Micro Programmable Controller
 CPM1A

The CPM1A series micro controllers solve both basic and semi-complex applications. The brick style models include AC inputs/relay outputs, DC inputs/transistor or relay outputs to meet your design requirements. The base I/O for the CPUs ranges from 10, 20, 30, and 40 I/O points with maximum expansion to 100 I/O. Specialized expansion modules include mixed analog I/O, temperature sensor inputs and serial communications

10, 20, 30 and 40 point I/O CPUs

- Expandable up to 100 I/O points

■ Peripheral communications port built in

- AC or DC input models
- Analog expansion modules available
- Temperature sensor input expansion modules available

■ Auxiliary 24 VDC supply (AC type only)
■ Relay or Transistor outputs
■ UL, CSA, CE approvals

Basic Configuration

Ordering Information

CPU UNITS

| Number of
 I/O terminals | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

EXPANSION I/O MODULES

Description	Max. number of modules	Inputs	Outputs	Part number
20 I/O points 12 inputs, 8 outputs	3 max. (See Note.)	24 VDC	Relays	CPM1A-20EDR
		24 VDC	Sinking transistors	CPM1A-20EDT
		24 VDC	Sourcing transistors	CPM1A-20EDT1
8 inputs		24 VDC	-	CPM1A-8ED
8 outputs		-	Relays	CPM1A-8ER
成事", -		-	Sinking transistors	CPM1A-8ET
		-	Sourcing transistors	CPM1A-8ET1

Note: A maximum of 3 expansion modules can be used with the following CPUs: 30-point and 40-point with DC inputs; 20-point and 32-point with AC inputs.

- DEDICATED I/O MODULES

Description		Max. number of modules	Inputs	Outputs	Part number
Analog I/O Module 2 analog inputs (2 words) 1 analog output (1 word)		3 max.	2 analog inputs	1 analog output	CPM1A-MAD01
Temperature Sensor Input Modules	Thermocouple inputs	3 max.	2 inputs (Types J and K)	-	CPM1A-TS001
		1 max. (See Note.)	4 inputs (Types J and K)		CPM1A-TS002
	Platinum resistance thermometer inputs	3 max.	2 inputs (Pt100, JPt100)		CPM1 A-TS101
		3 max.	2 inputs (Pt100, JPt100)	1 analog output	CPM1A-TS101-DA
		1 max. (See Note.)	4 inputs (Pt100, JPt100)	-	CPM1A-TS102
CompoBus/S I/O Link Module 8 inputs and 8 outputs		3 max.	8 bits (Inputs from the Master.)	8 bits (Outputs to the Master.)	CPM1A-SRT21
		Flat cable, 4-core, $0.75 \mathrm{~mm}^{2}$; 100 m length			SCA1-4F10
		Twisted pair cable, 2-core, $0.75 \mathrm{~mm}^{2}$; available commercially			Belden \#9409 cable

[^0]
■ PERIPHERAL DEVICES

Product	Description	Part number
Programming console	Hand-held programming console with cable attached, 2 m length	CQM1-PRO01-E
	Hand-held programming console with back light (cable not included)	C200H-PRO27-E
	Connects C200H programming console to peripheral port, 2 m length	C200H-CN222
	Connects C200h programming console to peripheral port, 4 m length	C200H-CN422

SUPPORT SOFTWARE

Product	Functions	Part number
CX-Programmer Jr.	Windows-based programming software; reduced instruction set and networking commands. OS: Windows 95/98/NT	WS02-CXPC1-EJR-V2.0
CX-Programmer	Full programming software package programs micro, small and larger controllers.	WS02-CXPC1-EV2.0

COMMUNICATIONS ADAPTERS AND CABLES

Description	Function	Part number
RS-232C adapter	Converts data communications from peripheral port for RS-232C devices.	CPM1-CIF01
RS-232C cable	RS-232C to RS-232C; PC connection for program download; cable length 2 m	C200HS-CN220-EU
	RS-232C to RS-232C for PLC communication; cable length 2 m	C200H-CN320-EU
RS-422/RS-485 adapter	Converts data communications from peripheral port for RS-422/RS-485 devices.	CPM1-CIF11

PROGRAM TRANSFER EQUIPMENT

Product	Description	Part number
Expansion Memory Unit	Uploads and downloads program and setup memory areas to and from the controller.	CPM1-EMU01-V1
EEPROM (256 kbits)	Used with the Expansion Memory Unit	CPM1-EEPROM-EMU01

- MANUALS

Product	Description	Part number
Operation manual	CPM1A DC Input CPUs operation manual	W317
	CPM1A AC Input CPUs operation manual	P12FAZ1
Programming manual	CPM1/CPM1A programming manual	W353

