

Film Capacitors

Metallized Polypropylene Film Capacitors (MKP)

 Series/Type:
 B32620 ... B32621

 Date:
 December 2012

© EPCOS AG 2015. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

Metallized polypropylene film capacitors (MKP)

B32620 ... B32621

High pulse (stacked)

Typical applications

- Compact fluorescent lamps (CFL)
- SMPS

Climatic

- Max. operating temperature: 105 °C
- Climatic category (IEC 60068-1): 55/100/56

Construction

- Dielectric: polypropylene (PP)
- Stacked-film technology
- Plastic case (UL 94 V-0)
- Epoxy resin sealing

Features

- Very high pulse strength
- Very good self-healing properties
- Smallest possible dimensions
- High contact reliability
- RoHS-compatible

Terminals

- Parallel wire leads, lead-free tinned
- Special lead lengths available on request

Marking

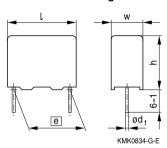
Manufacturer's logo, rated capacitance (coded).

cap. tolerance (code letter), rated voltage,

date of manufacture (coded),

for lead spacing 7.5 mm: style (MKP),

for lead spacing 10 mm: lot number, series number (621)


Delivery mode

Bulk (untaped)

Taped (Ammo pack or reel)

For notes on taping, refer to chapter "Taping and packing".

Dimensional drawing

Dimensions in mm

	Lead diameter	Туре
<i>e</i> ±0.4	d ₁	
7.5	0.5	B32620
10.0	0.61)	B32621

^{1) 0.5} mm for capacitor width w = 4 mm

Overview of available types

Lead spacing	7.5 mm					10.0 mm					
Туре	B3262	B32620					B32621				
Page	4						6				
V _R (V DC)	160	250	400	630	1000	1000	160	250	400	630	1000
V _{RMS} (V AC)	90	140	200	400	500	600	90	140	200	400	500
C _R (nF)											
1.0											
1.5											
2.2											
3.3											
4.7											
6.8											
10											
15											
22											
33											
47											
68											
100											
150											
220											

High pulse (stacked)

Ordering codes and packing units (lead spacing 7.5 mm)

V_R	V_{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times I$	(composition see	pack	pcs./	pcs./
V DC	V AC	nF	mm	below)	pcs./MOQ	MOQ	MOQ
160	90	33	4.0 × 8.5 × 10.0	B32620A5333+***	8000	7200	6000
		47	$4.0 \times 8.5 \times 10.0$	B32620A5473+***	8000	7200	6000
		68	$5.0\times10.5\times10.0$	B32620A5683+***	6400	5600	4000
		100	$5.0\times10.5\times10.0$	B32620A5104+***	6400	5600	4000
		150	$6.0\times12.0\times10.3$	B32620A5154+***	5200	4400	3000
250	140	22	$4.0 \times 8.5 \times 10.0$	B32620A3223+***	8000	7200	6000
		33	$4.0 \times 8.5 \times 10.0$	B32620A3333+***	8000	7200	6000
		47	$5.0\times10.5\times10.0$	B32620A3473+***	6400	5600	4000
		68	$5.0\times10.5\times10.0$	B32620A3683+***	6400	5600	4000
		100	$6.0\times12.0\times10.3$	B32620A3104+***	5200	4400	3000
400	200	6.8	$4.0 \times 8.5 \times 10.0$	B32620A4682+***	8000	7200	6000
		10	$4.0 \times 8.5 \times 10.0$	B32620A4103+***	8000	7200	6000
		15	$5.0\times10.5\times10.0$	B32620A4153+***	6400	5600	4000
		22	$5.0\times10.5\times10.0$	B32620A4223+***	6400	5600	4000
		33	$6.0\times12.0\times10.3$	B32620A4333+***	5200	4400	3000
630	400	1.5	$4.0 \times 8.5 \times 10.0$	B32620A6152+***	8000	7200	6000
		2.2	$4.0 \times 8.5 \times 10.0$	B32620A6222+***	8000	7200	6000
		3.3	$4.0 \times 8.5 \times 10.0$	B32620A6332+***	8000	7200	6000
		4.7	$4.0 \times 8.5 \times 10.0$	B32620A6472+***	8000	7200	6000
		6.8	$5.0\times10.5\times10.0$	B32620A6682+***	6400	5600	4000
		10	$5.0\times10.5\times10.0$	B32620A6103+***	6400	5600	4000
		15	$6.0 \times 12.0 \times 10.3$	B32620A6153+***	5200	4400	3000
1000	500	1.5	$4.0 \times 8.5 \times 10.0$	B32620A0152+***	8000	7200	6000
		2.2	$4.0 \times 8.5 \times 10.0$	B32620A0222+***	8000	7200	6000
		3.3	$5.0\times10.5\times10.0$	B32620A0332+***	6400	5600	4000
		4.7	$5.0\times10.5\times10.0$	B32620A0472+***	6400	5600	4000
		6.8	$6.0 \times 12.0 \times 10.3$	B32620A0682+***	5200	4400	3000

