## System Configuration



Note: Only one Interrupt Input Module can be used with a CPU.

## System Configuration




Output Modules (C200H-O $\square \square \square$ )


DC Input/Transistor Output Modules
C200H-MD $\square \square \square$
(16 inputs and 16
outputs; treated as
outputs; treated as
Special I/O Module.)


B7A Interface Modules


Analog Timer Module


## Backplanes

The same Backplanes are used for CPU, Expansion I/O, and Slave Packs.

3-slot Backplane


C200H-BC031-V2



## 8 Components

CPUs ..... 8
Memory Packs ..... 19
Backplanes ..... 21
Special I/O Modules ..... 22
Discrete Input/Output Modules ..... 65
I/O Wiring Accessories ..... 73
Input Wiring Accessories ..... 75
Output Wiring Accessories ..... 81
Remote Expansion ..... 89
Communication Modules ..... 94
Link Adapters ..... 103

## General Information

The CPUs provide a wide variety of features and capabilities for applications requiring simplified configuration and ease of use, maximum reliability and maintainability, and the ability to meet the need for future change and system expansion. A variety of CPUs are available with various memory and I/O configurations allowing selection based on application requirements.


## C200H-CPU01-E/CPU03-E CPUs

## High Spec, Small Rack Style, OEM Version

The C200H-CPU01-E and C200H-CPU03-E controllers offer big machine functions in a system designed ideally for basic OEM systems from 50 to 480 I/O. A wide variety of plug-in style I/O modules are available, including intelligent modules.

## Basic Configuration

- Built-in 120 VAC (CPU01) or 24 VDC (CPU03) power supply
- Rack-style PLC with 3-, 5-, 8-, 10-slot racks
- Accepts two local expansion racks
- Accepts remote I/O racks


## CPU Features

- 4K or 7K word program memory
- Expanded system memory (6,000 internal bits; 2,000 registers)
- 145 instructions
- Fast execution time (0.75-2.25 $\mu$ s per basic instruction)


## Special Features

- Many intelligent I/O modules
- Versatile communications (Host Link, PLC-to-PLC, Remote I/O)
- ASCII/BASIC module for co-processing/communications



## C200H-CPU21-E/CPU23-E CPUs

## High Spec, Small Rack Style

The C200H-CPU21-E and C200H-CPU23-E controllers offer increased I/O capacity and the same basic functionality as the OEM versions. In addition, these controllers offer an extended instruction set, clock/calendar option and larger power supplies. With new high-density I/O modules, these CPUs can be expanded to 720 local I/O.

## Basic Configuration

Same as CPU01, CPU03 plus the following:

- Built-in 120 VAC (CPU21) or 24 VDC (CPU23) power supply
- Same configuration and I/O as CPU01/CPU03


## CPU Features

Same as CPU01, CPU03 plus the following:

- Real-time clock/calendar option available
- Larger power supply (CPU21 only) for I/O modules
- Enhanced instruction set (168), including sine/cosine


## Special Features

- 32- and 64-pt Group 2 High-density I/O modules



## C200H-CPU31-E CPU

## High-Performance CIM Version

The C200H-CPU31-E controller offers a high-performance CPU especially designed for computer integrated manufacturing environments. The C200H-CPU31-E has all the capabilities of C 200 H CPU21/CPU23, with clock/calendar as a standard feature. This CPU is used in either SYSMAC NET and/or SYSMAC LINK communication systems.

Basic Configuration
Same as CPU21, CPU23 plus the following:

- Built-in 120 VAC power supply


## CPU Features

Same as CPU21, CPU23 plus the following:

- Real-time clock/calendar


## Special Features

Same as CPU21, CPU23 plus the following:
SYSMAC LINK and SYSMAC NET capabilities. (Requires bus connector from module to PLC communications bus port.)


## C200HS-CPU01-E/CPU03-E CPUs

## High Performance, Small Rack Style

The C200HS-CPU01-E and C200HS-CPU03-E controllers offer some of the same basic functionality as models C200H-CPU21-E/CPU23-E. These controllers have added capabilities ideally suited for high speed machine control, which includes larger memory, larger instruction set, and increased speed.

