MIC20XX Family

Fixed and Adjustable Current Limiting Power Distribution Switches

General Description

MIC20XX family of switches are current limiting, high-side power switches, designed for general purpose power distribution and control in digital televisions (DTV), printers, set top boxes (STB), PCs, PDAs, and other peripheral devices (see Functionality Table and Pin Configuration drawings)
MIC20XX family's primary functions are current limiting and power switching. They are thermally protected and will shutdown should their internal temperature reach unsafe levels, protecting both the device and the load, under highcurrent or fault conditions
Features include fault reporting, fault blanking to eliminate noise-induced false alarms, output slew rate limiting, under voltage detection, automatic-on output, and enable pin with choice of either active low or active high enable. The FET is self-contained, with a fixed- or user-adjustable current limit. The MIC20XX family is ideal for any system where current limiting and power control are desired.
The MIC201X ($3 \leq x \leq 9$) and MIC2019A switches offer a unique new patented feature: Kickstart ${ }^{\text {TM }}$, which allows momentary high-current surges up to the secondary current limit (llimit_2nd) without sacrificing overall system safety.
The MIC20xx family is offered, depending on the desired features, in a space-saving 5-pin SOT-23, 6-pin SOT-23, and $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ MLF $^{\circledR}$ packages.
Datasheets and support documentation can be found on Micrel's web site at: www.micrel.com.

Features

- MIC20X3 - MIC20X9
$70 \mathrm{~m} \Omega$ typical on-resistance @ 5V
- MIC2005A/20X9A

170m Ω typical on-resistance @ 5V

- Enable active high or active low
- $2.5 \mathrm{~V}-5.5 \mathrm{~V}$ operating range
- Pre-set current limit values of $0.5 \mathrm{~A}, 0.8 \mathrm{~A}$, and 1.2 A *
- Adjustable current limit 0.2A to 2.0A* (MIC20X7MIC20X9)
- Adjustable current limit 0.1A to 0.9A* (MIC20X9A)
- Undervoltage lock-out (UVLO)
- Variable UVLO allows adjustable UVLO thresholds*
- Automatic load discharge for capacitive loads*
- Soft-start prevents large current inrush
- Adjustable slew rate allows custom slew rates*
- Automatic-on output after fault
- Thermal protection
* Available on some family members

Applications

- Digital televisions (DTV)
- Set top boxes
- PDAs
- Printers
- USB / IEEE 1394 power distribution
- Desktop and laptop PCs
- Game consoles
- Docking stations

Typical Application

Figure 1. Typical Application Circuit

Ordering Information

MIC2003/2013

Part Number ${ }^{(1)}$	Marking ${ }^{(2)}$	Current Limit	Kickstart ${ }^{\text {M }}$	Package
MIC2003-0.5YM5	FD05	0.5A	No	5-Pin SOT-23
MIC2003-0.8YM5	FD08	0.8A		
MIC2003-1.2YM5	FD12	1.2A		
MIC2003-0.5YML	$\overline{\mathrm{D} 05}$	0.5A		$6-\mathrm{Pin} 2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\text {® }}$
MIC2003-0.8YML	D08	0.8A		
MIC2003-1.2YML	$\overline{\mathrm{D} 12}$	1.2A		
MIC2013-0.5YM5	FL05	0.5A	Yes	5-Pin SOT-23
MIC2013-0.8YM5	FL08	0.8A		
MIC2013-1.2YM5	FL12	1.2A		
MIC2013-0.5YML	$\overline{\mathrm{L} 05}$	0.5A		$6-$ Pin $2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\text {® }}$
MIC2013-0.8YML	$\overline{\mathrm{L} 09}$	0.8A		
MIC2013-1.2YML	$\overline{\text { L12 }}$	1.2A		

MIC2004/2014

Part Number ${ }^{(1)}$	Marking ${ }^{(2)}$	Current Limit	Kickstart ${ }^{\text {TM }}$	Package
MIC2004-0.5YM5	FE05	0.5A	No	5-Pin SOT-23
MIC2004-0.8YM5	FE08	0.8A		
MIC2004-1.2YM5	FE12	1.2A		
MIC2004-0.5YML	$\overline{\mathrm{E} 05}$	0.5A		$6-\mathrm{Pin} 2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\circledR}$
MIC2004-0.8YML	E08	0.8A		
MIC2004-1.2YML	$\overline{\mathrm{E} 12}$	1.2A		
MIC2014-0.5YM5	FM05	0.5A	Yes	5-Pin SOT-23
MIC2014-0.8YM5	FM08	0.8A		
MIC2014-1.2YM5	FM12	1.2A		
MIC2014-0.5YML	M05	0.5A		$6-\mathrm{Pin} 2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\text {® }}$
MIC2014-0.8YML	M09	0.8A		
MIC2014-1.2YML	M12	1.2A		

Notes:

1. All MIC20XX Family parts are RoHS-compliant lead free.
2. Over/Under-bar symbol ($\left.{ }^{-} /{ }_{-}\right)$may not be to scale. On the package the over/under symbol begins above/below the first character of the marking.

Ordering Information (Continued)

MIC2005

Part Number ${ }^{(1)}$	Marking ${ }^{(2)}$	Current Limit	Enable	Kickstart ${ }^{\text {™ }}$	Package
MIC2005-0.5YM6	FF05	0.5A	Active High	No	6-Pin SOT-23
MIC2005-0.8YM6	FF08	0.8A	Active High		
MIC2005-1.2YM6	FF12	1.2A	Active High		
MIC2005-0.5YML	$\overline{\mathrm{F} 05}$	0.5A	Active High		$6-\mathrm{Pin} 2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}^{\text {® }}$
MIC2005-0.8YML	F08	0.8A	Active High		
MIC2005-1.2YML	$\overline{\mathrm{F} 12}$	1.2A	Active High		

MIC2005L

Part Number $^{(\mathbf{1})}$	Marking $^{(2)}$	Current Limit	Enable	Kickstart $^{\text {™ }}$	Package
MIC2005-0.5LYM5	$\underline{5 L F F}$	0.5 A	Active Low		No
5IC2005-0.8LYM5	$\underline{8 L F F}$	0.8 A	Active Low		
MIC2005-1.2LYM5	$\underline{\text { 4LFF }}$	1.2 A	Active Low		

MIC2005A

Part Number ${ }^{(1)}$	Marking ${ }^{(2)}$	Current Limit	Enable	Kickstart ${ }^{\text {TM }}$	Package
MIC2005A-1YM5	FA51	0.5A	Active High	No	5-Pin SOT-23
MIC2005A-2YM5	FA52	0.5A	Active Low		
MIC2005A-1YM6	FA53	0.5A	Active High		6-Pin SOT-23
MIC2005A-2YM6	FA54	0.5A	Active Low		

MIC2015

Part Number ${ }^{(1)}$	Marking ${ }^{(2)}$	Current Limit	Enable	Kickstart ${ }^{\text {TM }}$	Package
MIC2015-0.5YM6	FN05	0.5A	Active High	Yes	6-Pin SOT-23
MIC2015-0.8YM6	FN08	0.8A	Active High		
MIC2015-1.2YM6	FN12	1.2 A	Active High		
MIC2015-0.5YML	$\overline{\mathrm{N} 05}$	0.5A	Active High		$6-$ Pin $2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\text {® }}$
MIC2015-0.8YML	$\overline{\mathrm{N} 0} 8$	0.8A	Active High		
MIC2015-1.2YML	N12	1.2A	Active High		

Notes:

1. All MIC20XX Family parts are RoHS-compliant lead free.
2. Over/Under-bar symbol (${ }^{-} /$_ $)$may not be to scale. On the package the over/under symbol begins above/below the first character of the marking.

