July 2005

Single－channel：6N135，6N136，HCPL－2503，HCPL－4502 Dual－Channel：HCPL－2530，HCPL－2531 High Speed Transistor Optocouplers

Features
－High speed－1 MBit／s
－Superior CMR－10 kV／us
■ Dual－Channel HCPL－2530／HCPL－2531
■ Double working voltage－480V RMS
－CTR guaranteed $0-70^{\circ} \mathrm{C}$
－U．L．recognized（File \＃E90700）

Applications

－Line receivers
－Pulse transformer replacement
■ Output interface to CMOS－LSTTL－TTL
■ Wide bandwidth analog coupling

Description

The HCPL－4502／HCPL－2503，6N135／6 and HCPL－2530／HCPL－ 2531 optocouplers consist of an AIGaAs LED optically coupled to a high speed photodetector transistor．
A separate connection for the bias of the photodiode improves the speed by several orders of magnitude over conventional phototransistor optocouplers by reducing the base－collector capacitance of the input transistor．
An internal noise shield provides superior common mode rejec－ tion of $10 \mathrm{kV} / \mu \mathrm{s}$ ．An improved package allows superior insulation permitting a 480 V working voltage compared to industry stan－ dard of 220 V ．

Package

1

Schematic

6N135，6N136，HCPL－2503，HCPL－4502

HCPL－2530／HCPL－2531

Pin 7 is not connected in
Part Number HCPL－4502

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	Value	Units
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature	TOPR	-55 to +100	${ }^{\circ} \mathrm{C}$
Lead Solder Temperature	TSOL	260 for 10 sec	${ }^{\circ} \mathrm{C}$
EMITTER			
DC/Average Forward Input Current Each Channel (Note 1)	I_{F} (avg)	25	mA
Peak Forward Input Current (50\% duty cycle, $1 \mathrm{~ms} \mathrm{P.W)}$.$\quad Each Channel (Note 2)$	$\mathrm{I}_{\mathrm{F}}(\mathrm{pk})$	50	mA
Peak Transient Input Current - ($\leq 1 \mu \mathrm{P}$ P.W., 300 pps) Each Channel	I_{F} (trans)	1.0	A
Reverse Input Voltage Each Channel	V_{R}	5	V
	$P_{\text {D }}$	$\begin{gathered} 100 \\ 45 \end{gathered}$	mW
DETECTOR			
Average Output Current Each Channel	$\mathrm{I}_{\mathrm{O}}(\mathrm{avg})$	8	mA
Peak Output Current Each Channel	$\mathrm{I}_{\mathrm{O}}(\mathrm{pk})$	16	mA
Emitter-Base Reverse Voltage (6N135, 6N136 and HCPL-2503 only)	$\mathrm{V}_{\text {EBR }}$	5	V
Supply Voltage	V_{CC}	-0.5 to 30	V
Output Voltage	V_{O}	-0.5 to 20	V
Base Current (6N135, 6N136 and HCPL-2503 only)	I_{B}	5	mA
Output power dissipation \quad (6N135, 6N136, HCPL-2503, HCPL-4502) (Note 4)	PD	100	mW
dissipation (HCPL-2530, HCPL-2531) Each Channel		35	mW

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ Unless otherwise specified) Individual Component Characteristics