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$ $J = \pm 5\%$ *** = Packaging code:

289 = Ammo pack

189 = Reel

000 = Untaped (lead length 6 - 1 mm)

High pulse (stacked)

Ordering codes and packing units (lead spacing 7.5 mm)

V_R	V_{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times l$	(composition see	pack	pcs./	pcs./
V DC	V AC	nF	mm	below)	pcs./MOQ	MOQ	MOQ
1000	600	1.0	$5.0 \times 10.5 \times 10.0$	B32620J0102+***	6400	5600	4000
		1.5	$5.0\times10.5\times10.0$	B32620J0152+***	6400	5600	4000
		2.2	$5.0 \times 10.5 \times 10.0$	B32620J0222+***	6400	5600	4000
		3.3	$5.0\times10.5\times10.0$	B32620J0332+***	6400	5600	4000
		4.7	$6.0\times12.0\times10.3$	B32620J0472+***	5200	4400	3000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

 $J = \pm 5\%$

*** = Packaging code:

289 = Ammo pack

189 = Reel

000 = Untaped (lead length 6 - 1 mm)

High pulse (stacked)

Ordering codes and packing units (lead spacing 10 mm)

V_R	V_{RMS}	C_R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times I$	(composition see	pack	pcs./	pcs./
V DC	V AC	nF	mm	below)	pcs./MOQ	MOQ	MOQ
160	90	47	$4.0 \times 7.0 \times 13.0$	B32621A5473+***	4000	6800	4000
		68	$4.0 \times 9.0 \times 13.0$	B32621A5683+***	4000	6800	4000
		100	$5.0 \times 11.0 \times 13.0$	B32621A5104+***	3320	5200	4000
		150	$5.0 \times 11.0 \times 13.0$	B32621A5154+***	3320	5200	4000
		220	$6.0 \times 12.0 \times 13.0$	B32621A5224+***	2720	4400	4000
250	140	2.2	$4.0 \times 7.0 \times 13.0$	B32621A3222+***	4000	6800	4000
		3.3	$4.0 \times 9.0 \times 13.0$	B32621A3332+***	4000	6800	4000
		4.7	$4.0 \times 9.0 \times 13.0$	B32621A3472+***	4000	6800	4000
		6.8	$4.0 \times 9.0 \times 13.0$	B32621A3682+***	4000	6800	4000
		10	$4.0 \times 9.0 \times 13.0$	B32621A3103+***	4000	6800	4000
		15	$4.0 \times 9.0 \times 13.0$	B32621A3153+***	4000	6800	4000
		22	$4.0 \times 9.0 \times 13.0$	B32621A3223+***	4000	6800	4000
		33	$4.0 \times 9.0 \times 13.0$	B32621A3333+***	4000	6800	4000
		47	$4.0 \times 9.0 \times 13.0$	B32621A3473+***	4000	6800	4000
		68	$5.0 \times 11.0 \times 13.0$	B32621A3683+***	3320	5200	4000
		100	$6.0\times12.0\times13.0$	B32621A3104+***	2720	4400	4000
400	200	10	$4.0 \times 9.0 \times 13.0$	B32621A4103+***	4000	6800	4000
		15	$4.0 \times 9.0 \times 13.0$	B32621A4153+***	4000	6800	4000
		22	$5.0 \times 11.0 \times 13.0$	B32621A4223+***	3320	5200	4000
		33	$5.0 \times 11.0 \times 13.0$	B32621A4333+***	3320	5200	4000
		47	$6.0\times12.0\times13.0$	B32621A4473+***	2720	4400	4000
630	400	2.2	$4.0 \times 7.0 \times 13.0$	B32621A6222+***	4000	6800	4000
		3.3	$4.0 \times 9.0 \times 13.0$	B32621A6332+***	4000	6800	4000
		4.7	$4.0 \times 9.0 \times 13.0$	B32621A6472+***	4000	6800	4000
		6.8	$4.0 \times 9.0 \times 13.0$	B32621A6682+***	4000	6800	4000
		10	$4.0 \times 9.0 \times 13.0$	B32621A6103+***	4000	6800	4000
		15	$5.0 \times 11.0 \times 13.0$	B32621A6153+***	3320	5200	4000
		22	$6.0\times12.0\times13.0$	B32621A6223+***	2720	4400	4000
		33	$6.0\times12.0\times13.0$	B32621A6333+***	2720	4400	4000

