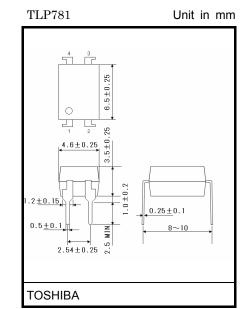
TOSHIBA Photocoupler GaAs IRED & Photo-Transistor

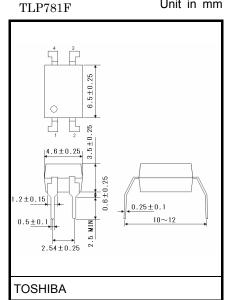
TLP781, TLP781F

Office Equipment Household Appliances Solid State Relays Switching Power Supplies Various Controllers Signal Transmission Between Different Voltage Circuits

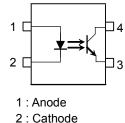

The TOSHIBA TLP781 consists of a silicone photo-transistor optically coupled to a gallium arsenide infrared emitting diode in a four lead plastic DIP (DIP4) with having high isolation voltage (AC: 5kVRMS (min)).

- TLP781 : 7.62mm pitch type DIP4
- TLP781F: 10.16mm pitch type DIP4
- Collector-emitter voltage: 80V (min.)
- Current transfer ratio: 50% (min.) Rank GB: 100% (min.)
- Isolation voltage: 5000V_{rms} (min.)
- UL recognized: UL1577, file No. E67349
- BSI approved: BS EN60065:2002 Approved no.8961
 - BS EN60950-1:2006
 - Approved no.8962
 - SEMKO approved:EN60065:2002 Approved no.800514 EN60950-1:2001, EN60335-1:2002
 - Approved no.800517 Option(D4)type VDE approved : DIN EN60747-5-2 Certificate No. 40021173

(Note): When an EN60747-5-2 approved type is needed, Please designate "Option (D4)"


Construction mechanical rating

	7.62mm Pitch Standard Type	10.16mm Pitch TLPxxxF Type
Creepage distance	6.5mm(min)	8.0mm(min)
Clearance	6.5mm(min)	8.0mm(min)
Insulation thickness	0.4mm(min)	0.4mm(min)


Weight: 0.25g (typ.)

Unit in mm

Weight: 0.25g (typ.)

Pin Configurations (top view)

- 3 : Emitter
- 4 : Collector

Current Transfer Ratio

Туре	Classi– fication (Note 1)	(I _C	sfer Ratio (%) / I _F) = 5V, Ta = 25°C Max	Marking Of Classification
	(None)	50	600	Blank, Y, Y+, YE,G, G+, B, B+,BL,GB
	Rank Y	50	150	YE
	Rank GR	100	300	GR
	Rank BL	200	600	BL
TLP781	Rank GB	100	600	GB
	Rank YH	75	150	Y+
	Rank GRL	100	200	G
	Rank GRH	150	300	G+
	Rank BLL	200	400	В

(Note 1): Ex. rank GB: TLP781 (GB)

(Note 2): Application type name for certification test, please use standard product type name, i. e. TLP781 (GB): TLP781

Absolute Maximum Ratings (Ta = 25°C)

	Characteristic		Symbol	Rating	Unit
	Forward current		lF	60	mA
	Forward current derating (Ta ≥ 39°C)		ΔI _F / °C	-0.7	mA / °C
	Pulse forward current (N	ote 3)	I _{FP}	1	А
LED	Power dissipation		PD	100	mW
	Power dissipation derating		ΔP _D / °C	-1.0	mW / °C
	Reverse voltage		V _R	5	V
	Junction temperature		Тj	125	°C
	Collector-emitter voltage		V _{CEO}	80	V
	Emitter-collector voltage		V _{ECO}	7	V
for	Collector current		Ι _C	50	mA
Detector	Power dissipation (single circuit)		PC	150	mW
	Power dissipation derating (Ta ≥ 25°C)(single circuit)		ΔP _C / °C	-1.5	mW / °C
	Junction temperature		Тj	125	°C
Ope	rating temperature range		T _{opr}	-55 to 110	°C
Stor	age temperature range		T _{stg}	-55 to 125	°C
Lea	d soldering temperature (10s)		T _{sol}	260	°C
Tota	al package power dissipation		PT	250	mW
	al package power dissipation derating ≥ 25°C)		ΔP _T / °C	-2.5	mW / °C
Isola	ation voltage (No	ote 4)	BVS	5000	V _{rms}