Parameter	Test Conditions	Symbol	Device	Min	Typ**	Max	Unit
EMITTER Input Forward Voltage	$\left(\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	V_{F}			1.45	1.7	V
	$\left(\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\right)$					1.8	
Input Reverse Breakdown Voltage	$\left(\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}\right)$	B_{VR}		5.0			V
Temperature coefficient of forward voltage	$\left(\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\right)$	$\left(\Delta V_{F} / \Delta T_{A}\right)$			-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
DETECTOR							
Logic high output current	$\begin{array}{r} \left(\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\right) \\ \left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \end{array}$	IOH	All		0.001	0.5	$\mu \mathrm{A}$
	$\begin{array}{r} \left(\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right) \\ \left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \end{array}$		6N135 6N136 HCPL-4502 HCPL-2503		0.005	1	
	$\left(\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right)$		All			50	
Logic low supply current	$\begin{array}{r} \left(\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open }\right) \\ \left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right) \end{array}$	$\mathrm{I}_{\mathrm{CCL}}$	6N135 6N136 HCPL-4502 HCPL-2503		120	200	$\mu \mathrm{A}$
	$\begin{array}{r} \left(\mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open }\right) \\ \left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right) \end{array}$		$\begin{aligned} & \text { HCPL-2530 } \\ & \text { HCPL-2531 } \end{aligned}$		200	400	
Logic high supply current	$\begin{array}{r} \left(\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \mathrm{V}_{\mathrm{CC}}=15\right. \\ \mathrm{V}) \\ \left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \end{array}$	$\mathrm{I}_{\mathrm{CCH}}$	6N135 6N136 HCPL-4502 HCPL-2503			1	$\mu \mathrm{A}$
	$\begin{array}{r} \left(\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{Open}\right) \\ \left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right) \end{array}$		6N135 6N136 HCPL-4502 HCPL-2503			2	
	$\begin{array}{r} \left(\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open }\right) \\ \left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right) \end{array}$		$\begin{aligned} & \text { HCPL-2530 } \\ & \text { HCPL-2531 } \end{aligned}$		0.02	4	

** All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Transfer Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ Unless otherwise specified)

${ }^{* *}$ All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified., $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$)

Parameter	Test Conditions	Symbol	Device	Min	Typ**	Max	Unit
Propagation delay time to logic low	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},\left(\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\right)($ Note 6) (Fig. 7)	$\mathrm{T}_{\text {PHL }}$	$\begin{gathered} \text { 6N135 } \\ \text { HCPL-2530 } \end{gathered}$		0.45	1.5	$\mu \mathrm{s}$
	$\begin{array}{r} \left(R_{L}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\right)(\text { Note 7) (Fig. 7) } \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{array}$		6N136 HCPL-4502 HCPL-2503 HCPL-2531		0.45	0.8	$\mu \mathrm{s}$
	$\left(R_{L}=4.1 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\right)($ Note 6) (Fig. 7)		$\begin{gathered} \text { 6N135 } \\ \text { HCPL-2530 } \end{gathered}$			2.0	$\mu \mathrm{s}$
	$\left(R_{L}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\right)($ Note 7) (Fig. 7)		6N136 HCPL-4502 HCPL-2503 HCPL-2531			1.0	$\mu \mathrm{s}$
Propagation delay time to logic high	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},\left(\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\right)($ Note 6) (Fig. 7)	$\mathrm{T}_{\text {PLH }}$	$\begin{gathered} \text { 6N135 } \\ \text { HCPL-2530 } \end{gathered}$		0.5	1.5	$\mu \mathrm{s}$
	$\begin{array}{r} \left(\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\right)(\text { Note 7) (Fig. 7) } \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{array}$		6N136 HCPL-4502 HCPL-2503 HCPL-2531		0.3	0.8	$\mu \mathrm{s}$
	$\left(R_{L}=4.1 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\right)($ Note 6) (Fig. 7)		$\begin{gathered} \text { 6N135 } \\ \text { HCPL-2530 } \end{gathered}$			2.0	$\mu \mathrm{s}$
	$\left(\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\right)($ Note 7) (Fig. 7)		6N136 HCPL-4502 HCPL-2503 HCPL-2531			1.0	$\mu \mathrm{s}$
Common mode transient immunity at logic high	$\begin{array}{r} \left(\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega\right) \\ \left(\text { Note 8) } \left(\text { Fig. 8) } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\right. \end{array}$	$\mathrm{ICM}_{\mathrm{H}} \mathrm{l}$	$\begin{gathered} \text { 6N135 } \\ \text { HCPL-2530 } \end{gathered}$		10,000		V/us
	$\begin{array}{r} \left(\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right) \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},\left(\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega\right) \\ (\text { Note 8) } \end{array}$		6N136 HCPL-4502 HCPL-2503 HCPL-2531		10,000		V/ $/ \mathrm{s}$
Common mode transient immunity at logic low	$\begin{array}{r} \left(\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega\right) \\ \text { (Note 8) (Fig. 8) } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{array}$	ICM ${ }_{\text {L }}$	$\begin{gathered} \text { 6N135 } \\ \text { HCPL-2530 } \end{gathered}$		10,000		V/ $/ \mathrm{s}$
	$\begin{array}{r} \left(\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right) \\ \left(\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega\right) \\ (\text { Note } 8)(\text { Fig. 8) } \end{array}$		6N136 HCPL-4502 HCPL-2503 HCPL-2531		10,000		V/ $/ \mathrm{s}$