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$ $J = \pm 5\%$ *** = Packaging code:

289 = Ammo pack

189 = Reel

000 = Untaped (lead length 6 - 1 mm)

High pulse (stacked)

Ordering codes and packing units (lead spacing 10 mm)

V_R	V_{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times I$	(composition see	pack	pcs./	pcs./
V DC	V AC	nF	mm	below)	pcs./MOQ	MOQ	MOQ
1000	500	2.2	$4.0 \times 7.0 \times 13.0$	B32621A0222+***	4000	6800	4000
		3.3	$4.0 \times 9.0 \times 13.0$	B32621A0332+***	4000	6800	4000
		4.7	$4.0 \times 9.0 \times 13.0$	B32621A0472+***	4000	6800	4000
		6.8	$5.0 \times 11.0 \times 13.0$	B32621A0682+***	3320	5200	4000
		10	$6.0 \times 12.0 \times 13.0$	B32621A0103+***	2720	4400	4000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

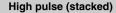
 $J = \pm 5\%$

*** = Packaging code:

289 = Ammo pack

189 = Reel

000 = Untaped (lead length 6 - 1 mm)



High pulse (stacked)

Technical data

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ιF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ιF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ιF
Dissipation factor $\tan \delta$ (in 10^{-3}) at $C_R \le 0.1 \mu F$ 0.1 $\mu F < C_R \le 0.22 \mu F$ 1.0 (upper limit values) 10 kHz - 1.5 100 kHz 4.0 - 1.5 100 kHz 4.0 - 1.5 100 G Ω Insulation resistance R_{ins} at 20 °C, rel. humidity $\le 65\%$ (minimum as-delivered values) DC test voltage 1.6 · V_R , 2 s Category voltage V_C (continuous operation with V_{DC} $T_A \le 85$ $V_C = V_R$ $V_{C,RMS} = V_{RMS}$ or V_{AC} at $f \le 1$ kHz) $V_{C,RMS} = V_{RMS}$ V_{C,R	ιF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ιF ———
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
at 20 °C, rel. humidity \le 65% (minimum as-delivered values)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$]
	-T _A)/80
	ours)
	000 h)
Damp heat test 56 days/40 °C/93% relative humidity	000 h)
Limit values after damp Capacitance change $ \Delta C/C \le 3\%$	
heat test Dissipation factor change $\Delta \tan \delta \le 0.5 \cdot 10^{-3}$ (at 1 kH	z)
≤ 1.0 · 10 ⁻³ (at 10 k	Hz)
Insulation resistance R_{ins} $\geq 50\%$ of minimum	
as-delivered values	
Reliability:	
Failure rate λ 1 fit ($\leq 1 \cdot 10^{-9}$ /h) at 0.5 · V _R , 40 °C	
Service life t_{SL} 200 000 h at 1.0 · V_{R} , 85 °C	
For conversion to other operating conditions and tempera	tures,
refer to chapter "Quality, 2 Reliability".	
Failure criteria:	
Total failure Short circuit or open circuit	
Failure due to variation Capacitance change $ \Delta C/C $ > $\pm 10\%$	
of parameters Dissipation factor $\tan \delta$ > 4 \cdot upper limit val	
Insulation resistance R_{ins} < 1500 $M\Omega$	ue

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in V/us.