(Note): Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

(Note 3): 100 µs pulse, 100 Hz frequency

(Note 4): AC, 1 min., R.H.≤ 60%. Apply voltage to LED pin and detector pin together.

Recommended Operating Conditions

Characteristic	Symbol	Min	Тур.	Max	Unit
Supply voltage	V _{CC}	_	5	24	V
Forward current	١ _F	-	16	25	mA
Collector current	Ι _C	-	1	10	mA
Operating temperature	T _{opr}	-25	_	85	°C

(Note): Recommended operating conditions are given as a design guideline

to obtain expected performance of the device.

Additionally, each item is an independent guideline respectively.

In developing designs using this product, please confirm $% \left({{{\left[{{{\rm{con}}} \right]}_{\rm{con}}}_{\rm{con}}} \right)$

specified characteristics shown in this document.

Individual Electrical Characteristics (Ta = 25°C)

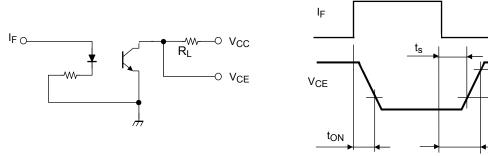
	Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
	Forward voltage	V _F	I _F = 10 mA	1.0	1.15	1.3	V
LED	Reverse current	I _R	V _R = 5 V	_	—	10	μA
	Capacitance	CT	V = 0, f = 1 MHz	_	30	_	pF
	Collector–emitter breakdown voltage	V _(BR) CEO	I _C = 0.5 mA	80	_		V
r	Emitter-collector breakdown voltage	V _{(BR) ECO}	I _E = 0.1 mA	7	_		V
Detector	Collector dark ourrest	1-(1)	V _{CE} = 24 V	_	0.01	0.1	μA
	Collector dark current	ID(ICEO)	V _{CE} = 24 V Ta = 85°C	_	0.6	50	μA
	Capacitance (collector to emitter)	C _{CE}	V = 0, f = 1 MHz		10	_	pF

Coupled Electrical Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition		Min	Тур.	Max	Unit
Current transfer ratio	I _C / I _F	I _F = 5 mA, V _{CE} = 5 V		50		600	%
			Rank GB	100		600	70
Saturated CTR	I _C / I _{F (sat)}	IF = 1 mA, V _{CE} = 0.4 V			60		%
	IC / IF (sat)		Rank GB	30			70
		I _C = 2.4 mA, I _F = 8 mA				0.4	
Collector–emitter saturation voltage	V _{CE (sat)}	I _C = 0.2 mA, I _F = 1 mA			0.2		V
Ŭ			Rank GB	_	_	0.4	

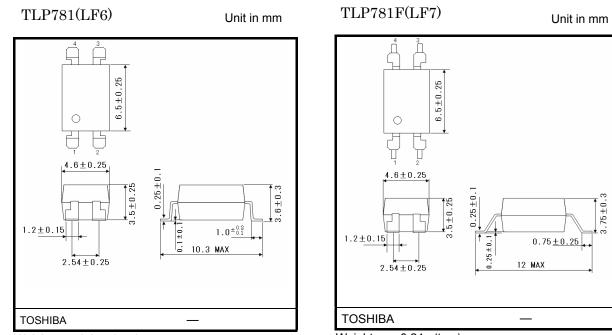
Isolation Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Capacitance (input to output)	CS	V _S = 0, f = 1 MHz	_	0.8	_	pF
Isolation resistance	R _S	V _S = 500 V	1×10 ¹²	10 ¹⁴	_	Ω
		AC, 1 minute	5000	_	_	V
Isolation voltage	BVS	BV _S AC, 1 second, in oil		10000	_	V _{rms}
		DC, 1 minute, in oil	_	10000		Vdc