Specifications

■ GENERAL SPECIFICATIONS

Input type		DC input				AC input	
CPU type		10-point I/O	20-point I/O	30-point I/O	40-point I/O	20-point I/O	32-point I/O
Power supply voltage/frequency	AC power supply	100 to 240 VAC, $50 / 60 \mathrm{~Hz}$					
	DC power supply	24 VDC				-	
Operating voltage range	AC power supply	85 to 264 VAC					
	DC power supply	20.4 to 26.4 VDC				-	
Power consumption	AC power supply	30 VA max.		60 VA max.		30 VA max.	60 VA max.
	DC power supply	6 W max.		20 W max.		-	
Inrush current		30 A max.		60 A max.		30 A max.	60 A max.
External power supply (AC only)	Power supply voltage	24 VDC					
	Power supply output capacity	200 mA		300 mA			
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. at 500 VDC between the AC terminals and the protective earth terminal.					
Dielectric strength		2,300 VAC at $50 / 60 \mathrm{~Hz}$ for one minute with a leakage current of 10 mA max. between all the external AC terminals and the protective earth terminal.					
Noise resistance		Conforms to IEC61000-4-4, 2 kV (power lines) $1500 \mathrm{Vp}-\mathrm{p}$, pulse width 0.1 to $1 \mu \mathrm{~s}$, rise time: 1 ns (via noise simulation)					
Vibration resistance		10 to 61.2 Hz with an amplitude of 0.075 mm , and 57 to 150 Hz with an acceleration of 1.5 G in the X, Y, and Z directions for 10 sweeps of minutes each.					
Shock resistance		$147 \mathrm{~m} / \mathrm{s}^{2}$ in the X, Y and Z directions 3 times each.				20 G the X, Y and Z directions 3 times each.	
Ambient temperature	Operating	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$					
	Storage	$-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	$-4^{\circ} \mathrm{F}$ to $167^{\circ} \mathrm{F}$				
Ambient humidity	Operating	10\% to 90% RH no condensation					
Ambient environment	Operating	With no corrosive gas					
Terminal screw size		M3					
Power supply hold	ing time	$10 \mathrm{~ms} \mathrm{min}$.	AC models, a	$2 \mathrm{~ms} \mathrm{min}$.	models		
Weight	AC models	400 g max.	500 g max..	600 g max..	700 g max.	500 g max.	575 g max.
	DC models	300 g max .	400 g max .	500 g max.	600 g max .	-	-

Note: The specifications of the Expansion I/O Modules are the same as for the CPU except that the power is supplied from the CPU and the weight is 300 g .

CHARACTERISTICS

Input type		DC input				AC input	
CPU type		10-point I/O	20-point I/O	30-point I/O	40-point I/O	20-point I/O	32-point I/O
Control method		Stored program method					
I/O control method		Combination of the cyclic scan and immediate refresh processing methods.					
Programming language		Ladder diagram					
Instruction word		1 step per instruction, 1 to 5 words per instruction					
Types of instructions	Basic instructions	14 types					
	Special instructions	79 types, 139 instructions					
Instruction execution time	Basic instructions	0.72 to $16.2 \mu \mathrm{~s}$					
	Special instructions	MOV instruction $=16.3 \mu \mathrm{~s}$					
Program capacity		2,048 words					
User data memory		1,024 words					
Maximum I/O points	CPU only	10 points (6 input/ 4 output points)	20 points (12 input/ 8 output points)	30 points (18 input/ 12 output points)	40 points (24 input/ 16 output points)	20 points (12 input/ 8 output points)	32 points (20 input/ 12 output points
	With Expansion I/O Module	-	-	Up to 90 points (54 input/ 36 output points)	Up to 100 points (60 input/ 40 output points)	Up to 80 points (48 input/ 32 output points)	Up to 92 points (56 input/ 36 output points)
Memory protection		Maintains the contents of the HR, AR, Counter and Data Memory Areas.					
Memory backup		Flash memory: User program, data memory (Read only) and PLC setup area are backed up without a battery. Super capacitor: Data memory (Read/Write), holding bits, auxiliary memory bits, counter values, error log area are backed up by a capacitor for 20-days at an ambient temperature of $25^{\circ} \mathrm{C}$.					
Self-diagnostic function		CPU error (watchdog timer), memory errors, I/O bus errors					
Program check		No END instruction programming errors (constantly checked during operation)					
Pulse output		1 point: 2 kHz					
High-speed counter		1 point: Single phase at 5 kHz or two-phase at 2.5 kHz (linear counting method) Incremental mode: 0 to 65535 (16-bit) Decremental mode: -32767 to 32767 (16-bit)					
Quick-response inputs		Together with the external interrupt input (minimum pulse width of 0.2 ms)					
Input time constant		Can be set at $1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}, 32 \mathrm{~ms}, 64 \mathrm{~ms}$, or 128 ms .					
Interrupt processing: External interrupt		2 points (Response time of 0.3 ms max.)	4 points (Response time of 0.3 ms max.)			4 points (Response time of 5 ms max.)	
Analog settings		2 points: (0 to 200 BCD)					

I/O ALLOCATION

Input bits		00000 to 00915; words not used for input or output bits can be used for work bits.
Output bits		01000 to 01915; words not used for input or output bits can be used for work bits.
Work bits (IR Area)		512: IR 20000 to IR 23115 (IR 200 to IR 231)
Special bits (SR Area)		384: SR 23200 to SR 25515 (SR 232 to SR 255)
Temporary bits (TR Area)		8: TR 0 to TR 7
Holding bits (HR Area)		320: HR 0000 to HR 1915 (HR 00 to HR 19)
Auxiliary bits (AR Area)		256: AR 0000 to AR 1515 (AR 00 to AR 15)
Link bits (LR Area)		256: LR 0000 to LR 1515 (LR 00 to LR 15)
Timers/Counters		128: TIM/CNT 000 to 127 100-ms timer: TIM 000 to TIM 127 10-ms timer: TIM 000 to TIM 127 Decremental counter, reversible counter
Data memory	Read/Write	1,024 words (DM 0000 to DM 1023)
	Read only	512 words (DM 6144 to DM 6655)