" k_0 " represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in $V^2/\mu s$.

Note:

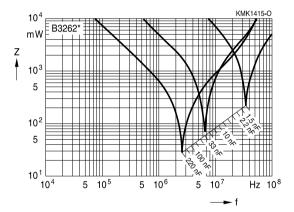
The values of dV/dt and k_0 provided below must not be exceeded in order to avoid damaging the capacitor.

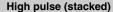
dV/dt values

Lead spa	cing	7.5 mm	10 mm
V_R	V_{RMS}		
V DC	V AC	dV/dt in V/μs	
160	90	750	600
250	140	1 200	900
400	200	1 500	1 050
630	400	2 700	1 800
1 000	500	3 200	2 400
1 000	600	4 000	-

ko values

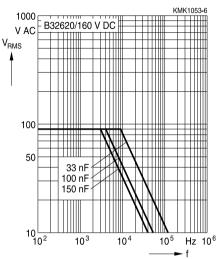
Lead spacing		7.5 mm	10 mm
V_R	V_{RMS}		
V DC	V AC	k ₀ in V ² /μs	
160	90	240 000	190 000
250	140	600 000	450 000
400	200	1 200 000	840 000
630	400	3 400 000	2 250 000
1 000	500	6 400 000	4 800 000
1 000	600	8 000 000	-



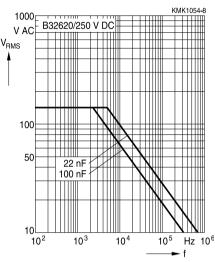

High pulse (stacked)

Impedance Z versus frequency f

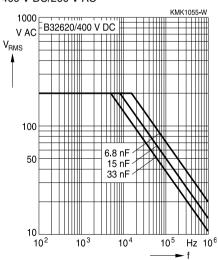
(typical values)

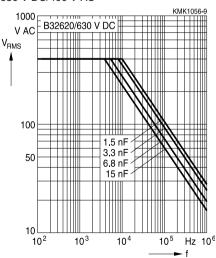


Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤90 °C)


For T_A >90 °C, please refer to "General technical information", section 3.2.3.

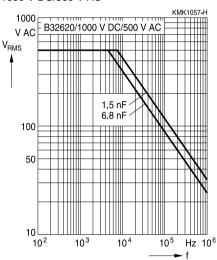
Lead spacing 7.5 mm


160 V DC/90 V AC

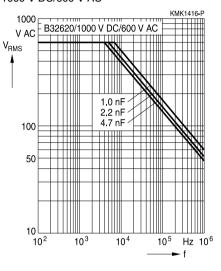

250 V DC/140 V AC

400 V DC/200 V AC

630 V DC/400 V AC


High pulse (stacked)

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤90 °C)

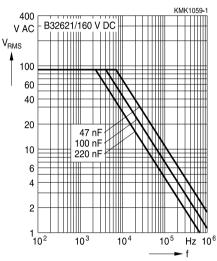

For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 7.5 mm

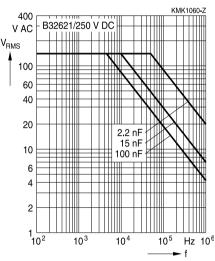
1000 V DC/500 V AC

1000 V DC/600 V AC

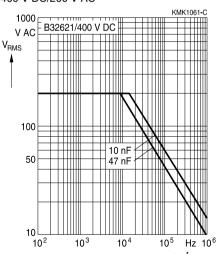
High pulse (stacked)

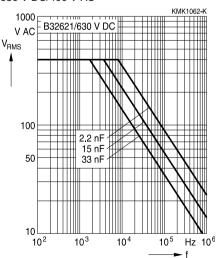


Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤90 °C)


For T_A >90 °C, please refer to "General technical information", section 3.2.3.