Ordering Information (Continued)

MIC2006/2016

Part Number ${ }^{(1)}$	Marking ${ }^{(2)}$	Current Limit	Kickstart ${ }^{\text {TM }}$	Package
MIC2006-0.5YM6	FG05	0.5A	No	6-Pin SOT-23
MIC2006-0.8YM6	FG08	0.8A		
MIC2006-1.2YM6	FG12	1.2A		
MIC2006-0.5YML	$\overline{\mathrm{G} 05}$	0.5A		$6-$ Pin $2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\circledR}$
MIC2006-0.8YML	$\overline{\mathrm{G} 08}$	0.8A		
MIC2006-1.2YML	$\overline{\mathrm{G} 12}$	1.2A		
MIC2016-0.5YM6	FP05	0.5A	Yes	6-Pin SOT-23
MIC2016-0.8YM6	FP08	0.8A		
MIC2016-1.2YM6	FP12	1.2A		
MIC2016-0.5YML	$\overline{\mathrm{P} 05}$	0.5A		$6-$ Pin $2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}^{\circledR}$
MIC2016-0.8YML	$\overline{\mathrm{P} 09}$	0.8A		
MIC2016-1.2YML	$\overline{\mathrm{P} 12}$	1.2A		

MIC2007/2017

Part Number ${ }^{(1)}$	Marking ${ }^{(2)}$	Current Limit	Kickstart ${ }^{\text {™ }}$	Package
MIC2007YM6	FHAA	0.2A - 2.0A	No	6-Pin SOT-23
MIC2007YML	$\overline{\text { HAA }}$			6 -Pin $2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\circledR}$
MIC2017YM6	FQAA		Yes	6-Pin SOT-23
MIC2017YML	QAA			6 -Pin $2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\circledR}$

MIC2008/2018

Part Number ${ }^{(1)}$	Marking ${ }^{(2)}$	Current Limit	Kickstart ${ }^{\text {TM }}$	Package
MIC2008YM6	FJAA	0.2A-2.0A	No	6-Pin SOT-23
MIC2008YML	$\overline{J A} A$			6 -Pin $2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\text {® }}$
MIC2018YM6	FRAA		Yes	6-Pin SOT-23
MIC2018YML	$\overline{\mathrm{RA}} \mathrm{A}$			6 -Pin $2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\text {® }}$

MIC2009/2019

Part Number ${ }^{(1)}$	Marking ${ }^{(2)}$	Current Limit	Kickstart ${ }^{\text {TM }}$	Package
MIC2009YM6	FKAA	0.2A-2.0A	No	6-Pin SOT-23
MIC2009YML	KAA			$6-$ Pin $2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\text {® }}$
MIC2019YM6	FSAA		Yes	6-Pin SOT-23
MIC2019YML	$\overline{\text { SAA }}$			$6-$ Pin $2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}{ }^{\circledR}$

Notes:

1. All MIC20XX Family parts are RoHS-compliant lead free.
2. Over/Under-bar symbol (${ }^{-} /$_ $)$may not be to scale. On the package the over/under symbol begins above/below the first character of the marking.

Ordering Information (Continued)

MIC2009A/2019A

Part Number ${ }^{(1)}$	Marking ${ }^{(2)}$	Current Limit	Kickstart ${ }^{\text {TM }}$	Enable	Package
MIC2009A-1YM6	FK1	0.1A-0.9 A	No	Active High	6-pin SOT-23
MIC2009A-2YM6	FK2			Active Low	
MIC2019A-1YM6	FS1		Yes	Active High	
MIC2019A-2YM6	FS2			Active Low	

Notes:

1. All MIC20XX Family parts are RoHS-compliant lead free.
2. Over/Under-bar symbol (${ }^{-} /$_ $)$may not be to scale. On the package the over/under symbol begins above/below the first character of the marking.

MIC20XX Family Member Functionality

Part Number		ІІimit	Pin Function						
Normal Limiting	Kickstart ${ }^{\text {m }}$ (1)		$\mathrm{I}_{\text {Limit }}$	ENABLE High	ENABLE Low	CSLEW	FAULTI	VUVLO ${ }^{(5)}$	Load Discharge
2003	2013	Fixed ${ }^{(2)}$	-	-	-	-	-	-	-
2004	2014		-	-	-	-	-	-	-
2005	2015		-	-	-	-	-	-	-
2005L	$-{ }^{(1)}$		-	-	-	-	-	-	-
2005A-1	- ${ }^{(1)}$		-	-	-	$-^{(6)}$	\triangle	-	-
2005A-2	- ${ }^{(1)}$		-	-	-	$-{ }^{(6)}$	-	-	-
2006	2016		-	-	-	-	-	-	-
2007	2017	Adj. ${ }^{(3)}$	-	-	-	-	-	-	-
2008	2018		-	-	-	-	-	-	-
2009	2019		\triangle	\triangle	-	-	\triangle	-	-
2009A-1	2019A-1		-	-	-	-	-	-	-
2009A-2	2019A-2		-	-	-	-	-	-	-

Notes:

1. Kickstart ${ }^{T M}$ provides an alternate start-up behavior; however, pin-outs are identical.
2. Kickstart ${ }^{T M}$ not available.
3. Fixed = Factory-programmed current limit.
4. Adj. = User adjustable current limit.
5. VUVLO = Variable UVLO (Previously called DML).
6. CSLEW not available in 5-pin package.

MIC20XX Family Member Pin Configuration Table, SOT Packages

Part Number		limit $^{\text {lim }}$	Pin Number					
Normal Limiting	Kickstart ${ }^{\text {TM }}$		1	2	3	4	5	6
2003	2013	Fixed ${ }^{(2)}$	VIN	GND	NC	NC	VOUT	-
2004	2014		VIN	GND	EN	NC	VOUT	-
2005	2015		VIN	GND	EN	FAULT/	CSLEW	VOUT
2005L	$-^{(1)}$		VIN	GND	EN	FAULT/	VOUT	-
2005Axxx6	$-^{(1)}$		VIN	GND	EN	FAULT/	CSLEW	VOUT
2005Axxx5	$-{ }^{(1)}$		VIN	GND	EN	FAULT/	VOUT	-
2006	2016		VIN	GND	EN	VUVLO ${ }^{(4)}$	CSLEW	VOUT
2007	2017	Adj. ${ }^{(3)}$	VIN	GND	EN	ILIMIT	CSLEW	VOUT
2008	2018		VIN	GND	EN	ILIMIT	CSLEW	VOUT
2009	2019		VIN	GND	EN	FAULT/	ILIMIT	VOUT
2009A	2019A		VIN	GND	EN	FAULT/	ILIMIT	VOUT

Notes:

1. Kickstart ${ }^{\text {TM }}$ not available.
2. \quad Fixed $=$ Factory-programmed current limit.
3. $\quad \mathrm{I}_{\text {LIMIT }}=$ User adjustable current limit.
4. $\mathrm{VUVLO}=$ Variable UVLO (Previously called DLM).

