CMF10120D-Silicon Carbide Power MOSFET Z-FET ${ }^{T M}$ MOSFET
 N -Channel Enhancement Mode

Features

- High Speed Switching with Low Capacitances
- High Blocking Voltage with Low $\mathrm{R}_{\mathrm{DS}(o n)}$
- Easy to Parallel and Simple to Drive
- Avalanche Ruggedness
- Resistant to Latch-Up
- Halogen Free, RoHS Compliant

Benefits

- Higher System Efficiency
- Reduced Cooling Requirements
- Increased System Switching Frequency

Applications

- Solar Inverters
- High Voltage DC/DC Converters
- Motor Drives
- Switch Mode Power Supplies

Package

$=1200 \mathrm{~V}$
$=24 \mathrm{~A}$
$=160 \mathrm{~m} \Omega$

\mathbf{V}_{DS}	$=1200 \mathrm{~V}$
$\mathbf{I}_{\mathrm{D}(\text { MAX })}$	$=24 \mathrm{~A}$
$\mathbf{R}_{\mathrm{DS}(\text { on })}$	$=160 \mathrm{~m} \Omega$

TO-247-3

Part Number	Package
CMF10120D	TO-247-3

Maximum Ratings ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
$\mathrm{I}_{\text {D }}$	Continuous Drain Current	24	A	$\mathrm{V}_{\mathrm{GS}} @ 20 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Fig. 10
		13		$\mathrm{V}_{\mathrm{GS}} @ 20 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	
$I_{\text {Dpulse }}$	Pulsed Drain Current	49	A	Pulse width t_{p} limited by $T_{\text {jmax }}$ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy	1.2	J	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}, \\ & \mathrm{~L}=20 \mathrm{mH} \end{aligned}$ t_{AR} limited by $\mathrm{T}_{\text {jmax }}$	Fig. 15
$\mathrm{E}_{\text {AR }}$	Repetitive Avalanche Energy	0.8	J		
$\mathrm{I}_{\text {AR }}$	Repetitive Avalanche Current	10	A	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{~L}=15 \mathrm{mH} \\ & \mathrm{t}_{\mathrm{AR}} \text { limited by } \mathrm{T}_{\mathrm{jmax}} \end{aligned}$	
$\mathrm{V}_{\text {GS }}$	Gate Source Voltage	$-5 /+25$	V		
$\mathrm{P}_{\text {tot }}$	Power Dissipation	134	W	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Fig. 9
$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Operating Junction and Storage Temperature	$\begin{gathered} -55 \text { to } \\ +135 \end{gathered}$	${ }^{\circ} \mathrm{C}$		
T_{L}	Solder Temperature	260	${ }^{\circ} \mathrm{C}$	$1.6 \mathrm{~mm}\left(0.063^{\prime \prime}\right)$ from case for 10 s	
$M_{\text {d }}$	Mounting Torque	$\begin{gathered} 1 \\ 8.8 \end{gathered}$	$\underset{\text { Ibf-in }}{\mathrm{Nm}}$	M3 or 6-32 screw	

Electrical Characteristics ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions	Note
$\mathrm{V}_{\text {(BR) }{ }^{\text {ds }}}$	Drain-Source Breakdown Voltage	1200			V	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$	
$\mathrm{V}_{\text {GS(}}$ (h)	Gate Threshold Voltage		2.4	3.5	V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$	Fig. 11
			3.1	4.1		$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{G S}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}$	
			1.8		V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}, \mathrm{~T}_{3}=135^{\circ} \mathrm{C}$	
			2.3		V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=135^{\circ} \mathrm{C}$	
Idss	Zero Gate Voltage Drain Current		0.5	50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=1200 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	
			5	150		$\mathrm{V}_{\text {DS }}=1200 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{J}=135^{\circ} \mathrm{C}$	
$\mathrm{I}_{\text {GSS }}$	Gate-Source Leakage Current			0.25	$\mu \mathrm{A}$	$\mathrm{V}_{G S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Drain-Source On-State Resistance		160	200	$\mathrm{m} \Omega$	$\mathrm{V}_{G S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$	Fig. 3
			190	240		$\mathrm{V}_{G S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}, \mathrm{~T}_{J}=135^{\circ} \mathrm{C}$	
$\mathrm{gfs}^{\text {f }}$	Transconductance		4.2		S	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~A}$	Fig. 6
			3.9			$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\text {DS }}=10 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=135^{\circ} \mathrm{C}$	
$\mathrm{C}_{\text {iss }}$	Input Capacitance		928		pF	$\begin{aligned} & V_{G S}=0 \mathrm{~V} \\ & V_{D S}=800 \mathrm{~V} \\ & f=1 \mathrm{MHz} \\ & V_{A C}=25 \mathrm{mV} \end{aligned}$	Fig. 13
Coss	Output Capacitance		63				
$\mathrm{Crss}^{\text {s }}$	Reverse Transfer Capacitance		7.5				
Eoss	Coss Stored Energy		32		$\mu \mathrm{J}$		Fig 14
$\mathrm{t}_{\text {d(on) }}$	Turn-On Delay Time		8.8		ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=800 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 / 20 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}(\text { ext })}=2.5 \Omega, \mathrm{R}_{\mathrm{L}}=40 \Omega \\ & \text { Timing relative to } \mathrm{V}_{\mathrm{DS}} \end{aligned}$	fig. 17
t_{v}	Fall Time		21				
$\mathrm{t}_{\text {d(off) })}$	Turn-Off Delay Time		38				
t_{rv}	Rise Time		34				
$\mathrm{R}_{\text {G }}$	Internal Gate Resistance		13.6		Ω	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{AC}}=25 \mathrm{mV}$	