V_{CC} 4.5V

_0.5V

t_{OF}F


Switching Characteristics (Ta = 25°C)

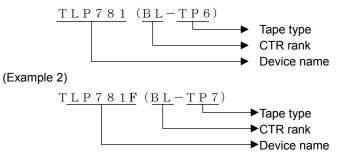
Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Rise time	tr		_	2	—	
Fall time	t _f	V _{CC} = 10 V, I _C = 2 mA	-	3	_	
Turn-on time	t _{on}	R _L = 100Ω	_	3	_	μs
Turn-off time	t _{off}		_	3	_	
Turn-on time	t _{ON}		_	2	_	
Storage time	ts	$R_L = 1.9 kΩ$ (Note 5) V _{CC} = 5 V, I _F = 16 mA	_	25	_	μs
Turn-off time	tOFF			50	_	

(Note 5): Switching time test circuit

Surface-Mount Lead Form Options

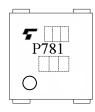
Weight : 0.24g (typ.)

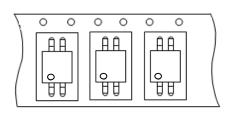
Specifications for Embossed-Tape Packing: (TP6), (TP7)


1. Applicable Package

Package Name	Product Type
DIP4LF6	TLP781
DIP4LF7	TLP781F

2. Product Naming System


Type of package used for shipment is denoted by a symbol suffix after a product number. The method of classification is as below.


(Example 1)

3. Tape Dimensions

3.1 Orientation of Device in Relation to Direction of Tape Movement Device orientation in the recesses is as shown in Figure 1.

Tape feed 🔿

Figure1 Device Orientation

- 3.2 Tape Packing Quantity:2000 devices per reel
- 3.3 Empty Device Recesses Are as Shown in Table 1.

Table1 Empty Device Recesses

	Standard	Remarks
Occurrences of 2 or more successive empty device recesses	0	Within any given 40-mm section of tape, not including leader and trailer
Single empty device recesses	6 devices (max.) per reel	Not including leader and trailer

3.4 Start and End of Tape

The start of the tape has 30 or more empty holes. The end of the tape has 50 or more empty holes.

3.5 Tape Specification

[1] TLP781 (TP6)

(1)Tape material: Plastic

(2)Dimensions: The tape dimensions are as shown in Figure 2.

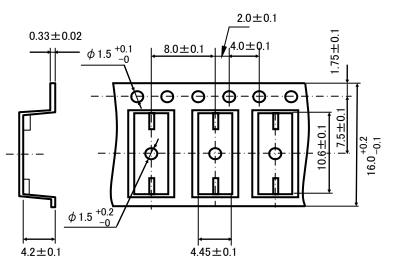
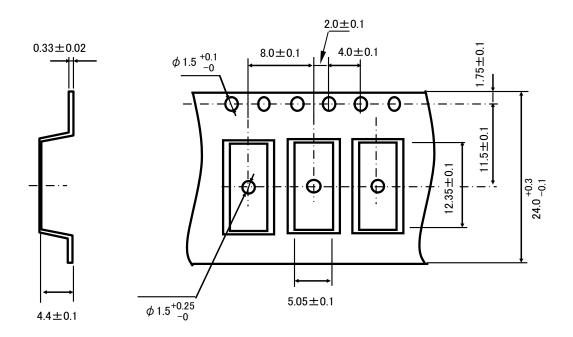
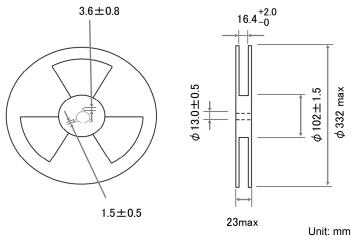



Figure 2 Tape Forms

[2] TLP781F (TP7)

(1)Tape material: Plastic

(2)Dimensions: The tape dimensions are as shown in Figure 3.