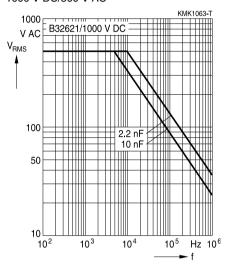
Lead spacing 10 mm


160 V DC/90 V AC

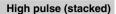

250 V DC/140 V AC

400 V DC/200 V AC

630 V DC/400 V AC

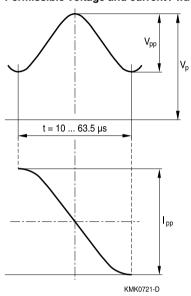

High pulse (stacked)

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, $T_A \le 90$ °C)

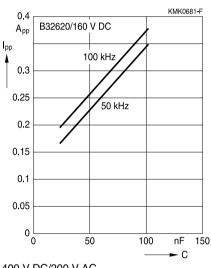

For T_A >90 °C, please refer to "General technical information", section 3.2.3.

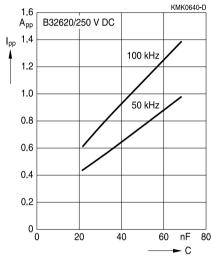
Lead spacing 10 mm

1000 V DC/500 V AC



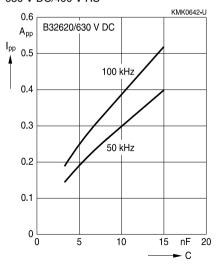
Sinus-wave application, lighting Permissible voltage and current / waveform

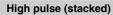



Sinus-wave application, lighting Permissible current Ipp versus rated capacitance CR

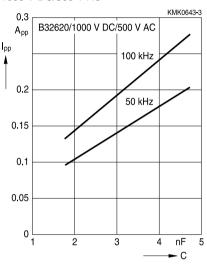
Lead spacing 7.5 mm

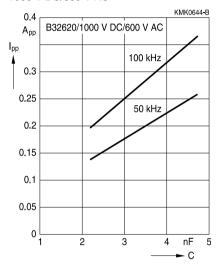
160 V DC/90 V AC


250 V DC/140 V AC



630 V DC/400 V AC

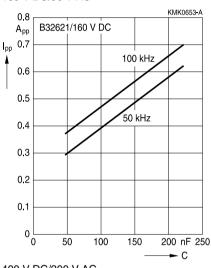



Sinus-wave application, lighting Permissible current I_{pp} versus rated capacitance C_R

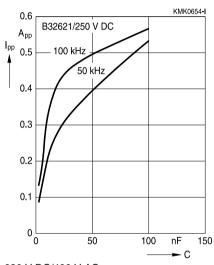
Lead spacing 7.5 mm

1000 V DC/500 V AC

1000 V DC/600 V AC

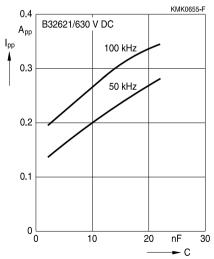


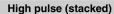
High pulse (stacked)


Sinus-wave application, lighting Permissible current Ipp versus rated capacitance CR

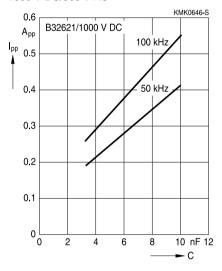
Lead spacing 10 mm

160 V DC/90 V AC


250 V DC/140 V AC


400 V DC/200 V AC

630 V DC/400 V AC



Sinus-wave application, lighting Permissible current I_{pp} versus rated capacitance C_{R}

Lead spacing 10 mm

1000 V DC/500 V AC

High pulse (stacked)

Mounting guidelines

1 Soldering

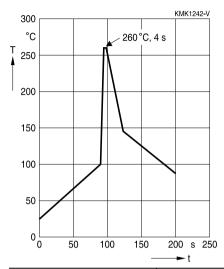
1.1 Solderability of leads

The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1.

Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at 155 °C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur.

Solder bath temperature	235 ±5 °C
Soldering time	2.0 ±0.5 s
Immersion depth	2.0 +0/-0.5 mm from capacitor body or seating plane
Evaluation criteria:	
Visual inspection	Wetting of wire surface by new solder ≥90%, free-flowing solder

1.2 Resistance to soldering heat


Resistance to soldering heat is tested to IEC 60068-2-20, test Tb, method 1A. Conditions:

Series	s	Solder bath temperature	Soldering time
MKT	boxed (except $2.5 \times 6.5 \times 7.2$ mm) coated	260 ±5 °C	10 ±1 s
	uncoated (lead spacing > 10 mm)		
MFP	uncoded (load opacing > 10 mm)		
MKP	(lead spacing > 7.5 mm)		
MKT	boxed (case $2.5 \times 6.5 \times 7.2$ mm)		5 ±1 s
MKP	(lead spacing ≤ 7.5 mm)		< 4 s
MKT	uncoated (lead spacing ≤ 10 mm)		recommended soldering
	insulated (B32559)		profile for MKT uncoated
			(lead spacing ≤ 10 mm) and
			insulated (B32559)

High pulse (stacked)

Immersion depth $2.0 + 0/-0.5$ mm from capacitor body or seating plane	
Shield	Heat-absorbing board, (1.5 \pm 0.5) mm thick, between capacitor body and liquid solder
Evaluation criteria:	
Visual inspection	No visible damage
$\Delta C/C_0$	2% for MKT/MKP/MFP 5% for EMI suppression capacitors
tan δ As specified in sectional specification	

High pulse (stacked)

1.3 General notes on soldering

Permissible heat exposure loads on film capacitors are primarily characterized by the upper category temperature T_{max} . Long exposure to temperatures above this type-related temperature limit can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like:

- Pre-heating temperature and time
- Forced cooling immediately after soldering
- Terminal characteristics: diameter, length, thermal resistance, special configurations (e.g. crimping)
- Height of capacitor above solder bath
- Shadowing by neighboring components
- Additional heating due to heat dissipation by neighboring components
- Use of solder-resist coatings

The overheating associated with some of these factors can usually be reduced by suitable countermeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included.

EPCOS recommends the following conditions:

- Pre-heating with a maximum temperature of 110 °C
- Temperature inside the capacitor should not exceed the following limits:
 - MKP/MFP 110 °C
 - MKT 160 °C
- When SMD components are used together with leaded ones, the leaded film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step.
- Leaded film capacitors are not suitable for reflow soldering.

Uncoated capacitors

For uncoated MKT capacitors with lead spacings ≤10 mm (B32560/B32561) the following measures are recommended:

- pre-heating to not more than 110 °C in the preheater phase
- rapid cooling after soldering

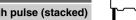
High pulse (stacked)

Cautions and warnings

- Do not exceed the upper category temperature (UCT).
- Do not apply any mechanical stress to the capacitor terminals.
- Avoid any compressive, tensile or flexural stress.
- Do not move the capacitor after it has been soldered to the PC board.
- Do not pick up the PC board by the soldered capacitor.
- Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing.
- Do not exceed the specified time or temperature limits during soldering.
- Avoid external energy inputs, such as fire or electricity.
- Avoid overload of the capacitors.

The table below summarizes the safety instructions that must always be observed. A detailed description can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines".

Topic	Safety information	Reference chapter "General technical information"
Storage conditions	Make sure that capacitors are stored within the specified range of time, temperature and humidity conditions.	4.5 "Storage conditions"
Flammability	Avoid external energy, such as fire or electricity (passive flammability), avoid overload of the capacitors (active flammability) and consider the flammability of materials.	5.3 "Flammability"
Resistance to vibration Do not exceed the tested ability to withstand vibration. The capacitors are tested to IEC 60068-2-6. EPCOS offers film capacitors specially design for operation under more severe vibration regis		5.2 "Resistance to vibration"


High pulse (stacked)