MIC20XX Family Member Pin Configuration Table, MLF ${ }^{\circledR}$ Packages ${ }^{(5)}$

Part Number		I Limit	Pin Number					
Normal Limiting	Kickstart ${ }^{\text {™ }}$		6	5	4	3	2	1
2003	2013	Fixed ${ }^{(2)}$	VIN	GND	NC	NC	NC	VOUT
2004	2014		VIN	GND	EN	NC	NC	VOUT
2005	2015		VIN	GND	EN	FAULT/	CSLEW	VOUT
2006	2016		VIN	GND	EN	VUVLO ${ }^{(4)}$	CSLEW	VOUT
2007	2017	Adj. ${ }^{(3)}$	VIN	GND	EN	ILIMIT	CSLEW	VOUT
2008	2018		VIN	GND	EN	ILIMIT	CSLEW	VOUT
2009	2019		VIN	GND	EN	FAULT/	ILIMIT	VOUT

Notes:

1. Kickstart ${ }^{\text {TM }}$ not available.
2. Fixed = Factory-programmed current limit.
3. limit $^{\text {LIT }}$ User adjustable current limit.
4. VUVLO = Variable UVLO (Previously called DLM).
5. Connect EP to GND.

MIC20XX Family Member Pin Configuration Drawings

Fixed Current Limit

MIC20X3

5-Pin SOT-23 (M5)

MIC20X4

MIC20X5

5-Pin SOT-23 (M5) MIC2005-X.XL

MIC20X6

6-Pin SOT-23 (M6)

MIC20XX Family Member Pin Configuration Drawings (Continued)

Adjustable Current Limit

MIC20X7/20X8

6-Pin SOT-23 (M6)

MIC20X9

6-Pin SOT-23 (M6)

MIC2005A

5-Pin SOT-23 (M5)

6-Pin MLF ${ }^{\circledR}$ (ML) (Top View)

MIC2009A

6-Pin SOT-23 (M6)

Descriptions

These pin and signal descriptions aid in the differentiation of a pin from electrical signals and components connected to that pin. For example, VOUT is the switch's output pin, while $\mathrm{V}_{\text {OUt }}$ is the electrical signal output voltage present at the VOUT pin.

Pin Descriptions

Pin Name	Type	Description
VIN	Input	Supply input. This pin provides power to both the output switch and the switch's internal control circuitry.
GND	-	Ground.
EN	Input	Switch Enable (Input):
FAULT/	Output	Fault status. A logic LOW on this pin indicates the switch is in current limiting, or has been shut down by the thermal protection circuit. This is an open-drain output allowing logical OR'ing of multiple switches.
CSLEW	Input	Slew rate control. Adding a small value capacitor between this pin and VIN slows turn-ON of the power FET.
VOUT	Output	Switch output. The load being driven by the switch is connected to this pin.
VUVLO	Input	Variable Under Voltage Lockout (VUVLO): Monitors the input voltage through a resistor divider between VIN and GND. Shuts the switch off if voltage falls below the threshold set by the resistor divider. Previously called VUVLO.
ILIMIT	Input	Set current limit threshold via a resistor connected from ILIMIT to GND.
EP	Thermal	On MLF packages connect EP to GND.

Signal Descriptions

Signal Name	Type	Description
$\mathrm{V}_{\text {IN }}$	Input	Electrical signal input voltage present at the VIN pin.
GND	-	Ground.
$\mathrm{V}_{\text {EN }}$	Input	Electrical signal input voltage present at the ENABLE pin.
$\mathrm{V}_{\text {FAULT/ }}$	Output	Electrical signal output voltage present at the FAULT/ pin.
$\mathrm{C}_{\text {SLEW }}$	Component	Capacitance value connected to the CSLEW pin.
V $_{\text {OUT }}$	Output	Electrical signal output voltage present at the VOUT pin.
V VUVLO_TH	Internal	VUVLO internal reference threshold voltage. This voltage is compared to the VUVLO pin input voltage to determine if the switch should be disabled. Reference threshold voltage has a typical value of 250 mV.
CLOAD	Component	Capacitance value connected in parallel with the load. Load capacitance.
IOUT	Output	Electrical signal output current present at the VOUT pin.
ILIMIT	Internal	Switch's current limit. Fixed at factory or user adjustable.

Absolute Maximum Ratings ${ }^{(1)}$
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUt }}$ \qquad -0.3 V to 6 V
All other pins .-0.3 V to 5.5 V
Power Dissipation (P_{D}) Internally Limited Continuous Output Current
All except MIC2005A / MIC20X9A.................2.25A
MIC2005A / 20X9A ...1.0A
Maximum Junction Temperature (T_{J}) $150^{\circ} \mathrm{C}$
Storage Temperature (T_{s})................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec)............... $260^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(2)}$

Supply Voltage..2.5V to 5.5V
Continuous Output Current
All except MIC2005A / MIC20X9A OA to 2.1A
MIC2005A/20X9A..................................... OA to 0.9A
Ambient Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$............ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Package Thermal Resistance ${ }^{(3)}$

SOT-23-5/6 (θ_{JA}) .. $230^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics ${ }^{(4)}$

$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. Bold indicates $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ limits; $\mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}$.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
VIN	Switch Input Voltage		2.5		5.5	V
$\mathrm{I}_{\text {LEAK }}$	Output Leakage Current ${ }^{(5)}$	Switch $=$ OFF, $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$ Active Low Enable, $\mathrm{V}_{\mathrm{EN}}=1.5 \mathrm{~V}$ Active High Enable, $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$		12	100	$\mu \mathrm{A}$
MIC2005A, MIC2009A, MIC2019A						
I_{N}	Supply Current ${ }^{(5)}$	Switch = ON Active Low Enable, $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$ Active High Enable, $\mathrm{V}_{\mathrm{EN}}=1.5 \mathrm{~V}$		80	300	$\mu \mathrm{A}$
		Switch = OFF Active Low Enable, $\mathrm{V}_{\mathrm{EN}}=1.5 \mathrm{~V}$		8	15	
		$\begin{aligned} & \text { Switch = OFF } \\ & \text { Active High Enable, } \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V} \end{aligned}$		1	5	
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Power Switch Resistance	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}$		170	220	$\mathrm{m} \Omega$
					275	
MIC2005A						
$\mathrm{I}_{\text {LIMIT }}$	Fixed Current Limit	$\mathrm{V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }}$	0.5	0.7	0.9	A
MIC2009A, MIC2019A						
$\mathrm{C}_{\text {LF }}$	Variable Current Limit Factors	$\mathrm{I}_{\text {OUT }}=0.9 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }}$	172	211	263	V
		I OUT $=0.5 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }}$	152	206	263	
		$\mathrm{I}_{\text {OUT }}=0.2 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }}$	138	200	263	
		Iout $=0.1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }}$	121	192	263	
MIC2019A						
ILIMIT_2nd	Secondary Current Limit	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	1	2	3	A

Notes:

1. Exceeding the absolute maximum rating may damage the device.
2. The device is not guaranteed to function outside its operating rating.
3. Requires proper thermal mounting to achieve this performance
4. Specifications for packaged product only.
5. Check the Ordering Information section to determine which parts are Active High or Active Low.