${ }^{* *}$ All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Isolation Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ Unless otherwise specified)

Characteristics	Test Conditions	Symbol	Min	Typ**	Max	Unit
Input-output insulation leakage current	$\begin{array}{r} \text { (Relative humidity }=45 \%) \\ \left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}\right) \\ \left(\mathrm{V}_{1-\mathrm{O}}=3000 \mathrm{VDC}\right) \\ (\text { Note } 9) \end{array}$	$\mathrm{I}_{\text {I-O }}$			1.0	$\mu \mathrm{A}$
Withstand insulation test voltage	$\begin{array}{r} \left(\mathrm{RH} \leq 50 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\ (\text { Note } 9)(\mathrm{t}=1 \text { min. }) \end{array}$	$\mathrm{V}_{\text {ISO }}$	2500			$\mathrm{V}_{\text {RMS }}$
Resistance (input to output)	(Note 9) ($\left.\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{VDC}\right)$	$\mathrm{R}_{1-\mathrm{O}}$		10^{12}		Ω
Capacitance (input to output)	(Note 9) ($\mathrm{f}=1 \mathrm{MHz}$)	$\mathrm{C}_{\text {I-O }}$		0.6		pF
DC Current gain	$\left(\mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}\right)$	HFE		150		
Input-Input Insulation leakage current	$\begin{array}{r} \left(\mathrm{RH} \leq 45 \%, \mathrm{~V}_{\text {l-I }}=500 \mathrm{VDC}\right)(\text { Note } 10) \\ \mathrm{t}=5 \mathrm{~s} \text {. (HCPL-2530/2531 only }) \end{array}$	$I_{\text {I-I }}$		0.005		$\mu \mathrm{A}$
Input-Input Resistance	$\begin{aligned} & \left(\mathrm{V}_{\text {l-I }}=500 \mathrm{VDC}\right)(\text { Note } 10) \\ & (\text { HCPL-2530/2531 only }) \end{aligned}$	$\mathrm{R}_{\text {I-I }}$		10^{11}		Ω
Input-Input Capacitance	($\mathrm{f}=1 \mathrm{MHz}$) (Note 10) (HCPL-2530/2531 only)	$\mathrm{C}_{\text {I- }}$		0.03		pF

Notes

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. Current Transfer Ratio is defined as a ratio of output collector current, I_{O}, to the forward LED input current, I_{F} times 100%.
6. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
7. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and $5.6 \mathrm{k} \Omega$ pull-up resistor.
8. Common mode transient immunity in logic high level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse signal V_{CM}, to assure that the output will remain in a logic high state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in logic low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a logic low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
9. Device is considered a two terminal device: Pins 1,2,3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
10. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

Fig. 1 Normalized CTR vs. Forward Current

Fig. 3 Output Current vs. Output Voltage

Fig. 5 Propagation Delay vs. Temperature

Fig. 2 Normalized CTR vs. Temperature

Fig. 4 Logic High Output Current vs. Temperature

Fig. 6 Propagation Delay vs. Load Resistance

Fig. 7 Switching Time Test Circuit

Test Circuit for HCPL-2530 and HCPL-2531

V_{0}
Switch at $A: I_{F}=16 \mathrm{~mA}$

Fig. 8 Common Mode Immunity Test Circuit

Package Dimensions (Through Hole)

Package Dimensions (0.4"Lead Spacing)

NOTE
All dimensions are in inches (millimeters)

Package Dimensions (Surface Mount)

Recommended Pad Layout for Surface Mount Leadform

Ordering Information

Option	Example Part Number	Description
S	6 N 135 S	Surface Mount Lead Bend
SD	6 N 135 SD	Surface Mount; Tape and reel
W	6 N 135 W	0.4 " Lead Spacing
V	6 N 135 V	VDE0884
TV	6 N 135 TV	VDE0884; 0.4" lead spacing
SV	6 N 135 SV	VDE0884; surface mount
SDV	6 N 135 SDV	VDE0884; surface mount; tape and reel

Marking Information

Carrier Tape Specifications

Reflow Profile

- Peak reflow temperature: 225C (package surface temperature) - Time of temperature higher than 183C for 60-150 seconds
- One time soldering reflow is recommended