I/O SPECIFICATIONS

CPU Unit AC-Input

Item	Specification	
Input voltage	$120 \mathrm{VAC} / \mathrm{DC}$ nominal, range 85 to 132	
Input impedance	$17 \mathrm{k} \Omega \mathrm{AC} @ 60 \mathrm{~Hz}, 69 \mathrm{k} \Omega \mathrm{DC}$	
Input current	$7.2 \mathrm{~mA} A C, 1.7 \mathrm{~mA}$ DC @ 120 V typical for: CPM1A-20CAR-A, Inputs 00 to 11 CPM1A-32CAR-A, Ch 0 Inputs 00 to 11 and CPM1A-32CAR-A, Ch 1 Inputs 00 to 03 $1.9 \mathrm{~mA} A C$ or DC @ 120 V typical for: CPM1A-32CAR-A, Ch 1 Inputs 04 to 07 only	
ON voltage	65 VAC/DC	
OFF voltage	25 VAC/DC	
ON delay	1 to 128 ms max . Default: 8 ms (See Note.)	
OFF delay	1 to 128 ms max . Default: 8 ms (See Note.)	
Circuit configuration		CPM1A-20CAR-A Inputs 00-11 CPM1A-32CAR-A Inputs Ch 0: 00-11 Inputs Ch 1:00-03 CPM1A-32CAR-A only Inputs Ch 1: 04-07

Note: Using the PLC Setup, 1, 2, 4, 8, 16, 32, 64, or 128 ms can be selected. When IN00000 through INO0002 are used as high-speed counter inputs, the delays are as shown in the following table. Typically for AC inputs, the delay is set at the default, 8 ms .

Input	Increment mode	Differential phase mode
INO0000 (A-phase)	20 Hz	20 Hz
IN00001 (B-phase)	Normal input	
IN00002 (Z-phase)	ON: 5 ms min.; OFF delay: 5 ms min.	

The minimum delay is as follows.

Differential Phase Mode (20 Hz max.)
IN00000 (A phase), IN00001 (B phase)

$$
\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3} \mathrm{~T}_{4}: 20 \mathrm{~ms} \text { min. }
$$

When IN00003 through IN00006 are used as interrupt inputs, the delay is 0.3 ms max. The delay is measured from the time that the input goes ON until the interrupt subroutine is executed.

CPU Unit DC Input

Item	Specifications	Circuit
Input voltage	24 VDC +10\%/-15\%	Note: The polarity of the input power supply can be either positive or negative.
Input impedance	INOOOO to IN0002: $2 \mathrm{k} \Omega$ Others: $4.7 \mathrm{k} \Omega$	
Input current (typical)	IN0000 to IN0002: 12 mA Others: 5 mA	
ON voltage	14.4 VDC min.	
OFF voltage	5.0 VDC max.	
ON delay (See Note 1)	1 to 128 ms max. (default: 8 ms) (See Note 1)	
OFF delay (See Note 1)	1 to 128 ms max. (default: 8 ms) (See Note 1)	

Note: 1. The actual ON/OFF delay includes an input constant of 1, 2, 4, 8, 16, 32, 64, or 128 ms (default: 8 ms).
2. When IN0000 to IN0006 are used for the high-speed counter inputs, the delays are as shown below:

Input	Increment mode	Differential phase mode
IN0000 (A-phase)	5 kHz	2.5 kHz
IN0001 (B-phase)	Normal input	
IN0002 (Z-phase)	ON: 100μ s max. OFF: $500 \mu \mathrm{~s}$ max.	
IN0003 to IN0006	0.3 ms max. (From the time of input ON until the interrupt subroutine is executed.)	

Expansion I/O Unit

Item	Specifications	Circuit
Input voltage	24 VDC, +10\%/-15\%	Note: The polarity of the input power supply can be either positive or negative.
Input impedance	$4.7 \mathrm{k} \Omega$	
Input current (typical)	5 mA	
ON voltage	14.4 VDC min.	
OFF voltage	5.0 VDC max.	
ON delay	1 to 128 ms max. (default: 8 ms) (See Note)	
OFF delay	1 to 128 ms max. (default: 8 ms) (See Note)	

Note: The actual ON/OFF delay includes an input constant of $1,2,4,8,16,32$, 64 , or 128 ms (default: 8 ms).

OUTPUT SPECIFICATIONS (CPU UNIT AND EXPANSION I/O MODULES)

Relay Output

Item			Specifications	Circuit		
Maxim	switching	pacity	$\begin{aligned} & 2 \mathrm{~A}, 250 \mathrm{VAC}(\cos \phi=1) \\ & 2 \mathrm{~A}, 24 \mathrm{VDC} \\ & \text { (4 A/common) } \end{aligned}$			
Minimum switching capacity			$10 \mathrm{~mA}, 5 \mathrm{VDC}$			
Relay service life	Electrical	Resistance load	300,000 times			
		Inductive load	100,000 times			
	Mechanical		10 million times	$\square-\ldots-\ldots \quad$Maximum 250 VAC: 2 A 24 VDC: 2 A		
ON delay			15 ms max.			
OFF delay			15 ms max.			

Transistor Output (Sink Type/Source Type)

Item	Specifications	Circuit
Maximum switching capacity	$\begin{aligned} & 300 \mathrm{~mA}, 24 \mathrm{VDC}+10 \% /-15 \% \\ & \text { (See Note 1) } \end{aligned}$	Sink Type Output LED
Leakage current	0.1 mA max.	
Residual voltage	1.5 V max.	
		Source Type
ON delay	0.1 ms max.	
OFF delay	$1 \mathrm{~ms} \mathrm{max}$. (See Note 2)	W

Note: 1. The maximum switching capacity of the CPM1A with transistor outputs (sink type and source type) are limited to the currents shown in the following table for the common and for the Unit.

