

## CMF10120D-Silicon Carbide Power MOSFET

# Z-Fettm MOSFET

N-Channel Enhancement Mode

#### Features

- High Speed Switching with Low Capacitances
- High Blocking Voltage with Low R<sub>DS(on)</sub>
- Easy to Parallel and Simple to Drive
- Avalanche Ruggedness
- Resistant to Latch-Up
- Halogen Free, RoHS Compliant

#### **Benefits**

- Higher System Efficiency
- Reduced Cooling Requirements
- Increased System Switching Frequency

### Applications

- Solar Inverters
- High Voltage DC/DC Converters
- Motor Drives
- Switch Mode Power Supplies

# Package



V<sub>DS</sub>

 $\mathbf{I}_{\mathsf{D}(\mathsf{MAX})}$ 

R<sub>DS(on)</sub>

= 1200 V

 $= 160 \text{m}\Omega$ 

= 24 A

TO-247-3



| Part Number | Package  |
|-------------|----------|
| CMF10120D   | TO-247-3 |

## **Maximum Ratings** ( $T_c = 25^{\circ}C$ unless otherwise specified)

| Symbol                | Parameter                                  | Value          | Unit         | Test Conditions                                                                                      | Note     |
|-----------------------|--------------------------------------------|----------------|--------------|------------------------------------------------------------------------------------------------------|----------|
| т                     | Continuous Drain Current                   | 24             |              | $V_{GS}@20V, T_{C} = 25^{\circ}C$                                                                    | Fig 10   |
| LD                    |                                            | 13             |              | $V_{GS}@20V, T_{C} = 100^{\circ}C$                                                                   | 11g. 10  |
| $\mathbf{I}_{Dpulse}$ | Pulsed Drain Current                       | 49             | А            | Pulse width $t_p$ limited by $T_{jmax}$<br>$T_C = 25^{\circ}C$                                       |          |
| E <sub>AS</sub>       | Single Pulse Avalanche Energy              | 1.2            | J            | $I_{D} = 10A, V_{DD} = 50 V,$<br>$I_{L} = 20 mH$                                                     | Fig. 15  |
| E <sub>AR</sub>       | Repetitive Avalanche Energy                | 0.8            | J            | $t_{AR}$ limited by $T_{jmax}$                                                                       | 1 ig. 13 |
| I <sub>AR</sub>       | Repetitive Avalanche Current               | 10             | А            | $I_{\text{D}}$ = 10A, $V_{\text{DD}}$ = 50 V, L = 15 mH $t_{\text{AR}}$ limited by $T_{\text{jmax}}$ |          |
| $V_{GS}$              | Gate Source Voltage                        | -5/+25         | V            |                                                                                                      |          |
| P <sub>tot</sub>      | Power Dissipation                          | 134            | W            | T <sub>c</sub> =25°C                                                                                 | Fig. 9   |
| $T_{j}$ , $T_{stg}$   | Operating Junction and Storage Temperature | -55 to<br>+135 | °C           |                                                                                                      |          |
| Τ <sub>L</sub>        | Solder Temperature                         | 260            | °C           | 1.6mm (0.063") from case for 10s                                                                     |          |
| M <sub>d</sub>        | Mounting Torque                            | 1<br>8.8       | Nm<br>lbf-in | M3 or 6-32 screw                                                                                     |          |



