

TECHNICAL DATA

SILICON CONTROLLED RECTIFIER

Qualified per MIL-PRF-19500/276

Devices					Qualified Level
2N2323 2N2323S 2N2323A 2N2323AS	2N2324 2N2324S 2N2324A 2N2324AS	2N2326 2N2326S 2N2326A 2N2326AS	2N2328 2N2328S 2N2328A 2N2328AS	2N2329 2N2329S	JAN JANTX JANTXV

MAXIMUM RATINGS

Ratings	Sym	2N2323,S/ 2N2323A,S	2N2324,S/ 2N2324A,S	2N2326,S/ 2N2326A,S	2N2328,S/ 2N2328A,S	2N2329,S	Unit
Reverse Voltage	V _{RM}	50	100	200	300	400	Vdc
Working Peak Reverse Voltage	V _{RM}	75	150	300	400	500	Vpk
Forward Blocking Voltage	V _{FBXM}	50 ^(3/4)	$100^{(3/4)}$	$200^{(3/4)}$	300 ^(3/4)	$400^{(3)}$	Vpk
Average Forward Current ⁽¹⁾	Io			0.22			Adc
Forward Current Surge Peak ⁽²⁾	I _{FSM}			15			Adc
Cathode-Gate Current	V_{KGM}			6			Vpk
Operating Temperature	Top			-65 to +125			⁰ C
Storage Junction Temp	T _{sto}			-65 to +150			⁰ C

1) This average forward current is for an ambient temperature of 80⁰C and 180 electrical degrees of conduction.

2) Surge current is non-recurrent. The rate of rise of peak surge current shall not exceed 40 A during the first 5 µs after switching from the 'off' (blocking) to the 'on' (conducting) state. This is measured from the point where the thyristor voltage has decayed to 90% of its initial blocking value.

- 3) Gate connected to cathode through 1,000 ohm resistor.
- 4) Gate connected to cathode through 2,000 ohm resistor.

ELECTRICAL CHARACTERISTICS

Charac	Characteristics			n. Max. Uni	
SUBGROUP 2 TESTING					
Reverse Blocking Current					
$R_2 = 1 k\mu$	2N2323 thru 2N2329				
	2N2323S thru 2N2329S				
$R_2 = 2 k\mu$	2N2323A thru 2N2328A				
	2N2323AS thru 2N2328AS	L		10	uAda
$V_R = 50 V dc$	2N2323, S, A, AS	IRBX1		10	μΑα
$V_R = 100 \text{ Vdc}$	2N2324, S, A, AS				
$V_R = 200 \text{ Vdc}$	2N2326, S, A, AS				
$V_R = 300 \text{ Vdc}$	2N2328, S, A, AS				
$V_R = 400 \text{ Vdc}$	2N2329, S,				
6 Lake Street, Lawrence, MA 01	841				1201

1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

120101 Page 1 of 2

TO-5

*See appendix A for package outline

Charae	eteristics	Symbol	Min.	Max.	Unit
Forward Blocking Current					
$R_2 = 1 k\Omega$	2N2323 thru 2N2329 2N2323S thru 2N2329S				
$R_2 = 2 \ k\Omega$	2N2323A thru 2N2328A				
	2N2323AS thru 2N2328AS	I_{FBX1}		10	uAdc
$V_R = 50 \text{ Vdc}$	2N2323, S, A, AS	10111			
$V_R = 100 \text{ Vdc}$	2N2324, S, A, AS				
$V_R = 200 \text{ Vdc}$	2N2326, S, A, AS				
$V_R = 300 \text{ Vdc}$	2N2328, S, A, AS				
$V_R = 400 \text{ Vdc}$	2N2329, S				
Reverse Gate Current		Ikg		200	uAdc
$V_{KG} = 6 V dc$		-10		200	partee
Gate Trigger Voltage and Current					
$V_2 = V_{FBX} = 6 \text{ Vdc}; R_L = 100 \ \Omega$					
$R_e = 1 \ k\Omega$	2N2323 thru 2N2329 and	V_{GT1}	0.35	0.80	Vdc
	2N2323S thru 2N2329S	I_{GT1}		200	μAdc
$R_e = 2 \ k\Omega$	2N2323A thru 2N2328A and	V_{GT1}	0.35	0.60	Vdc
	2N2323AS thru 2N2328AS	I_{GT1}		20	μAdc
SUBGROUP 4 TESTING					
Exponential Rate of Voltage Rise	$T_A = 125^0 C$				
$50 \ \Omega \le R_L \le 400 \ \Omega, \ C = 0.1 \ to \ 1$	$.0 \ \mu\text{F}$, repetition rate = 60 pps,				
test duration $= 15$ seconds					
$dv/dt = 1.8 \ v/\mu s, R_3 = 1 \ k\Omega$	2N2323 thru 2N2329 and 2N2323S thru 2N2329S				
$dv/dt = 0.7 \ v/\mu s, R_3 = 2 \ k\Omega$	2N2323A thru 2N2328A and 2N2323AS thru 2N2328AS	V _{FBX}			Vdc
$V_{AA} = 50 \text{ Vdc}$	2N2323, S. A. AS		47		
$V_{AA} = 100 \text{ Vdc}$	2N2324, S. A. AS		95		
$V_{AA} = 200 \text{ Vdc}$	2N2326, S. A. AS		190		
$V_{AA} = 300 \text{ Vdc}$	2N2328, S, A, AS		285		
$V_{AA} = 400 \text{ Vdc}$	2N2329, S		380		
Forward "on" Voltage					
$i_{\rm FM} = 4a (pk) (pulse)$, pulse widt	h = 8.5 ms. max: duty cycle = 2% max	V _{FM}		2.2	V(pk)
Holding Current					
$V_{AA} = 24$ Vdc max, $I_{F1} = 100$ mA	Adc, $I_{F2} = 10 \text{ mAdc}$				
Gate trigger source voltage = 6 V					
trigger pulse width = $25 \mu s \min$.			•		
$R_3 = 1 k\Omega$	2N2323 thru 2N2329 and	I _{HOX}		2.0	mAdc
	2N2323S thru 2N2329S				
$R_3 = 2 k\Omega$	2N2323A thru 2N2328A and				
	2N2323AS thru 2N2328AS				

2N2323, A, AS, S; 2N2324, A, AS, S; 2N2326, A, AS, S; 2N2328, A, AS, S; 2N232, S JAN SERIES ELECTRICAL CHARACTERISTICS (con't)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCRs category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below :

NTE5428 NTE5448 NTE5457 NTE5511 T1500N16TOF VT T720N18TOF T880N14TOF T880N16TOF TS110-7UF TT104N12KOF-A TT104N12KOF-K TT162N16KOF-A TT162N16KOF-K TT330N16AOF VS-16RIA100 VS-22RIA20 VS-2N5206 VS-2N685 VS-40TPS08A-M3 VS-ST230S12P1VPBF 057219R CLB30I1200HB T1190N16TOF VT T1220N22TOF VT T201N70TOH T830N18TOF TD92N16KOF-A TT250N12KOF-K VS-2N692 VS-2N689 VS-25RIA40 VS-16RIA120 VS-10RIA120 VS-30TPS08PBF NTE5427 NTE5442 VS-2N690 VS-ST300S20P0PBF TT251N16KOF-K VS-22RIA100 VS-16RIA40 CR02AM-8#F00 VS-ST110S12P0VPBF TD250N16KOF-A VS-ST110S16P0 VS-10RIA10 VS-16TTS08-M3 TS110-7A1-AP T930N36TOF VT T2160N24TOF VT