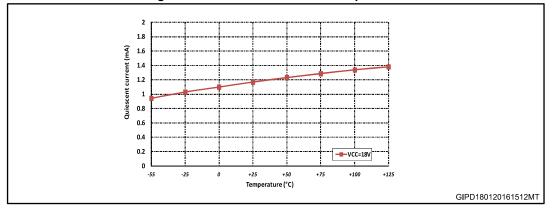
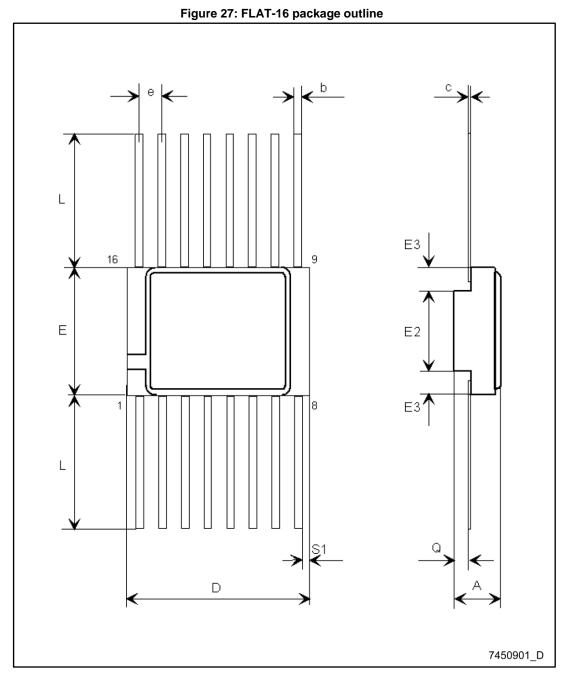



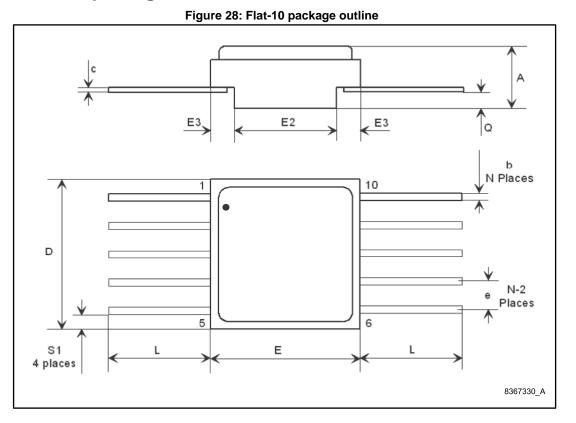
Figure 26: Quiescent current vs. temperature



11 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

11.1 FLAT-16 package information


RHRPM4424

57

Package information

Table 8: FLAT-16 package mechanical data				
Dim.		mm		
	Min.	Тур.	Max.	
A	2.42		2.88	
b	0.38		0.48	
С	0.10		0.18	
D	9.71		10.11	
E	6.71		7.11	
E2	3.30	3.45	3.60	
E3	0.76			
е		1.27		
L	6.35		7.36	
Q	0.66		1.14	
S1	0.13			

11.2 FLAT-10 package information

Package information

Table 9: Flat-10 package mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
A	2.26	2.44	2.62	
b	0.38	0.43	0.48	
С	0.102	0.127	0.152	
D	6.35	6.48	6.60	
E	6.35	6.48	6.60	
E2	4.32	4.45	4.58	
E3	0.88	1.01	1.14	
е		1.27		
L	6.35		9.40	
Q	0.66	0.79	0.92	
S1	0.16	0.485	0.81	
N				

Ordering information 12

		Iai	Jie IV. Oluei	coue		
CPN	Quality level	EPPL	Package	Lead finish	Marking ⁽¹⁾	Packing
RH-PM4424LK1 ⁽²⁾	En sin e sin e se del		FLAT-10	Quid	TBD	Strip pack
RH-PM4424K1	Engineering model	-	FLAT-16	Gold		

Table 10: Order code

Notes:

⁽¹⁾Specific marking only. The full marking includes in addition: - for the engineering models: ST logo, date code, country of origin (FR) - for QML flight parts: ST logo, date code, country of origin (FR), manufacturer code (CSTM), serial number of the part within the assembly lot.

(2) Under development.

Contact ST sales office for information about the specific conditions for:

1) Products in die form

2) Other quality levels

3) Tape & reel packing

13 Other information

13.1 Data code

The date code is structured as shown below:

- EM xyywwz
- QML-V yywwz where:

Figure 29: Date code composition

×	yy I	ww	z
Assemblylocation(EM only) 3: Rennes (France)			
Last two digits of year			
<u>_</u>			
Weekdigits			
Lotindex in the week			

13.2 Documentation

Table 11: Documentation provided

Quality level	Documentation		
Engineering model	-		
	Certificate of conformance with group C (reliability test) and group D (package qualification) reference		
	Precap report		
	PIND ⁽¹⁾ test summary (test method conformance certificate)		
	SEM ⁽²⁾ report		
QML-V flight	X-ray report		
	Screening summary		
	Failed component list, (list of components that have failed during screening)		
	Group A summary (QCI ⁽³⁾ electrical test)		
	Group B summary (QCI ⁽³⁾ mechanical test)		
	Group E (QCI ⁽³⁾ wafer lot radiation test)		

Notes:

 $^{(1)}$ QCI = quality conformance inspection.

 $^{(2)}$ PIND = particle impact noise detection.

 $^{(3)}$ SEM = scanning electron microscope.

14 Revision history

Table 12: Document revision history

Date	Revision	Changes
26-Feb-2016	1	Initial version.
03-Jun-2016	6 2	Updated Table 5: "Electrical characteristics".
		Minor text changes.
12-Sep-2016	3	Updated Features in cover page, Section 5: "Electrical characteristics", Section 7.1: "Overview", and Section 7.5: "Gate driver voltage flexibility". Minor text changes.
24-Oct-2016 4		Updated Figure 22: "Output resistance vs. current" and Figure 26: "Quiescent current vs. temperature". Minor text changes.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for stmicroelectronics manufacturer:

Other Similar products are found below :

LD29300D2T25R M24M02-DWMN3TP/K AI-JTAGOPTO-1 BUV48A BZW04-15B LDK320AM33R SPC564A80CAL176 SPC56XVTOP-M STEVAL-ILL076V2 STEVAL-ISA175V1 STEVAL-VNH5050A STM32F207IGT7 STR91X-SK/RAI STTH12003TV1 STVNIM-EVAL M24C02-FDW6TP 417989F SG3525A ST7FLITE25F2M6 STEVAL-ILL079V1 STEVAL-ISF003V1 STL140N4F7AG STM32F031F4P7 STM32F071CBU6 STM32F303VBT6 STM32F765ZIT6 STM32PRIM-LABUPG STM8A128-EVAL STW56N65DM2 LD29150DT18R LF50ABV P-NUCLEO-IHM002 VIPER38HDTR VIPER27LD VIPER16HN PD57070-E PD55003-E EVAL6226QR EVAL6227PD EVAL6228QR EVALSP1340HDM EVLVIP16L-4WFL EV-VN7050AJ EV-VND5E025AK EV-VND7030AJ ANT2-M24LR16E T1610T-8T STY60NM50 STW23N85K5 STR736FV2T6