# **Electrical Characteristics** ( $T_c = 25^{\circ}C$ unless otherwise specified)

| Symbol               | Parameter                        | Min. | Тур. | Max. | Unit  | Test Conditions                                                                  | Note    |
|----------------------|----------------------------------|------|------|------|-------|----------------------------------------------------------------------------------|---------|
| V <sub>(BR)DSS</sub> | Drain-Source Breakdown Voltage   | 1200 |      |      | V     | $V_{GS} = 0V$ , $I_D = 50\mu A$                                                  |         |
|                      |                                  |      | 2.4  | 3.5  | V     | $V_{\text{DS}} = V_{\text{GS}}, I_{\text{D}} = 0.5 \text{ mA}$                   |         |
|                      | Cata Threshold Valtage           |      | 3.1  | 4.1  |       | $V_{\text{DS}} = V_{\text{GS}}$ , $I_{\text{D}} = 1.0$ mA                        |         |
| V GS(th)             | Gate Threshold Voltage           |      | 1.8  |      | V     | $V_{\text{DS}}$ = $V_{\text{GS}},~I_{\text{D}}$ = 0.5 mA, $T_{\text{J}}$ = 135°C |         |
|                      |                                  |      | 2.3  |      | V     | $V_{DS} = V_{GS}, I_{D} = 1.0 \text{ mA}, T_{J} = 135^{\circ}\text{C}$           |         |
| T                    | Zaro Cato Voltago Drain Current  |      | 0.5  | 50   |       | $V_{DS} = 1200V, V_{GS} = 0V$                                                    |         |
| IDSS                 | Zero Gate Voltage Drain Current  |      | 5    | 150  | μΑ    | $V_{DS} = 1200V, V_{GS} = 0V, T_{J} = 135^{\circ}C$                              |         |
| $I_{GSS}$            | Gate-Source Leakage Current      |      |      | 0.25 | μA    | $V_{GS} = 20V, V_{DS} = 0V$                                                      |         |
| D                    | Drain-Source On-State Registance |      | 160  | 200  | 0     | $V_{GS}$ = 20V, $I_{D}$ = 10A                                                    | Fig. 2  |
| R <sub>DS(on)</sub>  | Drain-Source On-State Resistance |      | 190  | 240  | 11132 | $V_{GS} = 20V, I_{D} = 10A, T_{J} = 135^{\circ}C$                                | rig. 5  |
| 0.                   | Transconductance                 |      | 4.2  |      | s     | $V_{DS}$ = 20V, $I_{DS}$ = 10A                                                   | Fig. 6  |
| 9fs                  |                                  |      | 3.9  |      |       | $V_{DS}$ = 20V, $I_{DS}$ = 10A, $T_{J}$ = 135°C                                  |         |
| C <sub>iss</sub>     | Input Capacitance                |      | 928  |      |       |                                                                                  |         |
| C <sub>oss</sub>     | Output Capacitance               |      | 63   |      | рF    | $V_{GS} = 0V$                                                                    | Fia. 13 |
| Crss                 | Reverse Transfer Capacitance     |      | 7.5  |      |       | $V_{DS} = 800V$<br>f = 1MHz                                                      |         |
| E <sub>oss</sub>     | Coss Stored Energy               |      | 32   |      | μJ    | V <sub>AC</sub> = 25mV                                                           | Fig 14  |
| t <sub>d(on)v</sub>  | Turn-On Delay Time               |      | 8.8  |      |       | $V_{DD} = 800V, V_{CS} = 0/20V$                                                  |         |
| t <sub>fv</sub>      | Fall Time                        |      | 21   |      |       | $I_D = 10A$                                                                      |         |
| $t_{d(off)V}$        | Turn-Off Delay Time              |      | 38   |      | ns    | $R_{G(ext)} = 2.5\Omega, R_{L} = 40\Omega$                                       | fig. 17 |
| t <sub>rv</sub>      | Rise Time                        |      | 34   |      |       | Timing relative to V <sub>DS</sub>                                               |         |
| R <sub>G</sub>       | Internal Gate Resistance         |      | 13.6 |      | Ω     | $f = 1MHz$ , $V_{AC} = 25mV$                                                     |         |

### **Built-in SiC Body Diode Characteristics**

| Symbol           | Parameter                     | Тур. | Max. | Unit | Test Conditions                                          | Note    |
|------------------|-------------------------------|------|------|------|----------------------------------------------------------|---------|
| V                | Diada Farward Valtaga         | 3.5  |      | V    | $V_{GS} = -5V, I_F = 5A, T_J = 25^{\circ}C$              |         |
| V <sub>SD</sub>  | Didde Forward Voltage         | 3.1  |      | v    | $V_{GS} = -2V, I_F = 5A, T_J = 25^{\circ}C$              |         |
| t <sub>rr</sub>  | Reverse Recovery Time         | 138  |      | ns   | $V_{cs} = -5V$ I <sub>s</sub> =10A T <sub>1</sub> = 25°C |         |
| Q <sub>rr</sub>  | Reverse Recovery Charge       | 94   |      | nC   | $V_{R} = 800V,$                                          | Fig. 22 |
| I <sub>rrm</sub> | Peak Reverse Recovery Current | 1.57 |      | А    | d <i>i</i> <sub>F</sub> /d <i>t</i> = 100A/µs            |         |

#### **Thermal Characteristics**

| Symbol           | Parameter                                   | Тур. | Max. | Unit | Test Conditions | Note   |
|------------------|---------------------------------------------|------|------|------|-----------------|--------|
| R <sub>0JC</sub> | Thermal Resistance from Junction to Case    | 0.66 | 0.82 |      |                 |        |
| R <sub>ecs</sub> | Case to Sink, w/ Thermal Compound           | 0.25 |      | κ/w  |                 | Fig. 7 |
| R <sub>0JA</sub> | Thermal Resistance From Junction to Ambient |      | 40   |      |                 |        |