3.6 Reel Specification

[1] TLP781 (TP6)

(1)Material: Plastic

(2)Dimensions: The reel dimensions are as shown in Figure 4.

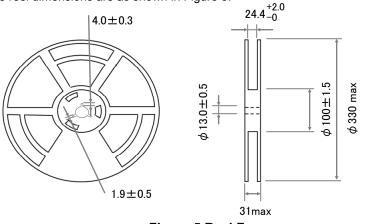


Figure 4 Reel Forms

[2] TLP781F (TP7)

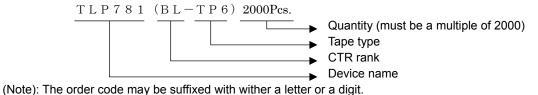
(1)Material: Plastic

(2)Dimensions: The reel dimensions are as shown in Figure 5.

Figure 5 Reel Forms

4. Packing

One reel of photocouplers is packed in a shipping carton.


5. Label Indication

The carton bears a label indicating the product number, the symbol representing classification of standard, the quantity, the lot number and the Toshiba company name.

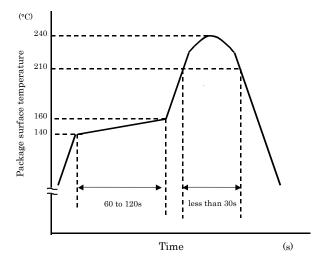
6. Ordering Information

When placing an order, please specify the product number, the CTR rank, the tape type and the quantity as shown in the following example.

(Example)

Please contact your nearest Toshiba sales representative for more details.

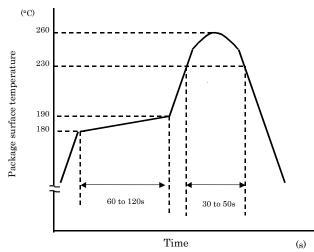
Soldering and Storage


1. Soldering

1.1 Soldering

When using a soldering iron or medium infrared ray/hot air reflow, avoid a rise in device temperature as much as possible by observing the following conditions.

1) Using solder reflow


·Temperature profile example of lead (Pb) solder

This profile is based on the device's maximum heat resistance guaranteed value.

Set the preheat temperature/heating temperature to the optimum temperature corresponding to the solder paste type used by the customer within the described profile.

·Temperature profile example of using lead (Pb)-free solder

This profile is based on the device's maximum heat resistance guaranteed value.

Set the preheat temperature/heating temperature to the optimum temperature corresponding to the solder paste type used by the customer within the described profile.

2) Using solder flow (for lead (Pb) solder, or lead (Pb)-free solder)

Please preheat it at 150°C between 60 and 120 seconds.

• Complete soldering within 10 seconds below 260°C. Each pin may be heated at most once.

3) Using a soldering iron

Complete soldering within 10 seconds below 260°C, or within 3 seconds at 350°C. Each pin may be heated at most once.

2. Storage

- 1) Avoid storage locations where devices may be exposed to moisture or direct sunlight.
- 2) Follow the precautions printed on the packing label of the device for transportation and storage.

3) Keep the storage location temperature and humidity within a range of 5°C to 35°C and 45% to 75%, respectively.

- 4) Do not store the products in locations with poisonous gases (especially corrosive gases) or in dusty conditions.
- 5) Store the products in locations with minimal temperature fluctuations. Rapid temperature changes during storage can cause condensation, resulting in lead oxidation or corrosion, which will deteriorate the solderability of the leads.
- 6) When restoring devices after removal from their packing, use anti-static containers.
- 7) Do not allow loads to be applied directly to devices while they are in storage.
- 8) If devices have been stored for more than two years under normal storage conditions, it is recommended that you check the leads for ease of soldering prior to use.