## Basic Configuration

Built-in 120 VAC (HS-CPU01) or 24 VDC (HS-CPU03) power supply

- Rack style PLC with 3-, 5-, 8-, 10- slot racks
- Accepts two local expansion racks
- Accepts remote I/O racks


## CPU Features

- Built-in 16K ram (including 6144 READ/WRITE data memory bits)
- 0.375-1.313 $\mu \mathrm{s}$ basic instruction execution time
- Built-in clock/calendar
- Enhanced instruction set (239), including PID and Scaling


## Special Features

- 8-pt. Interrupt Input Module
- Group 2 High-density Modules



## C200HS-CPU21-E/CPU23-E CPUs

High Performance, Small Rack Style, Built-in RS-232C Port
The C200HS-CPU21-E and C200HS-CPU23-E controllers offer some of the same basic functionality as models C200H-CPU01-E/CPU03-E. These controllers have the added built-in RS-232C port. Host link communications are possible using the RS-232C port. By using the TXD and RXD instructions, less time consuming RS-232C communications is possible. NT link allows high-speed communications with a Programmable Terminal (PT).

Basic Configuration
Same as HS-CPU01, HS-CPU03 plus the following:

- Built-in 120 VAC (HS-CPU21) or 24 VDC (HS-CPU03) power supply
- Same configuration and I/O as HS-CPU01/HS-CPU03


## CPU Features

Same as HS-CPU01, HS-CPU03 plus the following:

- Built-in RS-232C port



## C200HS-CPU31-E/CPU33-E CPUs

## High-Performance CIM Version, Built-in RS-232C Port

The C200HS-CPU31-E and C200HS-CPU33-E controller offers the same basic functionality as the C200HS-CPU01-E/CPU03 controllers. This CPU may be used in either SYSMAC NET and/or SYSMAC LINK communication systems. The built-in RS-232C port supports the same communications as the C200HS-CPU21/CPU23.

## Basic Configuration

Same as HS-CPU01, HS-CPU03 plus the following:

- Built-in 120 VAC (HS-CPU21) or 24 VDC (HS-CPU03) power supply
- Same configuration and I/O as HS-CPU01/HS-CPU03


## CPU Features

Same as HS-CPU01, HS-CPU03 plus the following:

- Built-in RS-232C port


## Special Features

Same as HS-CPU01, HS-CPU03 plus the following:
SYSMAC LINK and SYSMAC NET capabilities. (Requires bus connector from module to PLC communications bus port.

## C200H Comparison Table

| Item | C200H |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | CPU01-E | CPU03-E | CPU21-E | CPU23-E | CPU31-E |
| Group 2 High-density I/O Module compatibility C200H-ID216/ID217/OD218/OD219 | No | No | Yes | Yes | Yes |
| Error history | No | No | Yes | Yes | Yes |
| Clock/calendar* | No | No | Yes | Yes | Yes |
| Forced Status Hold Bit (SR 25211) | No | No | Yes | Yes | Yes |
| TERMINAL mode for Programming Console | No | No | Yes | Yes | Yes |
| Optional instructions 1 (refer to Instruction Set Section) REVERSIBLE WORD SHIFT - <br> RWS(17) <br> SCAN TIME - SCAN(18) <br> MULTI-WORD COMPARE - MCMP(19) <br> LONG MESSAGE - LMSG(47) <br> TERMINAL MODE - TERM (48) <br> SET SYSTEM - SET(49) <br> DOUBLE COMPARE - CMPL(60) <br> COLUMN-TO-WORD - CTW(63) <br> WORD-TO-COLUMN - WTC(64) <br> HOURS-TO-SECONDS - HTS(65) <br> SECONDS-TO-HOURS - STH(66) <br> VALUE CALCULATE - VCAL(69) <br> MULTIPOINT I/O REFRESH - <br> MPRF(61) | No | No | Yes | Yes | Yes |
| Optional instructions 2 (refer to Instruction Set Section) <br> PID CONTROL - PID(*) <br> SCALING - SCL(*) <br> TOTALIZING TIMER - TTIM(87) <br> 2's COMPLEMENT - NEG(*) <br> DOUBLE 2's COMPLEMENT - <br> NEGL(*) <br> FIND MINIMUM - MIN(*) <br> FIND MAXIMUM - MAX( ${ }^{*}$ ) <br> TENKEY INPUT - TKY (*) <br> MATRIX INPUT - MTR(*) <br> ASCII-to-HEX - HEX(*) <br> AVERAGE - AVG ${ }^{*}$ ) <br> SUM - SUM (*) <br> FAILURE POINT DETECT - FPD(*) | No | No | No | No | No |
| Note For complete list refer to instruction set section. |  |  |  |  |  |
| SYSMAC NET, SYSMAC LINK network compatibility and instructions: <br> NETWORK SEND - SEND(90) <br> NETWORK RECEIVE - RECV(98) | No | No | No | No | Yes |
| Power supply | AC | DC | AC | DC | AC |
| Internal logic current capacity (for I/O modules) | 1.6 A | 1.6 A | 3.2 A | 1.6 A | 3.0 A |