Electrical Characteristics ${ }^{(4)}$ (Continued)

$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. Bold indicates $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ limits; $\mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}$.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
MIC2003-MIC2009, MIC2013-MIC2019, MIC2005-X.XL						
In	Supply Current ${ }^{(5)}$	Switch = ON Active Low Enable, $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$ Active High Enable, $\mathrm{V}_{\mathrm{EN}}=1.5 \mathrm{~V}$		80	330	$\mu \mathrm{A}$
		$\begin{aligned} & \text { Switch = OFF } \\ & \text { Active Low Enable, V }{ }^{\text {EN }}=1.5 \mathrm{~V} \end{aligned}$		8	15	
		$\begin{aligned} & \text { Switch = OFF } \\ & \text { Active High Enable, } \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V} \end{aligned}$		1	5	
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Power Switch Resistance	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}$		70	100	$\mathrm{m} \Omega$
					125	
MIC2003-X.X, MIC2004-X.X, MIC2005-X.X, MIC2006-X.X, MIC2013-X.X, MIC2014-X.X, MIC2015-X.X MIC2016-X.X, MIC2005-X.XL						
$\mathrm{I}_{\text {LIMIT }}$	Fixed Current Limit	$-0.5, \mathrm{~V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }}$	0.5	0.7	0.9	A
		$-0.8, \mathrm{~V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }}$	0.8	1.1	1.5	
		$-1.2, \mathrm{~V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }}$	1.2	1.6	2.1	
MIC2005-0.5						
ILimit	Fixed Current Limit	$\mathrm{V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }}$	0.5	0.7	0.9	A
MIC2007, MIC2008, MIC2009, MIC2017, MIC2018, MIC2019						
$\mathrm{C}_{\text {LF }}$	Variable Current Limit Factors	$\mathrm{l}_{\text {OUT }}=2.0 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }}$	210	250	286	V
		$\mathrm{l}_{\text {OUT }}=1.0 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }}$	190	243	293	
		$\mathrm{I}_{\text {OUT }}=0.5 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }}$	168	235	298	
		$\mathrm{I}_{\text {OUT }}=0.2 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }}$	144	225	299	
MIC2013, MIC2014, MIC2015, MIC2016, MIC2017, MIC2018, MIC2019						
luimit_2nd	Secondary Current Limit	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	2.2	4	6	A
MIC2006, MIC2016						
Vuvio_th	Variable UVLO Threshold		225	250	275	mV
MIC20x4, MIC20x7						
R DSCHg	Load Discharge Resistance	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{IINK}}=5 \mathrm{~mA}$	70	126	200	Ω
MIC20X5, MIC20X6, MIC20X7, MIC20X8						
Icslew	Cslew Input Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 0.8 \mathrm{~V}_{\text {IN }}$		0.175		$\mu \mathrm{A}$

Electrical Characteristics ${ }^{(4)}$ (Continued)

$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. Bold indicates $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ limits; $\mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}$.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
All Parts						
V_{EN}	ENABLE Input Voltage ${ }^{(6)}$	VIL (MAX)			0.5	V
		$\mathrm{V}_{\mathrm{IH}}(\mathrm{MIN})$	1.5			
IEN	ENABLE Input Current	$\mathrm{OV} \leq \mathrm{V}_{\text {EN }} \leq 5 \mathrm{~V}$		1	5	$\mu \mathrm{A}$
UVLOthreshold	Undervoltage Lock-Out Threshold	$\mathrm{V}_{\text {IN }}$ Rising	2	2.25	2.5	V
		$V_{\text {IN }}$ Falling	1.9	2.15	2.4	
UVLOHysteresis	Undervoltage Lock-Out Hysteresis			0.1		V
$\mathrm{V}_{\text {FAULT }}$	Fault Status Output Voltage	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$		0.25	0.4	V
OTthreshold	Over-Temperature Threshold	T_{J} Increasing		145		${ }^{\circ} \mathrm{C}$
		TJ Decreasing		135		

Note:

6. $\quad \mathrm{V}_{\mathrm{IL}(\operatorname{MAX})}=$ Maximum positive voltage applied to the input which will be accepted by the device as a logic low.
$\mathrm{V}_{\mathbb{H}_{(\text {MAX })}}=$ Maximum positive voltage applied to the input which will be accepted by the device as a logic high.

AC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
$t_{\text {RISE }}$	Output Turn-on rise time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\text {LOAD }}=1 \mu \mathrm{~F}, \\ & \mathrm{~V}_{\text {OUT }}=10 \% \text { to } 90 \% \\ & \mathrm{C}_{\text {SLEW }}{ }^{(7)}=\text { Open } \end{aligned}$	500	1000	1500	$\mu \mathrm{s}$
$t_{\text {D_FAULT }}$	Delay before asserting or releasing FAULT/ MIC2003 - MIC2009 MIC2009A, MIC2005A	Time from current limiting to FAULT/ state change	20	32	49	ms
	Delay before asserting or releasing FAULT/ $\begin{aligned} & \text { MIC2013 - MIC2019 } \\ & \text { MIC2019A } \end{aligned}$	Time from lout continuously exceeding primary current limit condition to FAULT/ state change	77	128	192	
$\mathrm{t}_{\text {D_LIMIT }}$	Delay before current limiting $\begin{aligned} & \text { MIC2013 - MIC2019 } \\ & \text { MIC2019A } \end{aligned}$		77	128	192	ms
$t_{\text {RESET }}$	Delay before resetting Kickstart ${ }^{\text {TM }}$ current limit delay, to_LIMIT $\begin{aligned} & \text { MIC2013 - MIC2019 } \\ & \text { MIC2019A } \end{aligned}$	Out of current limit following a current limit event.	77	128	192	ms
ton_diy	Output Turn-on Delay	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=43 \Omega, \mathrm{C}_{\mathrm{L}}=120 \mu \mathrm{~F}, \\ & \mathrm{~V}_{\text {EN }}=50 \% \text { to } \mathrm{V}_{\text {Out }}=10 \% \\ & { }^{*} \mathrm{C}_{\text {SLEW }}=\text { Open } \end{aligned}$		1000	1500	$\mu \mathrm{s}$
toff_dLy	Output Turn-off Delay	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=43 \Omega, \mathrm{C}_{\mathrm{L}}=120 \mu \mathrm{~F}, \\ & \mathrm{~V}_{\text {EN }}=50 \% \text { to } V_{\text {out }}=90 \% \\ & { }^{*} \mathrm{CsLEw}=\text { Open } \end{aligned}$			700	$\mu \mathrm{s}$

$E S D^{(8)}$

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
V $_{\text {ESD_HB }}$	Electro Static Discharge Voltage: Human Body Model	VOUT and GND	± 4			
	All other pins	± 2			kV	
VESD_MCHN	Electro Static Discharge Voltage; Machine Model	All pins Machine Model	± 200			V

Notes:

7. Whenever $\mathrm{C}_{\text {sLEw }}$ is present.
8. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5 k in series with 100 pF .