EN60747 Isolation Characteristics

Types: TLP781, TLP781F

Type designations for 'option: (D4) ', which are tested under EN60747 requirements. Ex.: TLP781 (D4-GR-LF6) D4: EN60747 option

D4: EN60747 option GR: CTR rank name

LF6: standard lead bend name

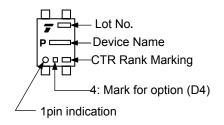
Note: Use TOSHIBA standard type number for safety standard application. Ex. TLP781 (D4-GR-LF6) \rightarrow TLP781

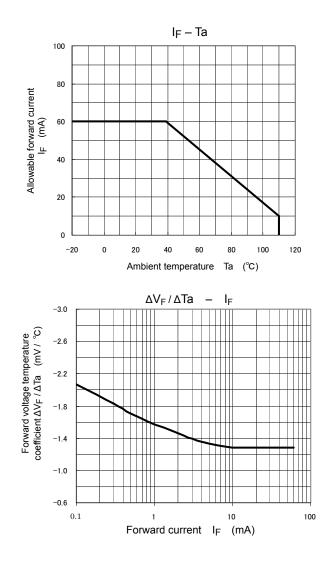
Description	Symbol	Rating	Unit
Application classification			
for rated mains voltage \leq 300 V _{rms} for rated mains voltage \leq 600 V _{rms}		I–IV I–III	-
Climatic classification		55 / 115 / 21	_
Pollution degree		2	—
Maximum operating insulation voltage	VIORM	890	Vpk
Input to output test voltage, Vpr = 1.5×V _{IORM} , type and sample test t _p = 10s, partial discharge < 5pC	V _{pr}	1335	Vpk
Input to output test voltage, Vpr = 1.875×V _{IORM} , 100% production test t _p = 1s, partial discharge < 5pC	V _{pr}	1670	Vpk
Highest permissible overvoltage (transient overvoltage, t _{pr} = 60s)	V _{TR}	6000	Vpk
Safety limiting values (max. permissible ratings in case of fault) current (input current I _F , P _{si} = 0) power (output or total power dissipation) temperature	I _{si} P _{si} T _{si}	300 500 150	mA mW °C
Insulation resistance, V _{IO} = 500V,Ta=25°C	Rsi	≥10 ¹²	Ω

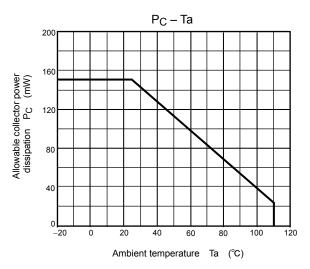
Insulation Related Specifications

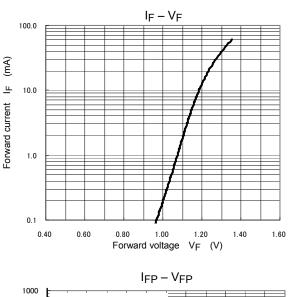
		7.62mm pitch TLPxxx type	10.16mm pitch TLPxxxF type	
Minimum creepage distance	Cr	6.5mm	8.0mm	
Minimum clearance	CI	6.5mm	8.0mm	
Minimum insulation thickness	ti	0.4 mm		
Comparative tracking index	СТІ	175		

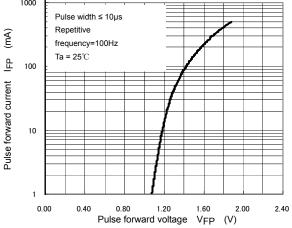
- (1) If a printed circuit is incorporated, the creepage distance and clearance may be reduced below this value. (e.g.at a standard distance between soldering eye centres of 7.5mm). If this is not permissible, the user shall take suitable measures.
- (2) This photocoupler is suitable for 'safe electrical isolation' only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits.