Part number	Max. switching capacity
CPM1A-10CDT, CPM1A-10CDT1-A, CPM1A-10CDT1-D	$0.9 \mathrm{~A} /$ Unit
CPM1A-20CDT-D, CPM1A-20CDT1-A, CPM1A-20CDT1-D	$0.9 \mathrm{~A} /$ common; 1.8 A/Unit
CPM1A-30CDT-D, CPM1A-30CDT1-A, CPM1A-30CDT1-D	$0.9 \mathrm{~A} /$ common; 2.7 A/Unit
CPM1A-40CDT-D, CPM1A-40CDT1-A, CPM1A-40CDT1-D	$0.9 \mathrm{~A} /$ common; 3.6 A/Unit
CPM1A-20EDT, CPM1A-20EDT1	$0.9 \mathrm{~A} /$ common; $1.8 \mathrm{~A} /$ Unit
CPM1A-8ET, CPM1A-8ET1	$0.9 \mathrm{~A} /$ common; $1.8 \mathrm{~A} /$ Unit

2. When using the pulse output function of the CPM1A with transistor outputs (sink type and source type):

The output current must be within a range from 100 to 200 mA when using the output 01000 or 01001 as a pulse output with the maximum frequency of 2 kHz . The outputs 01000 and 01001 will vary depending on the output current.

Load current	OFF delay
100 to 200 mA	0.2 ms max.
0 to 300 mA except for the above range	0.5 ms max.

ANALOG I/O MODULE

Item		Specification	
Model		CPM1A-MAD01	
I/O type		Voltage	Current
Analog inputs	Number of inputs	2	
	Input signal range	0 to 10 V or 1 to 5 V	4 to 20 mA
	Maximum rated input	$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$
	External input impedance	$1 \mathrm{M} \Omega \mathrm{min}$.	250Ω rated
	Resolution	1/256	
	Overall precision	1.0\% of full scale	
	Converted A/D data	8-bit binary	
Analog output (See Note 1.)	Number of outputs	1	
	Output signal range	0 to 10 V or -10 to 10 V	4 to 20 mA
	External output max. current	5 mA	-
	External output allowed load resistance	-	350Ω
	Resolution	$1 / 256$ ($1 / 512$ when the output signal range is -10 to 10 V .)	
	Overall precision	1.0\% of full scale	
	Data setting	8 -bit binary with sign bit	
Conversion time (See Note 2.)		$10 \mathrm{~ms} /$ /Unit max.	
Isolation method		Photocoupler isolation between I/O terminals and PC (There is no isolation between the analog I/O signals.)	

Note: 1. The voltage output and current output can be used at the same time, but the total output current cannot exceed 21 mA .
2. The conversion time is the total time for 2 analog inputs and 1 analog output.

TEMPERATURE SENSOR MODULES

By connecting a Temperature Sensor Module (CPM1A-TS001/TS002/TS101/TS101A/TS102) to the CPM1A, inputs can be received from thermocouples or temperatureresistance thermometers. Inputs converted to binary data (4-digit hexadecimal) and stored in the IR area.

Specifications

Item	Specification		
Model	CPM1A-TS001/TS002	CPM1A-TS101/TS102	CPM1A-TS101-DA
Number of inputs	TS001: 2; TS002: 4	TS101: 2; TS102: 4	2
Input types (See Note 1)	Thermocouple types K or J, selectable	Platinum resistance thermometer types Pt100 and JPt1100, selectable	
Input resolution	$0.1^{\circ} \mathrm{C}$ in 2's complement format	$0.1^{\circ} \mathrm{C}$ in 2's complement format	
Input accuracy	$\pm 0.5 \%$ or $\pm 2 \%$ of the stored value whichever is larger ± 1 digit max. (See Note 2)	$\pm 0.5 \%$ or $\pm 1 \%$ of the stored value whichever is larger ± 1 digit max. (See Note 2)	1.0% max. full scale
Number of outputs	None	None	1
Output types	-	-	Voltage or current output
Output resolution	-	-	$1 / 256(0$ to 10 V$)$ $1 / 512(-10$ to $+10 \mathrm{~V})$ $1 / 256 ~(4$ to 20 mA) $)$
Output accuracy	-	-	1.0% max. full scale
Conversion cycle	250 ms for all points	60 ms max. for all points	
Converted temperature data	Binary data (4-digit hexadecimal)		Binary data (8-digit hexadecimal)
Isolation method	Photocoupler isolation between I/O terminals and the PLC		

Note: 1. The same input type must be used for all inputs.
2. Accuracy for K thermocouples at temperatures less than $-100^{\circ} \mathrm{C}: \pm 4^{\circ} \mathrm{C} \pm 1$ digit max.

Input Temperature Ranges for CPM1A-TS001/TS002

The rotary switch can be used to make of the following range and input type settings for CPM1A-TS001/002 models.

Thermocouple input	Range $\left({ }^{\circ} \mathrm{C}\right)$	Range $\left({ }^{\circ} \mathrm{F}\right)$
Type K	-200 to 1300	-300 to 2300
	0.0 to 500.0	0.0 to 900.0
	-100 to 850	-100 to 1500
	0.0 to 400.0	0.0 to 750.0

Input Temperature Ranges for CPM1A-TS101/TS101DA/TS102

The rotary switch can be used to make of the following range and input type settings for CPM1A-TS101/102 models.