Timing Diagrams

Rise and Fall Times

Switching Delay Times

Typical Characteristics

$\mathrm{I}_{\text {LIMIT }}$ vs. Temperature
(MIC20xx-0.5)

$\mathrm{I}_{\text {Lumit }}$ vs. Temperature (MIC20XX - 0.8)

$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{vs}$. . Temperature

$\mathrm{V}_{\text {DROP }}$ vs. Temperature
(MIC20XX-1.2)

$\mathrm{I}_{\text {LIMIT }}$ vs. Temperature
(MIC20xX - 1.2)

$I_{\text {LIMIT }}$ vs. Temperature

$R_{\text {SET }}$ vs. ILIMIT

Typical Characteristics (Continued)

$I_{\text {LIMIT }}$ vs. Temperature (MIC20X9A (0.8A))

$\mathrm{V}_{\text {DROP }}$ vs. Temperature
(MIC20XXA)

Flag Delay vs. Temperature

UVLO Threshold vs. Temperature

Functional Characteristics

Functional Characteristics (Continued)

Output Recovery from Short Circuit

Current Limit Response Time,

Output Recovery from Thermal Shutdown

Functional Characteristics (Continued)

Current Limit Threshold

Kickstart Response

Kickstart Response

Current Inrush Current Response

Kickstart Response
$150 \mathrm{~ms} / 2.2 \mathrm{~L}$ Load Step

Functional Diagram

Figure 2. MIC20XX Family Functional Diagram

Functional Description

$\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {out }}$

$\mathrm{V}_{\mathbb{I}}$ is both the power supply connection for the internal circuitry driving the switch and the input (Source connection) of the power MOSFET switch. $V_{\text {Out }}$ is the Drain connection of the power MOSFET and supplies power to the load. In a typical circuit, current flows from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {Out }}$ toward the load. Since the switch is bidirectional when enabled, if $V_{\text {OUt }}$ is greater than $V_{\mathbb{I}}$, current will flow from $\mathrm{V}_{\text {Out }}$ to $\mathrm{V}_{\text {IN }}$.
When the switch is disabled, current will not flow to the load, except for a small unavoidable leakage current of a few microamps. However, should $V_{\text {OUt }}$ exceed $V_{\text {IN }}$ by more than a diode drop ($\sim 0.6 \mathrm{~V}$), while the switch is disabled, current will flow from output to input via the power MOSFET's body diode.
If discharging $\mathrm{C}_{\text {LOAD }}$ is required by your application, consider using MIC20X4 or MIC20X7; these MIC20XX family members are equipped with a discharge FET to insure complete discharge of $\mathrm{C}_{\text {LOAD }}$.

Current Sensing and Limiting

MIC20XX protects the system power supply and load from damage by continuously monitoring current through the on-chip power MOSFET. Load current is monitored by means of a current mirror in parallel with the power MOSFET switch. Current limiting is invoked when the load exceeds the set over-current threshold. When current limiting is activated the output current is constrained to the limit value, and remains at this level until either the load/fault is removed, the load's current requirement drops below the limiting value, or the switch goes into thermal shutdown.

Kickstart ${ }^{\text {TM }}$

2003	2004	$2005 X$	2006	2007	2008	$2009 X$
2013	2014	2015	2016	2017	2018	$2019 X$

Only parts in bold have Kickstart ${ }^{\text {TM }}$.
(Not available in 5-pin SOT-23 packages)

The MIC201X is designed to allow momentary current surges (Kickstart ${ }^{\text {TM }}$) before the onset of current limiting, which permits dynamic loads, such as small disk drives or portable printers to draw the energy needed to overcome inertial loads without sacrificing system safety. In this respect, the Kickstart ${ }^{\text {TM }}$ parts (MIC201X) differs markedly from the non-Kickstart ${ }^{\text {TM }}$ parts (MIC200X) which immediately limit load current, potentially starving the motor and causing the appliance to stall or stutter.

During this delay period, typically 128 ms , a secondary current limit is in effect. If the load demands a current in excess the secondary limit, MIC201X acts immediately to restrict output current to the secondary limit for the duration of the Kickstart ${ }^{\text {TM }}$ period. After this time the MIC201X reverts to its normal current limit. An example of Kickstart ${ }^{\text {TM }}$ operation is shown in Figure 3.

Figure 3. Kickstart ${ }^{\text {TM }}$ Operation
Figure 3 Label Key:
A. MIC201X is enabled into an excessive load (slew rate limiting not visible at this time scale) The initial current surge is limited by either the overall circuit resistance and power supply compliance, or the secondary current limit, whichever is less.
B. R R_{ON} of the power FET increases due to internal heating (effect exaggerated for emphasis).
C. Kickstart ${ }^{\text {TM }}$ period.
D. Current limiting initiated. FAULT/ goes LOW.
E. $V_{\text {out }}$ is non-zero (load is heavy, but not a dead short where $\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$. Limiting response will be the same for dead shorts).
F. Thermal shutdown followed by thermal cycling.
G. Excessive load released, normal load remains. MIC201X drops out of current limiting.
H. FAULT/ delay period followed by FAULT/ going HIGH.

Undervoltage Lock-Out

Undervoltage lock-out insures no anomalous operation occurs before the device's minimum input voltage of UVLO ${ }_{\text {threshold }}$ which is 2 V minimum, 2.25 V typical, and 2.5 V maximum had been achieved. Prior to reaching this voltage, the output switch (power MOSFET) is OFF and no circuit functions, such as FAULT/ or ENABLE, are considered to be valid or operative.

Variable Undervoltage Lock Out (VUVLO)

2003	2004	$2005 X$	2006	2007	2008	$2009 X$
2013	2014	2015	2016	2017	2018	$2019 X$

Only parts in bold have VUVLO.

Vuvlo functions as an input voltage monitor when the switch in enabled. The $\mathrm{V}_{\mathbb{I N}}$ pin is monitored for a drop in voltage, indicating excessive loading of the V_{IN} supply. When $\mathrm{V}_{\text {IN }}$ is less than the $\mathrm{V}_{\text {ulvo }}$ threshold voltage ($\mathrm{V}_{\text {vuvlo }} \mathrm{TH}$) for 32 ms or more, the MIC20XX disables the switch to protect the supply and allow $\mathrm{V}_{\mathbb{I N}}$ to recover. After 128ms has elapsed, the MIC20X6 enables switch. This disable and enable cycling will continue as long as V_{IN} deceases below the $\mathrm{V}_{\text {UvLo }}$ threshold voltage ($\mathrm{V}_{\text {vuvLO_TH }}$) which has a typical value of 250 mV . The Vuvlo voltage is commonly established by a voltage divider from $\mathrm{V}_{\mathbf{I N}}-\mathrm{to}-\mathrm{GND}$.

ENABLE

2003	2004	$2005 X$	2006	2007	2008	$2009 x$
2013	2014	2015	2016	2017	2018	$2019 x$

Only parts in bold have ENABLE pin.

ENABLE pin is a logic compatible input which activates the main MOSFET switch thereby providing power to the $\bigvee_{\text {Out }}$ pin. ENABLE is either an active HIGH or active LOW control signal. The MIC20XX can operate with logic running from supply voltages as low as 1.5 V .
ENABLE may be driven higher than $\mathrm{V}_{\mathbb{I N}}$, but no higher than 5.5 V and not less than -0.3 V .

FAULTI

2003	2004	2005X	2006	2007	2008	2009X
2013	2014	2015	2016	2017	2018	2019X

Only parts in bold have FAULT/ pin.

FAULT/ is an N-channel open-drain output, which is asserted (LOW true) when switch either begins current limiting or enters thermal shutdown.
FAULT/ asserts after a brief delay when events occur that may be considered possible faults. This delay insures that FAULT/ is asserted only upon valid, enduring, over-current conditions and that transitory event error reports are filtered out.
In MIC200X FAULT/ asserts after a brief delay period, of 32 ms typical. After a fault clears, FAULT/ remains asserted for the delay period of 32 ms

MIC201X's FAULT/ asserts at the end of the Kickstart ${ }^{\text {TM }}$ period which is 128 ms typical. This masks initial current surges, such as would be seen by a motor load starting up. If the load current remains above the current limit threshold after the Kickstart ${ }^{\text {TM }}$ has timed out, then the FAULT/ will be asserted. After a fault clears, FAULT/ remains asserted for the delay of 128 ms .
Because FAULT/ is an open-drain it must be pulled HIGH with an external resistor and it may be wire-OR'd with other similar outputs, sharing a single pull-up resistor. FAULT/ may be tied to a pull-up voltage source which is higher than $\mathrm{V}_{\mathbb{N}}$, but no greater than 5.5 V .