*A clock is built into the C200H-CPU31-E; the C200H-CPU21-E and C200H-CPU23-E can use the clock built into some of the Memory Packs. (Refer to Standard Parts.)

C200HS Comparison Table

| Item | C200HS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CPU01-E | CPU03-E | CPU21-E | CPU23-E | CPU31-E | CPU33-E |
| Group 2 High-density I/O Module compatibility C200H-ID216/ID217/OD218/OD219 | Yes | Yes | Yes | Yes | Yes | Yes |
| Error history | Yes | Yes | Yes | Yes | Yes | Yes |
| Clock/calendar* | Yes | Yes | Yes | Yes | Yes | Yes |
| Forced Status Hold Bit (SR 25211) | Yes | Yes | Yes | Yes | Yes | Yes |
| TERMINAL mode for Programming Console | Yes | Yes | Yes | Yes | Yes | Yes |
| Optional instructions 1 (refer to Instruction Set Section): <br> REVERSIBLE WORD SHIFT - <br> RWS(17) <br> SCAN TIME - SCAN(18) <br> MULTI-WORD COMPARE - MCMP(19) <br> LONG MESSAGE - LMSG(47) <br> TERMINAL MODE - TERM(48) <br> SET SYSTEM - SET(49) <br> DOUBLE COMPARE - CMPL(60) <br> COLUMN-TO-WORD - CTW(63) <br> WORD-TO-COLUMN - WTC(64) <br> HOURS-TO-SECONDS - HTS (65) <br> SECONDS-TO-HOURS - STH(66) <br> VALUE CALCULATE - VCAL(69) <br> MULTIPOINT I/O REFRESH - <br> MPRF(61) | Yes | Yes | Yes | Yes | Yes | Yes |
| Optional instructions 2 (refer to Instruction Set Section): $\begin{aligned} & \text { PID CONTROL - PID(*) } \\ & \text { SCALING - SCL(*) } \\ & \text { TOTALIZING TIMER - TTIM(87) } \\ & \text { 2's COMPLEMENT - NEG(*) } \\ & \text { DOUBLE 2's COMPLEMENT - } \\ & \text { NEGL(*)) } \\ & \text { FIND MINIMUM - MIN(*) } \\ & \text { FIND MAXIMUM - MAX(*) } \\ & \text { TENKEY INPUT - TKY (*) } \\ & \text { MATRIX INPUT - MTR (*) } \\ & \text { ASCII-to-HEX - HEX(*) } \\ & \text { AVERAGE - AVG (*) } \\ & \text { SUM - SUM (*) } \\ & \text { FAILURE POINT DETECT - FPD(*) } \end{aligned}$ | Yes | Yes | Yes | Yes | Yes | Yes |
| Note For complete list refer to instruction set section. |  |  |  |  |  |  |
| SYSMAC NET, SYSMAC LINK network compatibility and instructions: <br> NETWORK SEND - SEND(90) <br> NETWORK RECEIVE - RECV(98) | No | No | No | No | Yes | Yes |
| Power supply | AC | DC | AC | DC | AC | DC |
| Internal logic current capacity (for I/O modules) | 3.9 A | 2.3 A | 3.9 A | 2.3 A | 3.9 A | 2.3 A |
| Built-In RS232C PORT | No | No | Yes | Yes | Yes | Yes |

*A clock is built into the C200H-CPU31-E; the C200H-CPU21-E and C200H-CPU23-E can use the clock built into some of the Memory Packs. (Refer to Standard Parts.)