Platinum RTD input	Range $\left({ }^{\circ} \mathrm{C}\right)$	Range $\left({ }^{\circ} \mathrm{F}\right)$
Pt100	-200.0 to 650.0	-300 to 1200.0
JPt100	-200.0 to 650.0	-300 to 1200.0

COMMUNICATIONS ADAPTER

RS-232C Adapter and RS-422 Adapter

Model		CPM1-CIF01	CPM1-CIF11
Functions		Level conversion between the CMOS level (CPU side) and the RS-232C (peripheral device side)	Level conversion between the CMOS level (CPU side) and the RS-422 (peripheral device side)
Insulation		The RS-232C (peripheral device side) is insulated by a DC/DC converter and photocoupler.	The RS-422 (peripheral device side) is insulated by a DC/DC converter and photocoupler.
Power supply		Power is supplied by the CPU.	
Power consumption		0.3 A max.	
Transmission speed		38.4 kbits/s max.	
Vibration resistance		10 to 57 Hz with an amplitude of 0.075 mm , and 57 to 150 Hz with an acceleration of 1 G in the X , Y and Z directions for 80 minutes each (i.e. for 8 minutes each, 10 times).	
Shock resistance		1.5 G in the X, Y and Z directions 3 times each.	
Ambient temperature	Operating	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
	Storage	$-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.167^{\circ} \mathrm{F}\right)$	$-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.167^{\circ} \mathrm{F}\right)$
Ambient humidity	Operating	10% to $90 \% \mathrm{RH}$ (with no condensation)	
Ambient environment	Operating	With no corrosive gas	
Weight		200 g max.	

COMPOBUS/S I/O LINK MODULE

The CPM1A controller can function as a Slave to a CompoBus/S Master Module (or SRM1 CompoBus/S Master Control Module) when a CPM1A-SRT21 CompoBus/S I/O Link Module is connected. The CompoBus/S I/O Link Module establishes an I/O link of 8 inputs and 8 outputs between the Master Module and the CPM1A. Up to 3 Expansion I/O Modules or Expansion Modules can be connected to a CPM1A CPU Unit.

Specifications

Model	CPM1A-SRT21
Master/Slave	CompoBus/S Slave
Number of I/O bits	8 input bits, 8 output bits
Number of words occupied in CPM2A I/O memory	1 input word, 1 output word (Allocated in the same way as other Expansion I/O Modules or Expansion Modules)
Node number setting	Set using the DIP switch.

Note: See the CompoBus/S section of Omron's Remote I/O and Wiring Solutions Catalog (GC RIO1) for more details on CompoBus/S communications.

Dimensions

Unit: mm (inch)

- CPU, EXPANSION I/O AND SPECIAL I/O MODULES

Model	W
CPM1A-10CD \square-A/D	$66(2.60)$
CPM1A-20CD \square-A/D	$86(3.39)$
CPM1A-30CD \square-A/D	$130(5.12)$
CPM1A-40CD \square-A/D	$150(5.91)$
CPM1A-20CAR-A	$130(51.2)$
CPM1A-32CAR-A	$150(5.91)$
CPM1A-20ED \square	$86(3.39)$
CPM1A-8E \square	$66(2.60)$
CPM1A-SRT21	$66(2.60)$
CPM1A-MAD01	$66(2.60)$
CPM1A-TS $\square \square$	$86(3.39)$

Unit: mm (inch)

COMMUNICATION ADAPTER MODULES

CPM1-CIF01

CPM1-CIF11

DIMENSIONS WITH PERIPHERAL DEVICES ATTACHED

Functions

CONFIGURATION

The CPM1A CPU units feature a compact, one-piece construction that includes $10,20,30$ or 40 built-in I/O terminals. Three output models are available: Relay outputs, sinking (NPN) transistor output and sourcing (PNP) transistor output.

Expansion

Up to three Expansion I/O Modules can be connected to a 30-point or 40-point CPU Unit to add an extra 8 or 20 I/O points for each, for a maximum of up to $100 \mathrm{I} / \mathrm{O}$ points.

Dedicated I/O Modules

Up to 3 Analog I/O Modules or Temperature Sensor Input Modules can be used with 30-point and 40-point CPU Units. Each analog I/O module provides 2 analog inputs and 1 analog output, so a maximum of 6 analog inputs and 3 analog outputs can be achieved by connecting 3 Analog I/O Modules. Each Temperature Sensor Module provides two temperature sensor inputs from either thermocouples or platinum resistance thermometers. Up to 6 inputs can be connected.

INTERRUPT INPUTS

There are two input interrupts in the CPM1A 10-point I/O CPU and four in the 20-, 30 -, and 40 -point I/O CPUs. Input interrupts are available in two modes.. In addition to normal interrupt inputs, the CPM1A has a counter mode that counts high-speed input signals and triggers interrupts at fixed count multiples.

CPM1A-10CD $\square-\square$ (10 I/O terminals)

CPM1A-30CD $\square-\square$
(30 I/O terminals)

CPM1A-20CD $\square-\square$ (20 I/O terminals)

CPM1A-40CD $\square-\square$ (40 I/O terminals)

10 point I/O CPU
20, 30, and 40 point I/O CPU

Application Example:

Cutting Metal Sheets to Specified Lengths

The proximity sensor detects the edge of a metal plate to operate the cutter. Metal sheets can be cut continuously to the specified lengths at a high speed.

Input Interrupt Mode

If an input interrupt occurs, the regular program shuts down irrelevant of the cycle time, and the interrupt processing program is executed immediately.

Counter Mode

When the number of external signals counted at high speed reaches a specified number of counts, the regular program shuts down, and the interrupt processing program is executed at fixed counts. The count can be set between 0 and 65535 .

QUICK-RESPONSE INPUTS

Quick-response inputs can detect input signals with a pulse width as short as 0.2 ms regardless of their timing during the scan cycle. Quick-response inputs and interrupt inputs use the same input terminals.

CPU	Input no.	Minimum input pulse width
10 point I/O CPU	00003 to 00004	0.2 ms
20 point, 30 point, 40 point I/O CPU	00003 to 00006	

Application Example:

Calculating the Number of Chips
The metal sensor counts the number of parts that have passed. Steady counting can be achieved even when the input-ON time is short.