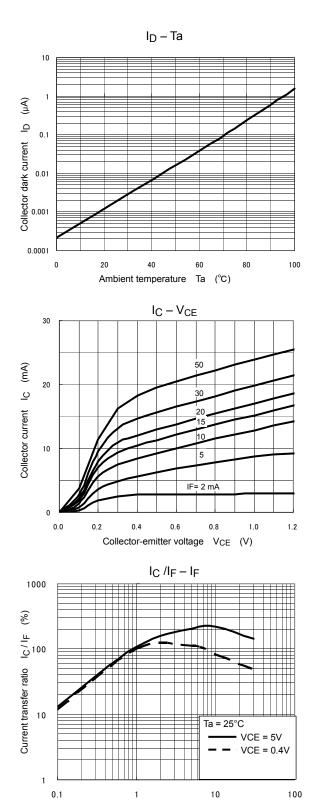

4

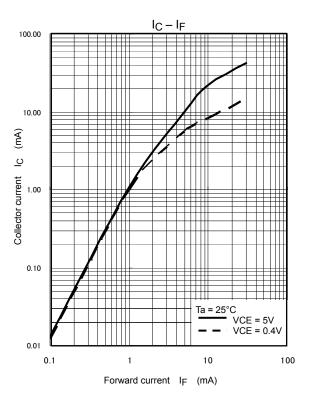

VDE test sign: Marking on product for EN60747


Marking on packing for EN60747

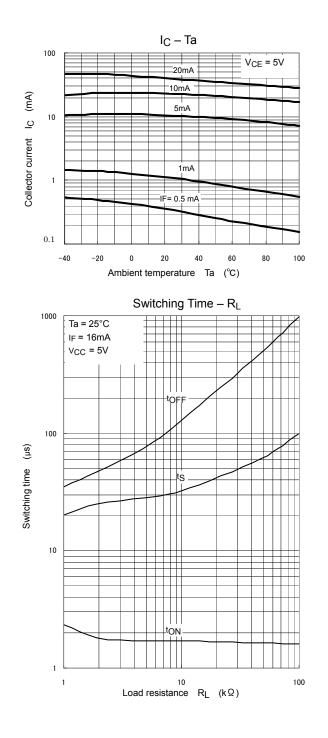


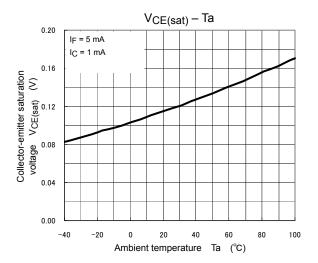

Marking Example: TLP781, TLP781F





*: The above graphs show typical characteristics.




 $I_{\rm C} - V_{\rm CE}$ 80 (mA) 60 Collector current IC 50 40 20 20 IF= 2 mA 0 0 2 4 6 8 10 Collector-emitter voltage V_{CE} (V)

*: The above graphs show typical characteristics.

Forward current IF (mA)

*: The above graphs show typical characteristics.

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET Output Optocouplers category:

Click to view products by Toshiba manufacturer:

Other Similar products are found below :

 TLP3131(F)
 TLP598GAF
 CPC2014NTR
 TLP4026G(F)
 LTV-817S-B
 CPC2017NTR
 TLP152(TPL,E(T)
 PS2505L-4-E3-A
 TLP3106A(TP,F)

 TLP3107A(F)
 TLP3106A(F)
 TLP3149(F)
 TLP3147(F)
 TLP3145(F)
 TLP3149(TP,F)
 H11AV1XSM
 CNY17-1-000E

 CNY17-1-300E
 CNY17-1s
 CNY17-2-000E
 CNY17-2s
 CNY173SR2VM
 CNY17-4-000E
 HCPL-181-06DE
 HCPL-J312-000E
 LTV-3120S

 TA1
 LTV-817H
 LTV-817S-A
 TIL111
 TIL191
 MCT6X
 MCT6XSM
 TLP170G(F)
 TLP197GA(F)

 TLP197G(TP,F)
 TLP222A-2(LF1,F)
 TLP291(GR-TP.E(O)
 TLP597A(F)
 TLP797J(F)
 4N35X
 4N35XSM
 MOC213M
 HMHA2801R2
 ILQ2X

 IS357A
 ISP521-1X
 ISP521-1X
 ISP521-1X
 ISP521-1X
 ISP521-1X
 ISP521-1X