Soft-Start Control

Large capacitive loads can create significant inrush current surges when charged through the switch. For this reason, the MIC20XX family of switches provides a built-in soft-start control to limit the initial inrush currents.
Soft-start is accomplished by controlling the power MOSFET when the ENABLE pin enables the switch.
$\mathrm{C}_{\text {sLew }}$

2003	2004	$2005 X$	2006	2007	2008	$2009 X$
2013	2014	2015	2016	2017	2018	$2019 X$

Only parts in bold have CSLEW pin.
(Not available in 5-pin SOT-23 packages)

The $\mathrm{C}_{\text {sLEw }}$ pin is provided to increase control of the output voltage ramp at turn-on. This input allows designers the option of decreasing the output's slew rate (slowing the voltage rise) by adding an external capacitance between the $\mathrm{C}_{\text {sLew }}$ and $\mathrm{V}_{\text {IN }}$ pins.

Thermal Shutdown

Thermal shutdown is employed to protect the MIC20XX family of switches from damage should the die temperature exceed safe operating levels. Thermal shutdown shuts off the output MOSFET and asserts the FAULT/ output if the die temperature reaches $145^{\circ} \mathrm{C}$.
The switch will automatically resume operation when the die temperature cools down to $135^{\circ} \mathrm{C}$. If resumed operation results in reheating of the die, another shutdown cycle will occur and the switch will continue cycling between ON and OFF states until the overcurrent condition has been resolved.
Depending on PCB layout, package type, ambient temperature, etc., hundreds of milliseconds may elapse from the incidence of a fault to the output MOSFET being shut off. This delay is due to thermal time constants within the system itself. In no event will the device be damaged due to thermal overload because die temperature is monitored continuously by on-chip circuitry.

Application Information

Setting $\mathrm{I}_{\text {Limit }}$

The MIC2009/2019's current limit is user programmable and controlled by a resistor connected between the $\mathrm{I}_{\text {LImit }} \mathrm{pin}$ and GND. The value of this resistor is determined by the following equation:

$$
\mathrm{I}_{\mathrm{LIMIT}}=\frac{\text { CurrentLimitFactor(CLF) }}{\mathrm{R}_{\text {SET }}}
$$

or

$$
\mathrm{R}_{\text {SET }}=\frac{\text { CurrentLimitFactor(CLF) }}{\mathrm{I}_{\mathrm{LIMT}}(\mathrm{~A})}
$$

For example: Set $\mathrm{I}_{\text {Lіміт }}=1.25 \mathrm{~A}$
Looking in the Electrical specifications we will find CLF at $l_{\text {LIMIT }}=1 \mathrm{~A}$.

Min	Typ	Max	Units
190	243	293	V

Table 1. CLF at llimit $=1 \mathrm{~A}$

For the sake of this example, we will say the typical value of CLF at an $\mathrm{I}_{\text {Out }}$ of 1 A is 243 V . Applying the equation above:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{SET}}(\Omega)=\frac{243 \mathrm{~V}}{1.25 \mathrm{~A}}=194.4 \Omega \\
& \mathrm{R}_{\mathrm{SET}}=196 \Omega \\
& \text { (the closest standard } 1 \% \text { value) }
\end{aligned}
$$

Designers should be aware that variations in the measured limit $^{\text {for a }}$ a given $\mathrm{R}_{\text {SET }}$ resistor, will occur because of small differences between individual ICs (inherent in silicon processing) resulting in a spread of $\mathrm{l}_{\text {LImit }}$ values. In the example above we used the typical value of CLF to calculate $\mathrm{R}_{\text {SET }}$. We can determine llimit's spread by using the minimum and maximum values of CLF and the calculated value of $R_{\text {SET }}$.

Giving us a maximum $\mathrm{I}_{\text {LIMIT }}$ variation over temperature of:

ILIMI_MIN	ILIMIT_TYP $^{I_{\text {LIMIT_MAX }}}$	
$0.97 \mathrm{~A}(-22 \%)$	1.25 A	$1.5 \mathrm{~A}(+20 \%)$

lout	Rset	ILIMIT_min	ILimit_max
0.1A	1928Ω	0.063A	0.136A
0.2A	993Ω	0.137A	0.265A
0.3A	673Ω	0.216A	0.391A
0.4A	511Ω	0.296 A	0.515A
0.5A	413Ω	0.379A	0.637A
0.6A	346Ω	0.463 A	0.759A
0.7A	299Ω	0.548A	0.880A
0.8A	263Ω	0.634 A	1.001A
0.9A	235Ω	0.722A	1.121A

Table 2. MIC20x9A R ${ }_{\text {SET }}$ Table

Iout	$\mathbf{R}_{\text {SET }}$	limit_min	llimit_max
0.2 A	1125Ω	0.127 A	0.267 A
0.3 A	765Ω	0.202 A	0.390 A
0.4 A	582Ω	0.281 A	0.510 A
0.5 A	470Ω	0.361 A	0.629 A
0.6 A	395Ω	0.443 A	0.746 A
0.7 A	341Ω	0.526 A	0.861 A
0.8 A	300Ω	0.610 A	0.976 A
0.9 A	268Ω	0.695 A	1.089 A
1 A	243Ω	0.781 A	1.202 A
1.1 A	222Ω	0.868 A	1.314 A
1.2 A	204Ω	0.956 A	1.426 A
1.3 A	189Ω	1.044 A	1.537 A
1.4 A	176Ω	1.133 A	1.647 A
1.5 A	165Ω	1.222 A	1.757 A

Table 3. MIC 20×9 R $_{\text {SET }}$ Table

$$
\begin{aligned}
& \text { LIMIT_MIN }=\frac{190 \mathrm{~V}}{196 \Omega}=0.97 \mathrm{~A} \\
& \text { LIIIT_MAX }=\frac{293 \mathrm{~V}}{196 \Omega}=1.5 \mathrm{~A}
\end{aligned}
$$

$\mathrm{I}_{\text {Limit }}$ vs. Iout Measured

The MIC20XX's current-limiting circuitry, during current limiting, is designed to act as a constant current source to the load. As the load tries to pull more than the allotted current, $V_{\text {out }}$ drops and the input to output voltage differential increases. When $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {out }}$ exceeds 1 V , Iout drops below limit to reduce the drain of fault current on the system's power supply and to limit internal heating of the switch.
When measuring lout it is important to bear this voltage dependence in mind, otherwise the measurement data may appear to indicate a problem when none really exists. This voltage dependence is illustrated in Figures 4 and 5.
In Figure 4, output current is measured as $V_{\text {Out }}$ is pulled below $\mathrm{V}_{\mathbb{I N}}$, with the test terminating when $\mathrm{V}_{\text {OUT }}$ is 1 V below V_{IN}. Observe that once $\mathrm{I}_{\text {Limit }}$ is reached $\mathrm{I}_{\text {out }}$ remains constant throughout the remainder of the test. In Figure 5 this test is repeated but with $\mathrm{V}_{\mathbb{I}}-\mathrm{V}_{\text {OUT }}$ exceeding 1 V .
When $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUt }}>1 \mathrm{~V}$, switch's current limiting circuitry responds by decreasing lout, as can be seen in Figure 5. In this demonstration, $\mathrm{V}_{\text {OUt }}$ is being controlled and $l_{\text {out }}$ is the measured quantity. In real life applications $V_{\text {Out }}$ is determined in accordance with Ω 's law by the load and the limiting current.