## C200H Specifications

| Part number | C200H-CPU01-E/CPU03-E | C200H-CPU21-E/CPU23-E | C200H-CPU31-E |
| :---: | :---: | :---: | :---: |
| Main Control Element | MPU, CMOS, LS-TTL |  |  |
| Programming languages | Ladder diagram |  |  |
| Instruction set | 145 (12 basic instructions + 133 special instructions) | 168 (12 basic instructions + 156 special instructions) | 172 (12 basic instructions +160 special instructions) |
| Instruction length | 1 to 4 words/instruction, 1 address/instruction |  |  |
| Execution time | 0.75 to $2.25 \mu \mathrm{~s}$ (basic instructions) 34 to $724 \mu \mathrm{~s}$ (function no. instructions) |  |  |
| I/O control method | Cyclic, programmed, scheduled, and zero-cross refreshing |  |  |
| Control input signal | START INPUT (in RUN mode, PLC operates when contacts are closed and stops when contacts are opened; <br> 24 VDC, 10 mA ) |  |  |
| Control output signal | RUN OUTPUT; dry contact (contacts are closed while PLC is in RUN mode; maximum switching capacity: $2 \mathrm{~A}, 250$ VAC (resistive load, p.f. $=1$ ), $0.5 \mathrm{~A}, 250$ VAC (inductive load, p.f. $=0.4$ ), 2 A, 24 VDC) |  |  |
| Memory protection | Status of HR bits, AR bits, preset value of counters (CNT), and contents of data memory (DM) are retained during power failure. RAM Pack, battery back-up: Program (including clock function) and data areas protected. RAM Pack, capacitor back-up: Program and data areas protected. EEPROM Pack (without clock function): Data areas protected. EEPROM Pack (with clock function): Clock function and data areas protected. C200H-CPU31-E: Program and data areas (including clock function) protected. |  |  |
| Battery life | 4 years at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$; shortened at temperatures higher than $25^{\circ} \mathrm{C}$. Replace battery with new one within 1 week when ALARM indicator blinks. |  |  |
| Self-diagnostics | Errors for CPU failure, Battery, Scan time, Memory failure, I/O bus, I/O verify, Remote I/O, Link error, Special I/O Modules, CPU Bus Modules |  |  |
| Agency approvals | UL listed, file number: E95399 CSA certified, file number: LR51460 |  |  |

## Memory

| Memory capacity | 6,974 words (with 8K-word memory) |  |
| :---: | :---: | :---: |
| Internal relay (IR) bits | Standard I/O Modules: 480 (00000 through 02915) |  |
|  | I/O Modules mounted to Remote Expansion Racks and Special I/O Modules <br> 3,296 (03000 through 23515) | I/O Modules mounted to Remote Expansion Racks and Special I/O Modules <br> 3,296 (03000 through 23515) <br> Group 2 High-density I/O Modules <br> 320 (03000 through 04915) |
| Special Relay (SR) bits | 312 (23600 through 25507) |  |
| Temporary relay (TR) bits | 8 (TR 0 through 7) |  |
| Holding relay (HR) bits | 1,600 (HR 0000 through 9915) |  |
| Auxiliary relay (AR) bits | 448 (AR 0000 through 2715) |  |
| Latching relay (LR) bits | 1,024 (LR 0000 through 6315) |  |
| Timers/Counters | 512 (TIM/CNT 000 through 511) TIMs: 0 through 999.9 s TIMHs: 0 through 99.99 s CNT: 0 through 9999 counts |  |