HIGH-SPEED COUNTER

The CPM1A has a high-speed counter function that can be used in the incrementing and up/down mode. Using this function together with the input interrupts enables zone comparison control or target value control irrelevant of the cycle time.

Counting mode		Incrementing mode	Up/Down mode
Input no.	00000	Count input	A-phase input
	00001	-	B-phase input
	00002	Reset input	Z-phase input
Input method	Single-phase in- put	Phase-differ- ence, $4 \times$ inputs	
	5.0 kHz	2.5 kHz	
Count range	0 to 65535	-32767 to 32767	

Note: When using in the incrementing mode, the input 00001 can be used as an input contact.

INTERVAL TIMER INTERRUPTS

The CPM1A has one interval timer. The interval timer shuts down the regular program regardless of the point in the cycle once the time is up, and immediately executes an interrupt processing program. Interval timers are used in the following two modes.

Item	One-shot mode	Scheduled interrupt mode
Operation	An interrupt is executed only once when the time is up.	Interrupts are executed repeatedly at fixed periods.
Setting time	0.5 ms to $319,968 \mathrm{~ms}$ ($0.1-\mathrm{ms}$ units)	

Application Example:

Computing the Sheet Speed

The number of pulse inputs is computed in the interrupt mode at a fixed time to calculate the speed.

ANALOG SETTING

The CPM1A contains two analog setting controls that can be used for a broad range of analog timer and counter settings. Turning the setting control stores values of 0 to 200 (BCD data) in the SR area.

Analog setting	Storage area	Setting value (BCD)
Analog setting 0	SR 250	0000 to 0200
Analog setting 1	SR 251	

Analog setting 0 Analog setting 1 *Phillips screwdriver is required.

Application Example:

Tact Operation Control of Conveyor Lines

A conveyor can be stopped temporarily as required for assembly processes. When the timer function and limit switches are used in a combination, conveyors can be stopped for a fixed time or can be run at a constant speed for a fixed distance. Fine adjustment of the stopping time can be easily done by using the analog setting controls.

Program Example

1. Analog timer for 0.0 to 20.0 seconds

Value of the analog setting 0 (0 to 200)
2. Analog timer for 0.0 to 60.0 seconds

PULSE OUTPUT FUNCTION

The CPM1A transistor output models have an output function capable of outputting a pulse of 20 Hz to 2 kHz (single-phase output).
When used in combination with a Stepping Driver or Servodriver, positioning can be easily performed.

Application Example

Changing the speed of the Stepping Motor.

Program Example

Communications

NT LINK FOR PROGRAMMABLE TERMINALS

Use Omron's high-speed NT Link for real-time communications between the CPM1A and a Programmable Terminal.

Programmable Terminal

Communication Cable C200H-CN320-EU (2 m) C200H-CN520-EU (5 m)

HOST LINK COMMUNICATIONS

CPM1A Host Link communications consist of interactive procedures whereby the CPM1A returns a response to a command sent from the IBM PC/AT or compatible computer. These communications allow the IBM PC/AT or compatible computer to read and write in the CPM1A's I/O Areas and Data Memory Areas as well as in areas containing the status of various settings.

1:1 Host Link Communications

1:N Host Link Communications

Computer with a RS-422/RS-485 communications port

■ 1:1 CONNECTIONS FOR DATA EXCHANGE

With a 1:1 Link, two CPM1As or a CPM1A and CQM1 or C200H \square are connected $1: 1$ with one side as the Master and the other as the Slave to provide an I/O link of a maximum of 256 points (LR 0000 to LR 1515).

Example of a 1:1 Link between CPM1As

Communication Cable C200H-CN320-EU (2 m)

Limitations of the CPM1A 1:1 Link

CPM1A I/O links are limited to 16 words (LR 00 to LR 15). Therefore, use these 16 words (LR 00 to LR 15) on the CQM1 or C200H \square side when forming 1:1 links with a CQM1 or C200H \square.

PROGRAM TRANSFER UNIT

Use Omron's EEPROM program transfer unit to update programs in machines or program multiple controllers with the same program. The CPM1-EMU01-V1 Expansion Memory Unit connects to the peripheral port of micro and small PLCs.

Omron SRM1, CPM1A, CPM2A,
CPM2B, CPM2C and CQM1H programmable controllers

Instruction Set

SEQUENCE INSTRUCTIONS

Sequence Input Instructions

Instruction	Mnemonic	Code
LOAD	LD	\bigcirc
LOAD NOT	LD NOT	\bigcirc
AND	AND	\bigcirc
AND NOT	AND NOT	\bigcirc
OR	OR	\bigcirc
OR NOT	OR NOT	\bigcirc
AND LOAD	AND LD	\bigcirc
OR LOAD	OR LD	\bigcirc

Sequence Output Instructions

Instruction	Mnemonic	Code
OUTPUT	OUT	\bigcirc
OUT NOT	OUT NOT	\bigcirc
SET	SET	\bigcirc
RESET	RSET	\bigcirc
KEEP	KEEP	11
DIFFERENTIATE UP	DIFU	13
DIFFERENTIATE DOWN	DIFD	14

Sequence Control Instructions

Instruction	Mnemonic	Code
NO OPERATION	NOP	00
END	END	01
INTERLOCK	IL	02
INTERLOCK CLEAR	ILC	03
JUMP	JMP	04
JUMP END	JME	05

TIMER/COUNTER INSTRUCTIONS

Instruction	Mnemonic	Code
TIMER	TIM	\bigcirc
COUNTER	CNT	\bigcirc
REVERSIBLE COUNTER	CNTR	12
HIGH-SPEED TIMER	TIMH	15