Figure 4. $\mathrm{I}_{\text {OUt }}$ in Current Limiting for $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}<1 \mathrm{~V}$

Figure 5. lout in Current Limiting for $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {out }}>1 \mathrm{~V}$
This folding back of $\mathrm{I}_{\text {Lıмाт }}$ can be generalized by plotting $\mathrm{l}_{\text {LImit }}$ as a function of $\mathrm{V}_{\text {OUt }}$, as shown below in Figures 6 and 7. The slope of $\mathrm{V}_{\text {Out }}$ between $\mathrm{I}_{\text {Out }}=0 \mathrm{~V}$ and $\mathrm{I}_{\text {out }}=$ $I_{\text {LIMIT }}$ (where $I_{\text {LIMIT }}=1 \mathrm{~A}$) is determined by $R_{\text {ON }}$ of the switch and $\mathrm{I}_{\text {LIMIT }}$.

Figure 6. Normalized Output Current vs. Output Voltage

Figure 7. Normalized Output Current vs. Output Voltage
C SLEW

2003	2004	$2005 X$	2006	2007	2008	$2009 X$
2013	2014	2015	2016	2017	2018	$2019 X$

Only parts in bold have CSLEW pin.
(Not available in 5-pin SOT-23 packages).

The $\mathrm{C}_{\text {sLEW }}$ pin is provided to increase control of the output voltage ramp at turn-on. This input allows designers the option of decreasing the output's slew rate (slowing the voltage rise) by adding an external capacitance between the $\mathrm{C}_{\text {sLew }}$ and $\mathrm{V}_{\text {IN }}$ pins. This capacitance slows the rate at which the pass FET gate voltage increases and thus, slows both the response to an Enable command as well as Vout's ascent to its final value.
Figure 8 illustrates effect of $\mathrm{C}_{\text {SLEw }}$ on turn-on delay and output rise time.

Figure 8. $\mathrm{C}_{\text {slew }}$ vs. Turn-On, Delay and Rise Times

C Slew's Effect on luimit

An unavoidable consequence of adding $\mathrm{C}_{\text {sLEw }}$ capacitance is a reduction in the MIC20X5 - 20X8's ability to quickly limit current transients or surges. A sufficiently large capacitance can prevent both the primary and secondary current limits from acting in time to prevent damage to the MIC20X5 - 20X8 or the system from a short circuit fault. For this reason, the upper limit on the value of $\mathrm{C}_{\text {sLEw }}$ is 4 nF .

Variable Undervoltage Lock Out (VUVLO)

2003	2004	$2005 X$	2006	2007	2008	$2009 X$
2013	2014	2015	2016	2017	2018	$2019 X$

Only parts in bold have VUVLO pin and functionality.

Power-conscious systems, such as those implementing ACPI, will remain active even in their low-power states and may require the support of external devices through both phases of operation. Under these conditions, the current allowed these external devices may vary according to the system's operating state and as such require dual current limits on their peripheral ports. The MIC20X6 is designed for systems demanding two primary current limiting levels but without the use of a control signal to select between current limits.
To better understand how the MIC20X6 provides this, imagine a system whose main power supply supports heavy loads during normal operation, but in sleep mode is reduced to only few hundred milliamps of output current. In addition, this system has several USB ports which must remain active during sleep. During normal operation, each port can support a 500 mA peripheral, but in sleep mode their combined output current is limited to what the power supply can deliver minus whatever the system itself is drawing.
If a peripheral device is plugged in which demands more current than is available, the system power supply will sag, or crash. The MIC20X6 prevents this by monitoring both the load current and V_{IN}. During normal operation, when the power supply can source plenty of current, the MIC20X6 will support any load up to its factory programmed current limit. When the weaker, standby supply is in operation, the MIC20X6 monitors $\mathrm{V}_{\mathbb{I N}}$ and will shut off its output should $\mathrm{V}_{\mathbb{I N}}$ dip below a predetermined value. This predetermined voltage is user programmable and set by the selection of the resistor divider driving the VUVLO pin.

To prevent false triggering of the VUVLO feature, the MIC20X6 includes a delay timer to blank out momentary excursions below the VUVLO trip point. If $\mathrm{V}_{\text {IN }}$ stays below the VUVLO trip point for longer than 32 ms (typical), then the load is disengaged and the MIC20X6 will wait 128 ms before reapplying power to the load. If $\mathrm{V}_{\mathbb{I N}}$ remains below the VUVLO trip point, then the load will be powered for the 32ms blanking period and then again disengaged. This is illustrated in the scope plot below. If V_{IN} remains above the VUVLO trip point MIC20X6 resumes normal operation.

Figure 9. VUVLO Operation

VUVLO and Kickstart ${ }^{\text {TM }}$ operate independently in the MIC2016. If the high-current surge allowed by Kickstart ${ }^{T M}$ causes $\mathrm{V}_{\text {IN }}$ to dip below the VUVLO trip point for more than 32 ms , VUVLO will disengage the load, even though the Kickstart ${ }^{\text {TM }}$ timer has not timed out.

Figure 10. VUVLO Application Circuit

Calculating VUVLO Resistor Divider Values

The VUVLO feature is designed to keep the internal switch off until the voltage on the VUVLO pin is greater than 0.25 V . A resistor divider network connected to the VUVLO and VIN pins is used to set the input trip voltage $\mathrm{V}_{\text {TRIP }}$ (see Figure 10). The value of R 2 is chosen to minimize the load on the input supply $\mathrm{I}_{\mathrm{DIV}}$ and the value of $R 1$ sets the trip voltage $\mathrm{V}_{\text {TRIP. }}$.
The value of $R 2$ is calculated using:

$$
\mathrm{R} 2=\frac{\mathrm{V}_{\text {VUVLO }}}{\mathrm{I}_{\mathrm{DIV}}}
$$

The vale of R 1 is calculated using:

$$
\mathrm{R} 1=\mathrm{R} 2 \times\left(\frac{\mathrm{V}_{\text {TRIP }}}{\mathrm{V}_{\text {VUVLO }}}-1\right)
$$

Where for both equations:

$$
V_{\text {VuvLo }}=0.25 \mathrm{~V}
$$

When working with large value resistors, a small amount of leakage current from the VUVLO terminal can cause voltage offsets that degrade system accuracy. Therefore, the maximum recommended resistor value for R 2 is $100 \mathrm{k} \Omega$.
Using the divider loading current $\mathrm{I}_{\mathrm{DIV}}$ of $100 \mu \mathrm{~A}$, the value of R2 can be estimated by:

$$
\mathrm{R} 2=\frac{0.25 \mathrm{~V}}{100 \mu \mathrm{~A}}=2.5 \mathrm{k} \Omega
$$

Now the value of R1 can be calculated by:

$$
\mathrm{R} 1=2.5 \mathrm{k} \Omega \times\left(\frac{4.75 \mathrm{~V}}{0.25 \mathrm{~V}}-1\right)=45 \mathrm{k}
$$

where:
$\mathrm{V}_{\text {TRIP }}=4.75 \mathrm{~V}$ (for a 5 V supply)
$\mathrm{V}_{\text {VUVLO }}=0.25 \mathrm{~V}$

The VUVLO comparator uses no hysteresis. This is because the VUVLO blanking timer prevents any chattering that might otherwise occur if V_{IN} varies about the trigger point. The timer is reset by upward crossings of the trip point such that $\mathrm{V}_{\text {IN }}$ must remain below the trip point for the full 32 ms period for load disengagement to occur.
In selecting a $\mathrm{V}_{\text {TRIP }}$ voltage, the designer is cautioned to not make this value less than 2.5 V . A minimum of 2.5 V is required for the MIC20X6's internal circuitry to operate properly. VUVLO trip points below 2.5 V will result in erratic or unpredictable operation.

