MC14012B

Dual 4-Input NAND Gates

The MC14012B dual 4-input NAND gates are constructed with P -Channel and N -Channel enhancement mode devices in a single monolithic structure (Complementary MOS). Their primary use is where low power dissipation and/or high noise immunity is desired.

Features

- Supply Voltage Range $=3.0$ Vdc to 18 Vdc
- All Outputs Buffered
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Double Diode Protection on All Inputs
- Pin-for-Pin Replacements for Corresponding CD4000 Series B Suffix Devices
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- This Device is $\mathrm{Pb}-$ Free and is RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
$V_{D D}$	DC Supply Voltage Range	-0.5 to +18.0	V
$V_{\text {in }}, V_{\text {out }}$	Input or Output Voltage Range (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient) per Pin	± 10	mA
$P_{\text {D }}$	Power Dissipation, per Package (Note 1)	500	mW
$\mathrm{T}_{\text {A }}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

[^0]ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

MARKING DIAGRAM

A	$=$ Assembly Location
WL, L	$=$ Wafer Lot
YY, Y	$=$ Year
WW, W	Work Week
G	$=$ Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet

Figure 1. Pin Assignment

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=\mathrm{PIN} 14 \\
& \mathrm{~V}_{\mathrm{SS}}=\mathrm{PIN} 7
\end{aligned}
$$

Figure 2. Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC14012BDG	SOIC-14 (Pb-Free)	55 Units / Rail
NLV14012BDG*	SOIC-14 (Pb-Free)	55 Units / Rail
MC14012BDR2G	SOIC-14 (Pb-Free)	2500 Units / Tape \& Reel
NLV14012BDR2G*	SOIC-14 (Pb-Free)	2500 Units / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ (Note 2)	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D}$ or 0 $V_{\text {in }}=0 \text { or } V_{D D}$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
Input Voltage $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \end{aligned}$ "1" Level $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	Vdc
Output Drive Current $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$	${ }^{\mathrm{IOH}}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -3.0 \\ & -0.64 \\ & -1.6 \\ & -4.2 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & -2.4 \\ & -0.51 \\ & -1.3 \\ & -3.4 \end{aligned}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{aligned} & -1.7 \\ & -0.36 \\ & -0.9 \\ & -2.4 \end{aligned}$	-	mAdc
$\begin{array}{ll} \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ (\mathrm{V} \mathrm{OL}=0.5 \mathrm{Vdc}) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	loL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(V_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 0.25 \\ 0.5 \\ 1.0 \end{gathered}$	-	0.0005 0.0010 0.0015	$\begin{gathered} \hline 0.25 \\ 0.5 \\ 1.0 \end{gathered}$	-	$\begin{aligned} & 7.5 \\ & 15 \\ & 30 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (Notes 3, 4) (Dynamic plus Quiescent, Per Gate, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)	I_{T}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(0.3 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} / \mathrm{N} \\ & \mathrm{I}_{\mathrm{T}}=(0.6 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} / \mathrm{N} \\ & \mathrm{I}_{\mathrm{T}}=(0.9 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{D}} / \mathrm{N} \end{aligned}$							$\mu \mathrm{Adc}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF :

$$
\mathrm{I}_{\mathrm{T}}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{\mathrm{T}}(50 \mathrm{pF})+\left(\mathrm{C}_{\mathrm{L}}-50\right) \mathrm{Vfk}
$$

where: I_{T} is in μA (per package), C_{L} in $p F, V=\left(V_{D D}-V_{S S}\right)$ in volts, f in $k H z$ is input frequency, and $k=0.001 x$ the number of exercised gates per package.

SWITCHING CHARACTERISTICS (Note 5) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	$\begin{aligned} & \text { VDD } \\ & \text { Vdc } \end{aligned}$	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Max	Unit
Output Rise Time $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}=(1.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+33 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(0.60 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(0.40 \mathrm{~ns} / \mathrm{PF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {tin }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \mathrm{t}_{\mathrm{THL}}=(1.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+33 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.60 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.40 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \end{aligned}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
$\begin{aligned} & \text { Propagation Delay Time } \\ & \text { tpLH, } \mathrm{t}_{\text {PHL }}=(0.90 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+115 \mathrm{~ns} \\ & \text { t }_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.36 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+47 \mathrm{~ns} \\ & \text { t }_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.26 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+37 \mathrm{~ns} \end{aligned}$	$\mathrm{t}_{\text {PLH }}$, tPHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 160 \\ & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 300 \\ & 130 \\ & 100 \end{aligned}$	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

*All unused inputs of AND, NAND gates must be connected to $V_{D D}$. All unused inputs of OR, NOR gates must be connected to V_{SS}.

Figure 3. Switching Time Test Circuit and Waveforms

Figure 4. Circuit Schematic - One of Two Gates Shown

MC14012B

TYPICAL B-SERIES GATE CHARACTERISTICS

Figure 5. $\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{Vdc}$

Figure 7. $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}$

Figure 9. $\mathrm{V}_{\mathrm{GS}}=15 \mathrm{Vdc}$

P-CHANNEL DRAIN CURRENT (SOURCE)

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (Vdc)
Figure 6. $\mathrm{V}_{\mathrm{GS}}=-5.0 \mathrm{Vdc}$

Figure 8. $\mathrm{V}_{\mathrm{GS}}=\mathbf{- 1 0} \mathbf{V d c}$

Figure 10. $\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{Vdc}$

These typical curves are not guarantees, but are design aids. Caution: The maximum rating for output current is 10 mA per pin.

Figure 11. $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{Vdc}$

Figure 13. $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{Vdc}$

Figure 12. $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{Vdc}$

DC NOISE MARGIN
The DC noise margin is defined as the input voltage range from an ideal " 1 " or " 0 " input level which does not produce output state change(s). The typical and guaranteed limit values of the input values V_{IL} and V_{IH} for the output(s) to be at a fixed voltage V_{O} are given in the Electrical Characteristics table. V_{IL} and V_{IH} are presented graphically in Figure 11.

Guaranteed minimum noise margins for both the " 1 " and " 0 " levels =

> 1.0 V with a 5.0 V supply
> 2.0 V with a 10.0 V supply
> 2.5 V with a 15.0 V supply

Figure 14. DC Noise Immunity

PACKAGE DIMENSIONS

SOLDERING FOOTPRINT*

 details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

> ON Semiconductor and the ON are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Gates category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
5962-8769901BCA 74HC85N NL17SG08P5T5G NL17SG32DFT2G NLU1G32AMUTCG NLV7SZ58DFT2G NLVHC1G08DFT1G NLVVHC1G14DTT1G NLX2G08DMUTCG NLX2G08MUTCG MC74HCT20ADR2G 091992B 091993X 093560G 634701C 634921A NL17SG32P5T5G NL17SG86DFT2G NLU1G32CMUTCG NLV14001UBDR2G NLVVHC1G132DTT1G NLVVHC1G86DTT1G NLX1G11AMUTCG NLX1G97MUTCG 746427X 74AUP1G17FW5-7 74LS38 74LVC1G08Z-7 74LVC32ADTR2G 74LVC1G125FW4-7 74LVC08ADTR2G MC74HCT20ADTR2G NLV14093BDTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G NLV74HC08ADR2G NLVVHC1GT32DFT1G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 M38510/06202BFA NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G

[^0]: Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 1. Temperature Derating: "D/DW" Package: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

 This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

 Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