STEP INSTRUCTIONS

Instruction	Mnemonic	Code
STEP DEFINE	STEP	08
STEP START	SNXT	09

INCREMENT/DECREMENT

Instruction	Mnemonic	Code
INCREMENT	INC(@)	38
DECREMENT	DEC(@)	39

DATA CONVERSION INSTRUCTIONS

Instruction	Mnemonic	Code
BCD TO BINARY	$\operatorname{BIN}(@)$	23
BINARY TO BCD	BCD(@)	24
4 TO 16 DECODER	MLPX(@)	76
16 TO 4 DECODER	$\operatorname{DMPX}(@)$	77
ASCII CODE CONVERT	ASC(@)	86

Data Comparison Instructions

Instruction	Mnemonic	Code
COMPARE	CMP	20
DOUBLE COMPARE	CMPL	60
BLOCK COMPARE	BCMP(@)	68
TABLE COMPARE	$\operatorname{TCMP(@)~}$	85

BCD/BINARY CALCULATION

Instruction	Mnemonic	Code
BCD ADD	ADD(@)	30
BCD SUBTRACT	SUB(@)	31
BCD MULTIPLY	MUL(@)	32
BCD DIVIDE	DIV(@)	33
BINARY ADD	ADB(@)	50
BINARY SUBTRACT	SBB(@)	51
BINARY MULTIPLY	MLB(@)	52
BINARY DIVIDE	DVB(@)	53
DOUBLE BCD ADD	ADDL(@)	54
DOUBLE BCD SUBTRACT	SUBL(@)	55
DOUBLE BCD MULTIPLY	MULL(@)	56
DOUBLE BCD DIVIDE	DIVL(@)	57

DATA MOVEMENT INSTRUCTIONS

Instruction	Mnemonic	Code
MOVE	MOV(@)	21
MOVE NOT	MVN(@)	22
BLOCK TRANSFER	XFER(@)	70
BLOCK SET	BSET(@)	71
DATA EXCHANGE	XCHG(@)	73
SINGLE WORD DISTRIBUTE	DIST(@)	80
DATA COLLECT	COLL(@)	81
MOVE BIT	MOVB(@)	82
MOVE DIGIT	MOVD(@)	83

Note: ○: Instruction keys allocated to the Programming Console.
(@): Instruction can be differentiated using input rise time to execute the instruction in just one cycle.

LOGIC INSTRUCTIONS

Instruction	Mnemonic	Code
COMPLEMENT	COM(@)	29
LOGICAL AND	ANDW(@)	34
LOGICAL OR	ORW(@)	35
EXCLUSIVE OR	XORW(@)	36
EXCLUSIVE NOR	XNRW(@)	37

SHIFT INSTRUCTIONS

Instruction	Mnemonic	Code
SHIFT REGISTER	SFT	O/10
WORD SHIFT	WSFT(@)	16
ASYNCHRONOUS SHIFT REGISTER	ASFT(@)	17
ARITHMETIC SHIFT LEFT	ASL(@)	25
ARITHMETIC SHIFT RIGHT	ASR(@)	26
ROTATE LEFT	ROL(@)	27
ROTATE RIGHT	ROR(@)	28
ONE DIGIT SHIFT LEFT	SLD(@)	74
ONE DIGIT SHIFT RIGHT	SRD(@)	75
REVERSIBLE SHIFT REGISTER	SFTR(@)	84

SPECIAL CALCULATION INSTRUCTION

Instruction	Mnemonic	Code
BIT COUNTER	BCNT(@)	67

SUBROUTINE INSTRUCTIONS

Instruction	Mnemonic	Code
SUBROUTINE ENTER	SBS(@)	91
SUBROUTINE ENTRY	SBN	92
SUBROUTINE RETURN	RET	93
MACRO	MCRO	99

INTERRUPT CONTROL INSTRUCTIONS

Instruction	Mnemonic	Code
INTERVAL TIMER	STIM(@)	69
INTERRUPT CONTROL	INT(@)	89

PERIPHERAL DEVICE CONTROL

I/O Unit Instructions

Instruction	Mnemonic	Code
7-SEGMENT DECODER	SDEC(@)	78
I/O REFRESH	$\operatorname{IORF}(@)$	97

Display Instruction

Instruction	Mnemonic	Code
MESSAGE	MSG	46

High-speed Counter Control Instructions

Instruction	Mnemonic	Code
MODE CONTROL	INI(@)	61
PV READ	PRV(@)	62
COMPARE TABLE LOAD	CTBL(@)	63

Pulse Output Control Instructions

Instruction	Mnemonic	Code
SPEED OUTPUT	SPED(@)	64
SET PULSES	PULS(@)	65

DAMAGE DIAGNOSIS INSTRUCTIONS

Instruction	Mnemonic	Code
FAILURE ALARM	FAL(@)	06
SEVERE FAILURE ALARM	FALS	07

■ SPECIAL SYSTEM INSTRUCTIONS

Instruction	Mnemonic	Code
SET CARRY	STC(@)	40
CLEAR CARRY	CLC(@)	41

Note: ○: Instruction keys allocated to the Programming Console.
(@): Instruction can be differentiated using input rise time to execute the instruction in just one cycle.

SUMMARY OF FUNCTION CODES

The following table lists the CPM1A instructions that have fixed function codes. Each instruction is listed by mnemonic and by instruction name. Use the numbers in the leftmost column as the left digit and the number in the column heading as the right digit of the function code.