Built-in SiC Body Diode Characteristics

Symbol	Parameter	Typ.	Max.	Unit	Test Conditions	Note
$\mathrm{V}_{\text {sD }}$	Diode Forward Voltage	3.5		V	$\mathrm{V}_{\text {GS }}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	
		3.1			$\mathrm{V}_{\mathrm{GS}}=-2 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	
t_{rr}	Reverse Recovery Time	138		ns	$\begin{aligned} & \mathrm{V}_{G S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=800 \mathrm{~V}, \\ & \mathrm{~d} \mathrm{i}_{\mathrm{F}} / \mathrm{d} t=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	Fig. 22
Q_{rr}	Reverse Recovery Charge	94		nC		
$\mathrm{I}_{\text {rrm }}$	Peak Reverse Recovery Current	1.57		A		

Thermal Characteristics

Symbol	Parameter	Typ.	Max.	Unit	Test Conditions	Note
$\mathrm{R}_{\text {өנc }}$	Thermal Resistance from Junction to Case	0.66	0.82	K/W		Fig. 7
$\mathrm{R}_{\text {日cs }}$	Case to Sink, w/ Thermal Compound	0.25				
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance From Junction to Ambient		40			

Gate Charge Characteristics

Symbol	Parameter	Typ.	Max.	Unit	Test Conditions	Note
Qgs	Gate to Source Charge	11.8		nC	$\begin{aligned} & V_{D D}=800 \mathrm{~V}, V_{G S}=0 / 20 \mathrm{~V} \\ & I_{D}=10 \mathrm{~A} \\ & \text { Per JEDEC24 pg } 27 \end{aligned}$	Fig. 12
Q_{gd}	Gate to Drain Charge	21.5				
Q_{9}	Gate Charge Total	47.1				

Typical Performance

Figure 1. Typical Output Characteristics $\mathrm{T}_{3}=25^{\circ} \mathrm{C}$

Figure 3. Normalized On-Resistance vs. Temperature

Figure 5. On-Resistance vs. Gate Voltage

Figure 2. Typical Output Characteristics $\mathrm{T}_{\mathrm{J}}=135^{\circ} \mathrm{C}$

Figure 4. On-Resistance vs. Drain Current

Figure 6. Typical Transfer Characteristics

Typical Performance

Figure 7. Transient Thermal Impedance (Junction - Case) with Duty Cycle

Figure 9. Power Dissipation Derating Curve

Figure 11. Gate Threshold Voltage vs. Temperature

Figure 8. Safe Operating Area

Figure 10. Continuous Current Derating Curve

Figure 12. Typical Gate Charge Characteristics ($25^{\circ} \mathrm{C}$)

Typical Performance

Figure 13A and 13B. Typical Capacitances vs. Drain Voltage at $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ and $\mathrm{f}=1 \mathrm{MHz}$

Figure 14. Typical $\mathrm{C}_{\text {oss }}$ Stored Energy

Figure 16. Resistive Switching Times vs. External R_{G} at $\mathrm{V}_{\mathrm{DD}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$

Figure 15. Typical Unclamped Inductive Switching Waveforms Showing Avalanche Capability

Figure 17. Resistive Switching Times vs. External R_{G} at $\mathrm{V}_{\mathrm{DD}}=800 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$

Typical Performance

Figure 18. Clamped Inductive Switching Energy vs. Drain Current (Fig. 20)

Figure 19. Clamped Inductive Switching Energy vs. Junction Temperature (Fig 20)

Figure 20. Clamped Inductive Switching Waveform Test Circuit

Figure 21. Switching Test Waveforms for Transition times

Fig 22. Body Diode Recovery Test

Fig 24. Unclamped Inductive Switching Test Circuit

Fig 23. Body Diode Recovery Waveform

$$
E_{A}=1 / 2 L \times I_{D}^{2}
$$

Fig 25. Unclamped Inductive Switching waveform for Avalanche Energy

ESD Ratings

ESD Test	Total Devices Sampled	Resulting Classification
ESD-HBM	All Devices Passed 1000 V	$2(>2000 \mathrm{~V})$
ESD-MM	All Devices Passed 400V	C $(>400 \mathrm{~V})$
ESD-CDM	All Devices Passed 1000V	IV $(>1000 \mathrm{~V})$

Package Dimensions

Package TO-247-3

Recommended Solder Pad Layout

Part Number	Package	Marking
CMF10120D	TO-247-3	CMF10120

TO-247-3

 $2002 / 95 / E C$ on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), as amended through April $21,2006$.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by Cree manufacturer:

Other Similar products are found below :
614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0\#T2 RJK60S5DPK-M0\#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q)