## **Gate Charge Characteristics**

| Symbol   | Parameter             | Тур. | Max. | Unit | Test Conditions                    | Note   |
|----------|-----------------------|------|------|------|------------------------------------|--------|
| Qgs      | Gate to Source Charge | 11.8 |      |      | $V_{DD} = 800V$ , $V_{CS} = 0/20V$ |        |
| $Q_{gd}$ | Gate to Drain Charge  | 21.5 |      | nC   | $I_{\text{D}} = 10\text{A}$        | Fig.12 |
| Qg       | Gate Charge Total     | 47.1 |      |      | Per JEDEC24 pg 27                  |        |









Figure 3. Normalized On-Resistance vs. Temperature







Figure 2. Typical Output Characteristics  $T_{J} = 135^{\circ}C$ 





















Figure 11. Gate Threshold Voltage vs. Temperature











Figure 12. Typical Gate Charge Characteristics (25°C)





Figure 13A and 13B. Typical Capacitances vs. Drain Voltage at V $_{\rm GS}$  = 0V and f = 1 MHz







Figure 16. Resistive Switching Times vs. External  $\rm R_{_G}$  at  $\rm V_{_{DD}}$  = 400V,  $\rm ~I_{_{D}}$  = 10A



Figure 15. Typical Unclamped Inductive Switching Waveforms Showing Avalanche Capability



Figure 17. Resistive Switching Times vs. External  $\rm R_{G}$  at  $\rm V_{\rm DD}$  = 800V,  $\rm I_{D}$  = 10A











#### **Test Circuit Diagrams and Waveforms**





Fig 22. Body Diode Recovery Test





Fig 24. Unclamped Inductive Switching Test Circuit





#### **ESD** Ratings

| ESD Test | Total Devices Sampled    | Resulting Classification |
|----------|--------------------------|--------------------------|
| ESD-HBM  | All Devices Passed 1000V | 2 (>2000V)               |
| ESD-MM   | All Devices Passed 400V  | C (>400V)                |
| ESD-CDM  | All Devices Passed 1000V | IV (>1000V)              |



#### **Package Dimensions**

#### Package TO-247-3



|   | DOC | Inches |      | Millim | neters |
|---|-----|--------|------|--------|--------|
|   | P05 | Min    | Max  | Min    | Max    |
|   | А   | .605   | .635 | 15.367 | 16.130 |
|   | В   | .800   | .831 | 20.320 | 21.10  |
|   | С   | .780   | .800 | 19.810 | 20.320 |
|   | D   | .095   | .133 | 2.413  | 3.380  |
|   | E   | .046   | .052 | 1.168  | 1.321  |
|   | F   | .060   | .095 | 1.524  | 2.410  |
|   | G   | .215   | ТҮР  | 5.460  | ) TYP  |
| B | Н   | .175   | .205 | 4.450  | 5.210  |
|   | J   | .075   | .085 | 1.910  | 2.160  |
|   | K   | 6°     | 21°  | 6°     | 21°    |
|   | L   | 4°     | 6°   | 4°     | 6°     |
|   | М   | 2°     | 4°   | 2°     | 4°     |
|   | N   | 2°     | 4°   | 2°     | 4°     |
|   | Р   | .090   | .100 | 2.286  | 2.540  |
|   | Q   | .020   | .030 | .508   | .762   |
|   | R   | 9°     | 11°  | 9°     | 11°    |
|   | S   | 9°     | 11°  | 9°     | 11°    |
|   | Т   | 2°     | 8°   | 2°     | 8°     |
|   | U   | 2°     | 8°   | 2°     | 8°     |
|   | V   | .137   | .144 | 3.487  | 3.658  |
|   | W   | .210   | .248 | 5.334  | 6.300  |
|   | Х   | .502   | .557 | 12.751 | 14.150 |
|   | Y   | .637   | .695 | 16.180 | 17.653 |
|   | Z   | .038   | .052 | 0.964  | 1.321  |
|   | AA  | .110   | .140 | 2.794  | 3.556  |
|   | BB  | .030   | .046 | 0.766  | 1.168  |
|   | CC  | .161   | .176 | 4.100  | 4.472  |

#### **Recommended Solder Pad Layout**



| Part Number | Package  | Marking  |
|-------------|----------|----------|
| CMF10120D   | TO-247-3 | CMF10120 |

TO-247-3

"The levels of environmentally sensitive, persistent biologically toxic (PBT), persistent organic pollutants (POP), or otherwise restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), as amended through April 21, 2006.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems, or weapons systems

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power

Copyright © 2010-2012 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks and Z-REC and Z-FET are trademarks of Cree, Inc.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Cree manufacturer:

Other Similar products are found below :

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60\_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q)