Topic	Safety information	Reference chapter "Mounting guidelines"
Soldering	Do not exceed the specified time or temperature limits during soldering.	1 "Soldering"
Cleaning	Use only suitable solvents for cleaning capacitors.	2 "Cleaning"
Embedding of capacitors in finished assemblies	When embedding finished circuit assemblies in plastic resins, chemical and thermal influences must be taken into account. Caution: Consult us first, if you also wish to embed other uncoated component types!	3 "Embedding of capacitors in finished assemblies"

MKP

B32620 ... B32621

High pulse (stacked)

Symbols and terms

Symbol	English	German
α	Heat transfer coefficient	Wärmeübergangszahl
α_{C}	Temperature coefficient of capacitance	Temperaturkoeffizient der Kapazität
Α	Capacitor surface area	Kondensatoroberfläche
$eta_{ extsf{c}}$	Humidity coefficient of capacitance	Feuchtekoeffizient der Kapazität
С	Capacitance	Kapazität
C_R	Rated capacitance	Nennkapazität
ΔC	Absolute capacitance change	Absolute Kapazitätsänderung
ΔC/C	Relative capacitance change (relative	Relative Kapazitätsänderung (relative
	deviation of actual value)	Abweichung vom Ist-Wert)
$\Delta C/C_R$	Capacitance tolerance (relative deviation	, ,
	from rated capacitance)	vom Nennwert)
dt	Time differential	Differentielle Zeit
Δt	Time interval	Zeitintervall
ΔT	Absolute temperature change	Absolute Temperaturänderung
	(self-heating)	(Selbsterwärmung)
∆tan δ	Absolute change of dissipation factor	Absolute Änderung des Verlustfaktors
ΔV	Absolute voltage change	Absolute Spannungsänderung
dV/dt	Time differential of voltage function (rate	Differentielle Spannungsänderung
	of voltage rise)	(Spannungsflankensteilheit)
$\Delta V/\Delta t$	Voltage change per time interval	Spannungsänderung pro Zeitintervall
E	Activation energy for diffusion	Aktivierungsenergie zur Diffusion
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatz-Serienwiderstand
f	Frequency	Frequenz
f ₁	Frequency limit for reducing permissible	Grenzfrequenz für thermisch bedingte
	AC voltage due to thermal limits	Reduzierung der zulässigen
		Wechselspannung
f ₂	Frequency limit for reducing permissible	Grenzfrequenz für strombedingte
	AC voltage due to current limit	Reduzierung der zulässigen
ı	December from the survey of	Wechselspannung
f _r	Resonant frequency	Resonanzfrequenz
F_{D}	Thermal acceleration factor for diffusion	Therm. Beschleunigungsfaktor zur Diffusion
F⊤	Derating factor	Deratingfaktor
i	Current (peak)	Stromspitze
I _C	Category current (max. continuous	Kategoriestrom (max. Dauerstrom)
-0	current)	
-		

High pulse (stacked)

Symbol	English	German
I _{RMS}	(Sinusoidal) alternating current,	(Sinusförmiger) Wechselstrom
	root-mean-square value	
İz	Capacitance drift	Inkonstanz der Kapazität
k_0	Pulse characteristic	Impulskennwert
Ls	Series inductance	Serieninduktivität
λ	Failure rate	Ausfallrate
λ_{o}	Constant failure rate during useful	Konstante Ausfallrate in der
	service life	Nutzungsphase
λ_{test}	Failure rate, determined by tests	Experimentell ermittelte Ausfallrate
P_{diss}	Dissipated power	Abgegebene Verlustleistung
P_{gen}	Generated power	Erzeugte Verlustleistung
Q	Heat energy	Wärmeenergie
ρ	Density of water vapor in air	Dichte von Wasserdampf in Luft
R	Universal molar constant for gases	Allg. Molarkonstante für Gas
R	Ohmic resistance of discharge circuit	Ohmscher Widerstand des
		Entladekreises
R_i	Internal resistance	Innenwiderstand
R _{ins}	Insulation resistance	Isolationswiderstand
R_P	Parallel resistance	Parallelwiderstand
R_s	Series resistance	Serienwiderstand
S	severity (humidity test)	Schärfegrad (Feuchtetest)
t	Time	Zeit
Т	Temperature	Temperatur
τ	Time constant	Zeitkonstante
tan δ	Dissipation factor	Verlustfaktor
$tan \; \delta_{\scriptscriptstyle D}$	Dielectric component of dissipation factor	Dielektrischer Anteil des Verlustfaktors
tan δ_P	Parallel component of dissipation factor	Parallelanteil des Verlfustfaktors
tan δ_s	Series component of dissipation factor	Serienanteil des Verlustfaktors
TA	Ambient temperature	Umgebungstemperatur
T _{max}	Upper category temperature	Obere Kategorietemperatur
T _{min}	Lower category temperature	Untere Kategorietemperatur
t _{OL}	Operating life at operating temperature	Betriebszeit bei Betriebstemperatur und
02	and voltage	-spannung
T_{op}	Operating temperature	Beriebstemperatur
T _R	Rated temperature	Nenntemperatur
T _{ref}	Reference temperature	Referenztemperatur
t _{SL}	Reference service life	Referenz-Lebensdauer
V _{AC}	AC voltage	Wechselspannung