Left digit	Right digit									
	0	1	2	3	4	5	6	7	8	9
0	NOP No operation	$\begin{aligned} & \text { END } \\ & \text { Fnd } \end{aligned}$	IL Interlock	ILC Interlock clear	$\begin{array}{\|l\|} \hline \text { JMP } \\ \text { Jump } \end{array}$	JME Jump end	FAL(@) Failure alarm and reset	FALS Severe failure alarm	STEP Step define	$\begin{aligned} & \hline \text { SNXT } \\ & \text { Step start } \end{aligned}$
1	SFT Shift register	KEEP Keep	CNTR Reversible counter	DIFU Differentiate up	DIFD Differenti- ate down	TIMH Highspeed timer	WSFT(@) Word shift	ASFT(@) Asynchronous shift register	---	---
2	CMP Compare	MOV(@) Move	MVN(@) Move not	BIN(@) BCD to binary	$\begin{aligned} & \text { BCD(@) } \\ & \text { Binary to } \\ & \text { BCD } \end{aligned}$	ASL(@) Shift left	ASR(@) Shift right	ROL(@) Rotate left	ROR(@) Rotate right	COM(@) Complement
3	$\begin{aligned} & \text { ADD(@) } \\ & \text { BCD add } \end{aligned}$	$\begin{aligned} & \text { SUB(@) } \\ & \text { BCD } \\ & \text { subtract } \end{aligned}$	$\begin{array}{\|l} \hline \text { MUL(@) } \\ \text { BCD } \\ \text { multiply } \end{array}$	DIV(@) BCD divide	ANDW (@) Logical AND	ORW(@) Logical OR	XORW (@) Exclusive OR	XNRW (@) Exclusive NOR	INC(@) Increment	DEC(@) Decrement
4	STC(@) Set carry	CLC(@) Clear carry	---	---	---	---	MSG(@) Message display	---	---	---
5	ADB(@) Binary add	SBB(@) Binary subtract	MLB(@) Binary multiply	DVB(@) Binary divide	ADDL(@) Double BCD add	SUBL(@) Double BCD subtract	MULL(@) Double BCD multiply	DIVL(@) Double BCD divide	---	---
6	CMPL Double compare	INI(@) Mode control	PRV(@) High- speed counter PV read	CTBL(@) Comparison table load	SPED(@) Speed output (See Note)	PULS(@) Set pulses (See Note)	---	BCNT(@) Bit counter	BCMP(@) Block compare	STIM(@) Interval timer
7	XFER(@) Block transfer	BSET(@) Block set	---	XCHG(@) Data exchange	SLD(@) One digit shift left	SRD(@) One digit shift right	$\begin{array}{\|l\|} \hline \text { MLPX(@) } \\ \text { 4-to-16 } \\ \text { decoder } \end{array}$	$\begin{array}{\|l\|} \hline \text { DMPX(@) } \\ 16 \text {-to-4 } \\ \text { encoder } \end{array}$	```SDEC(@) 7-seg- ment decoder```	---
8	DIST(@) Single word distribute	$\begin{aligned} & \text { COLL(@) } \\ & \text { Data } \\ & \text { collect } \end{aligned}$	MOVB(@) Move bit	MOVD(@) Move digit	SFTR(@) Reversible shift register	TCMP(@) Table compare	$\begin{aligned} & \text { ASC(@) } \\ & \text { ASCII } \end{aligned}$ convert	---	---	INT(@) Interrupt control
9	---	SBS(@) Subroutine entry	SBN Subroutine define	RET Subroutine return	---	---	---	$\begin{array}{\|l\|} \hline \text { IORF(@) } \\ \text { I/O } \\ \text { refresh } \end{array}$	---	$\begin{aligned} & \text { MCRO } \\ & \text { (@) } \\ & \text { Macro } \end{aligned}$

Note: Only for the CPM1A transistor output models.

NOTE: DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters to inches divide by 25.4.

OmROn.

OMRON CANADA, INC.
One East Commerce Drive
Schaumburg, IL 60173

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for omron manufacturer:
Other Similar products are found below :
G9ED-1-B-AQ-DC24 E3X-SD11 2M S8VM-10024C R88A-CCW002P2 S82Y-VM30D H3AM-NS-A AC100-240 G3NA-440B-2 DC5-24 XF2J-0824-11A-R100 G3NA-425B-2 DC5-24 XF2J-0824-12A G8JN-1C7T-R-DC12 G8VA-1A4T-R01-DC12 G8HE-1A7T-R-DC12 XF2W-2415-1A XF2U-3015-3A G8V-RH-1A7T-R-DC12 LY1D-2-5S-AC120 M165-JR-24D M16-TG-24D CS1G-CPU43-E M22CAT1 61F-GP-NT AC110 M7E-01DGN2-B M7E-02DGN2 M7E-08DRN2 M7E-20DRN1 M7E-HRN2 M8PHWS D2HW-C233MR F03-02 SUS316 F150LTC20 F3SJ-A0245P30 F3STGRNSMC21M1J8 F3UVHM MG2-US-AC24 MK2EP-UA-AC6V MK2PNIAC240 MK310EDC24 MKS2XTIN-11 DC110 MM4KPAC120NC MM4XPAC120 G2Q-184P-V-DC5 G2R-1114P-V-US-DC5 G2R13SNDDC24 G2RL-2A4-CF-DC48 G2U-114P-US-DC12 G2V-234P-US-DC48 G3CA-8H-AC100/110/120 G3PA-210B-US-DC24 G3PE525B3NDC1224

[^0]: Note: Only one CPM1A-TS002/TS102 Temperature Sensor Input Module can be connected to the CPU. If a CPM1A-TS002/102 is connected to the CPU, only one additional Special I/O Module (other than a CPM1A-TS002/102) or one Expansion I/O Module can be connected to the CPU.