Kickstart ${ }^{\text {m }}$

2003	2004	$2005 X$	2006	2007	2008	$2009 X$
2013	2014	2015	2016	2017	2018	$2019 X$

Only parts in bold have Kickstart ${ }^{\text {TM }}$.
(Not available in 5-pin SOT-23 packages).

Kickstart ${ }^{\text {TM }}$ allows brief current surges to pass to the load before the onset of normal current limiting, which permits dynamic loads to draw bursts of energy without sacrificing system safety.
Functionally, Kickstart ${ }^{\text {TM }}$ is a forced override of the normal current limiting function provided by the switch. The Kickstart ${ }^{\text {TM }}$ period is governed by an internal timer which allows current to pass up to the secondary current limit (limit_2nd) to the load for 128 ms and then normal (primary) current limiting goes into action.
During Kickstart ${ }^{\text {TM }}$, a secondary current-limiting circuit is monitoring output current to prevent damage to the switch, as a hard short combined with a robust power supply can result in currents of many tens of amperes. This secondary current limit is nominally set at 4A and reacts immediately and independently of the Kickstart ${ }^{\text {TM }}$ period. Once the Kickstart ${ }^{\text {TM }}$ timer has finished its count the primary current limiting circuit takes over and holds $\mathrm{l}_{\text {out }}$ to its programmed limit for as long as the excessive load persists.
Once the switch drops out of current limiting the Kickstart ${ }^{\text {TM }}$ timer initiates a lock-out period of 128 ms such that no further bursts of current above the primary current limit, will be allowed until the lock-out period has expired.
Kickstart $^{\text {TM }}$ may be over-ridden by the thermal protection circuit and if sufficient internal heating occurs, Kickstart ${ }^{\text {TM }}$ will be terminated and $\mathrm{l}_{\text {out }} \rightarrow \mathrm{OA}$. Upon cooling, if the load is still present $\mathrm{l}_{\text {OUt }} \rightarrow \mathrm{I}_{\text {LIMIT }}$, not limit_2nd.

Figure 11. Kickstart ${ }^{\text {TM }}$

Automatic Load Discharge

2003	2004	$2005 X$	2006	2007	2008	$2009 X$
2013	2014	2015	2016	2017	2018	$2019 X$

Only parts in bold have automatic load discharge.

Automatic discharge is a valuable feature when it is desirable to quickly remove charge from the $\mathrm{V}_{\text {OUt }}$ pin. This allows for a quicker power-down of the load. This also prevents any charge from being presented to a device being connected to the $V_{\text {OUt }}$ pin, for example, USB, 1394, PCMCIA, and CableCARD ${ }^{\text {TM }}$.
Automatic discharge is performed by a shunt MOSFET from $V_{\text {out }}$ pin to GND. When the switch is disabled, a break before make action is performed turning off the main power MOSFET and then enabling the shunt MOSFET. The total resistance of the MOSFET and internal resistances is typically 126Ω.

Supply Filtering

A minimum $1 \mu \mathrm{~F}$ bypass capacitor positioned close to the $\mathrm{V}_{\mathbb{I N}}$ and GND pins of the switch is both good design practice and required for proper operation of the switch. This will control supply transients and ringing. Without a bypass capacitor, large current surges or a short may cause sufficient ringing on $\mathrm{V}_{\mathbb{I N}}$ (from supply lead inductance) to cause erratic operation of the switch's control circuitry. For best-performance good quality, low-ESR capacitors are recommended, preferably ceramic.
When bypassing with capacitors of $10 \mu \mathrm{~F}$ and up, it is good practice to place a smaller value capacitor in parallel with the larger to handle the high frequency components of any line transients. Values in the range of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ are recommended. Again, good quality, low-ESR capacitors should be chosen.

Power Dissipation

Power dissipation depends on several factors such as the load, PCB layout, ambient temperature, and supply voltage. Calculation of power dissipation can be accomplished by the following equation:

$$
\mathrm{P}_{\mathrm{D}}=\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \times\left(\mathrm{I}_{\mathrm{OUT}}\right)^{2}
$$

To relate this to junction temperature, the following equation can be used:

$$
T_{J}=P_{D} \times R_{\theta(J-A)}+T_{A}
$$

where:
$\mathrm{T}_{J}=$ junction temperature
$\mathrm{T}_{\mathrm{A}}=$ ambient temperature
$R_{\theta(J-A)}$ is the thermal resistance of the package
In normal operation the switch's $R_{\text {ON }}$ is low enough that no significant $I^{2} R$ heating occurs. Device heating is most often caused by a short circuit, or very-heavy load, when a significant portion of the input supply voltage appears across the switch's power MOSFET. Under these conditions the heat generated will exceed the package and PCB's ability to cool the device and thermal limiting will be invoked.

In Figure 12, die temperature is plotted against lout assuming a constant case temperature of $85^{\circ} \mathrm{C}$. The plots also assume a worst case $R_{\text {on }}$ of $140 \mathrm{~m} \Omega$ at a die temperature of $135^{\circ} \mathrm{C}$. Under these conditions it is clear that an SOT-23 packaged device will be on the verge of thermal shutdown, typically $140^{\circ} \mathrm{C}$ die temperature, when operating at a load current of 1.25A. For this reason we recommend using MLF^{\circledR} packaged switches for any design intending to supply continuous currents of 1 A or more.

Die Temperature vs.

Figure 12. Die Temperature vs. Iout

Package Information

5-Pin SOT-23 (M5)

Package Information (Continued)

TロP VIEW

BUTTDM VIEW

NOTE:

1. ALL DIMENSIDNS ARE IN MILLIMETERS.
2. MAX. PACKAGE WARPAGE IS 0.05 mm .
3. MAXIMUM ALLIWABE BURRS IS 0.076 mm IN ALL DIRECTIUNS
4. PIN \#1 ID ON TOP WILL BE LASER MARKED

SIDE VIEW

6 Pin $2 \mathrm{~mm} \times 2 \mathrm{~mm} \mathrm{MLF}^{\circledR}$ (ML)

Section 1.01 MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com
Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2009 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
AP22652AW6-7 MAPDCC0001 L9349TR-LF MAPDCC0005 NCP45520IMNTWG-L VND5050K-E MP6205DD-LF-P FPF1018 DS1222
TCK2065G,LF SZNCP3712ASNT3G L9781TR NCP45520IMNTWG-H MC17XS6500BEK SP2526A-1EN-L/TR SP2526A-2EN-L/TR
MAX4999ETJ+T MC22XS4200BEK MAX14575BETA+T VN1160C-1-E VN750PEP-E TLE7244SL L9352B-TR-LF BTS50060-1EGA
MAX1693HEUB+T MC07XSG517EK TLE7237SL MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 MP6513LGJ-P NCP3902FCCTBG AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 MAX4987AEETA+T KTS1670EDA-TR MAX1694EUB+T KTS1640QGDV-TR KTS1641QGDV-TR IPS160HTR BTS500251TADATMA2
NCV451AMNWTBG MC07XS6517BEKR2 SIP43101DQ-T1-E3 DML10M8LDS-13 MAX1922ESA+C71073 MP6231DH-LF-Z