High pulse (stacked)

Symbol	English	German
V _C	Category voltage	Kategoriespannung
$V_{C,RMS}$	Category AC voltage	(Sinusförmige)
		Kategorie-Wechselspannung
V_{CD}	Corona-discharge onset voltage	Teilentlade-Einsatzspannung
V_{ch}	Charging voltage	Ladespannung
V_{DC}	DC voltage	Gleichspannung
V_{FB}	Fly-back capacitor voltage	Spannung (Flyback)
V_{i}	Input voltage	Eingangsspannung
V_{o}	Output voltage	Ausgangssspannung
V_{op}	Operating voltage	Betriebsspannung
V_p	Peak pulse voltage	Impuls-Spitzenspannung
V_{pp}	Peak-to-peak voltage Impedance	Spannungshub
V_{R}	Rated voltage	Nennspannung
Ŷ _R	Amplitude of rated AC voltage	Amplitude der Nenn-Wechselspannung
V_{RMS}	(Sinusoidal) alternating voltage,	(Sinusförmige) Wechselspannung
	root-mean-square value	
V_{SC}	S-correction voltage	Spannung bei Anwendung "S-correction"
V_{sn}	Snubber capacitor voltage	Spannung bei Anwendung
		"Beschaltung"
Z	Impedance	Scheinwiderstand
е	Lead spacing	Rastermaß

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for tdk manufacturer:

Other Similar products are found below:

VLF5012ST-1R0N2R5 C3225X5R0J686M200AC VLF5014AT-150MR76 VLF5014AT-6R8MR99 CXA-2115 MCZ1210AH301L2T
78P7200-IH/F MLP2012S1R5TT ACH3218-682-TD01 ACT45B-KIT NL565050T-822J-PF C1005JB1H471K050BA
C1608CH1H151J080AA C2012JB1H105K125AB C4532NP01H154J250KA CD75-B2GA331KYGKA CLF10040T-221M CLF12555T220M MLF1005LR12K MLP2520S1R0ST MLP2520S1R5MT VLS252015T-3R3M1R0 VLS4012T-150MR65 ZCAT-KIT MPZ2012-KIT
NLV32T-R27J-EFD CKCM25C0G2A101K060AK CLF10040T-4R7N WTM505090-10K2-5V-G1 VLS252010HBX-R24M-1
CGJ2B2X7R1C222K CGA9M1X7T2J334K CGA8P3X7T2E105M/SOFT CGA6J4C0G2J392J CGA6M3X7R2E154K CGA3E3C0G2E181J
CGA2B2C0G1H331J CEU-AC01-E6-KIT CERB3UX5R0G105M RLF12545T-100M5R1-PF CCT406393-600-36-02 PFC3819QM181K09B-00 VLF3010AT-100MR49 MMZ0603D330C MPZ2012S102ATD25 MLG1608B18NJ UHV-251A FHV-11AN FHV-5AN
FK26X7R2J333K