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}$	FAST ${ }^{\text {® }}$	ISOPLANAR $^{\text {™ }}$	PowerSaver ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-8
ActiveArray ${ }^{\text {TM }}$	FASTr ${ }^{\text {TM }}$	LittleFET ${ }^{\text {TM }}$	PowerTrench ${ }^{\circledR}$	SyncFET ${ }^{\text {TM }}$
Bottomless ${ }^{\text {TM }}$	FPS ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {™ }}$	QFET ${ }^{\circledR}$	TinyLogic ${ }^{\circledR}$
Build it $\mathrm{Now}^{\text {TM }}$	FRFET ${ }^{\text {™ }}$	MicroFET ${ }^{\text {TM }}$	QS ${ }^{\text {™ }}$	TINYOPTO' ${ }^{\text {T }}$
CoolFETM	GlobalOptoisolator ${ }^{\text {TM }}$	MicroPak ${ }^{\text {™ }}$	QT Optoelectronics ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {т }}$	GTO ${ }^{\text {¹ }}$	MICROWIRE ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	UHC ${ }^{\text {™ }}$
DOME ${ }^{\text {M }}$	$\mathrm{HiSeC}^{\text {² }}$	MSX ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	UltraFET ${ }^{\text {® }}$
EcoSPARK ${ }^{\text {TM }}$	$1^{2} \mathrm{C}^{\text {™ }}$	MSXPro ${ }^{\text {™ }}$	RapidConnect ${ }^{\text {™ }}$	UniFET ${ }^{\text {TM }}$
$\mathrm{E}^{2} \mathrm{CMOS}{ }^{\text {™ }}$	$i-L o^{\text {TM }}$	OCX ${ }^{\text {¹ }}$	μ SerDes ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
EnSigna ${ }^{\text {TM }}$	ImpliedDisconnect ${ }^{\text {TM }}$	OCXPro ${ }^{\text {¹ }}$	SILENT SWITCHER ${ }^{\circledR}$	Wire ${ }^{\text {TM }}$
FACT ${ }^{\text {™ }}$	IntelliMAX ${ }^{\text {™ }}$	OPTOLOGIC ${ }^{\circledR}$	SMART START ${ }^{\text {TM }}$	
FACT Quiet Series ${ }^{\text {TM }}$		OPTOPLANAR ${ }^{\text {TM }}$	SPM ${ }^{\text {™ }}$	
		PACMAN ${ }^{\text {TM }}$	Stealth ${ }^{\text {TM }}$	
Across the board. Around the world. ${ }^{\text {TM }}$ The Power Franchise ${ }^{\circledR}$		POP ${ }^{\text {¹ }}$	SuperFET ${ }^{\text {Tm }}$	
		Power247 ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	
Programmable Active Droop ${ }^{\text {™ }}$		PowerEdge ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHTTO MAKE CHANGES WITHOUT FURTHER NOTICE TOANY PRODUCTS HEREINTO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOTASSUME ANY LIABILITY ARISING OUT OF THEAPPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTEN APPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATION As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Optocouplers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
PS8502L2-AX ACNW261L-000E ACPL-344JT-000E ACPL-K49T-500E ACPL-K74T-000E ACPL-K75T-000E ACPL-W21L-560E ACPL-K44T-500E TLP187(TPL,E(T TLP2601(TP1,F) 610737H 6N137A-X001 6N137A-X017T 6N139-X007T HCPL2630M HCPL2731SM TLP555(F) HCPL2630SM PS2841-4A-F3-AX PS9817A-1-F3-AX PS9821-2-F3-AX ORPC-817D ORPC-817M/C ORPC-817M/B PT1751C/L129(BIN2) TLP521-4GBSM UMW817C 6N137S1(TA) TLP521GB TLP521GB-S PS2501 PS2501-S TLP785GB TLP785GB-S LTV-214-G TLP2766A(E TLP2766A(LF4,E LCR-0202 EL814S1(TA)-V PC817X4NSZ2B CYPC817 OR-MOC3023 TLP267J(TPL,E(T TLP109(TPL,E(O EL2514S1(TU)(CLW)-G EL816S2(C)(TU)-F TLP281-4 MOC3023M ACPL-K49T-060E ACPL-K75T-500E