## C200HS Specifications

| Part number | C200HS-CPU01-E/CPU03-E | C200HS-CPU21-E/CPU23-E | C200HS-CPU31-E CPU33-E |
| :---: | :---: | :---: | :---: |
| Main Control Element | MPU, CMOS, LS-TTL |  |  |
| Programming languages | Ladder diagram |  |  |
| Instruction set | 239 (14 basic instructions +225 special instructions) | 239 (14 basic instructions + 225 special instructions) | 243 (14 basic instructions + 299 special instructions) |
| Instruction length | 1 to 4 words/instruction, 1 address/instruction |  |  |
| Execution time | 0.375-1.313 $\mu \mathrm{s}$ (basic instructions) |  |  |
| I/O control method | Cyclic, programmed, scheduled, and zero-cross refreshing |  |  |
| Control input signal | START INPUT (in RUN mode, PLC operates when contacts are closed and stops when contacts are opened; <br> 24 VDC, 10 mA ) |  |  |
| Control output signal | RUN OUTPUT; dry contact (contacts are closed while PLC is in RUN mode; maximum switching capacity: $2 \mathrm{~A}, 250$ VAC (resistive load, p.f. $=1$ ), $0.5 \mathrm{~A}, 250 \mathrm{VAC}$ (inductive load, p.f. $=0.4$ ), $2 \mathrm{~A}, 24 \mathrm{VDC}$ ) |  |  |
| Memory protection | Status of HR bits, AR bits, preset value of counters (CNT), and contents of data memory (DM) are retained during power failure. RAM Pack, battery back-up: Program (including clock function) and data areas protected. RAM Pack, capacitor back-up: Program and data areas protected. EEPROM Pack (without clock function): Data areas protected. EEPROM Pack (with clock function): Clock function and data areas protected. C200H-CPU31-E: Program and data areas (including clock function) protected. |  |  |
| Battery life | 4 years at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$; shortened at temperatures higher than $25^{\circ} \mathrm{C}$. Replace battery with new one within week when ALARM indicator blinks. |  |  |
| Self-diagnostics | Errors for CPU failure, Battery, Scan time, Memory failure, I/O bus, I/O verify, Remote I/O, Link error, Special I/O Modules, CPU Bus Modules |  |  |
| Agency approvals | UL listed, file number: E95399 CSA certified, file number: LR51460 |  |  |

## Memory

| Memory capacity | 15.2 k words (with 16k word memory) |
| :--- | :--- |
| Internal relay <br> (IR) bits | Standard I/O Modules: <br> 480 (00000 through 02915) |
|  | I/O Modules mounted to Remote Expansion Racks and Special I/O Modules <br> 6688 (03000 through 23515, 30000-51115) <br> Group 2 High-density I/O Modules 320 (03000 through 04915) |
| Special Relay <br> (SR) bits | 1016 (23600 through 25507 and 25600 through 29915) |
| Temporary relay <br> (TR) bits | 8 (TR 0 through 7) |
| Holding relay <br> (HR) bits | 1,600 (HR 0000 through 9915) |
| Auxiliary relay <br> (AR) bits | 448 (AR 0000 through 2715) |
| Latching relay <br> (LR) bits | 1,024 (LR 0000 through 6315) |
| Timers/Counters | 512 (TIM/CNT 000 through 511) <br> TIMs: 0 through 999.9 <br> TIMHs: 0 through 99.99 s <br> CNT: 0 through 9999 counts |

## C200H/C200HS Specifications

| Part number | C200H-CPU01-E/CPU03-E | C200H-CPU21-E/CPU23-E | C200H-CPU31-E | C200HS-CPU01-E/CPU03-E <br> C200HS-CPU21-E/CPU23-E <br> C200HS-CPU31-E/CPU33-E |
| :--- | :--- | :--- | :--- | :--- |
| Data memory <br> (DM) words | Read/write: 1,000 (DM 0000 through 0999) <br> Read only: 1,000 (DM 1000 through 1999) <br> DM area as in Memory Park. | Read/Write: 6144 (DM0000 <br> through 613) <br> Read only: 512 (6144 through <br> $6655)$ <br> 300 Word max. (DM7000 <br> through 9999) |  |  |
| Program check | Program check (executed on start of RUN operation): <br> END missing, Instruction errors, <br> (Program can be checked by Programming Console, GPC, or LSS at three levels.) |  |  |  |

Power Supply Specifications

| Part number | C200H-CPU01-E/CPU21-E/CPU31-E, C200HS-CPU01-E, C200HS-CPU21-E, C200HS-CPU31-E, C200H-PS221 | C200H-CPU23-E, C200HS-CPU03-E, C200HS-CPU23-E, C200HS-CPU33-E, C200H-PS211 |
| :---: | :---: | :---: |
| Supply voltage | 100 to 120/200 to 240 VAC selectable, $50 / 60 \mathrm{~Hz}$ | 24 VDC |
| Operating voltage range | 85 to 132/170 to 264 VAC | 20.4 to 26.4 VDC |
| Power consumption | 100 VA max. | 50 W max. |
| Surge current | 30 A max. | 30 A max. |
| Output capacity | CPU01-E, 3 A, 5 VDC (1.6 A supplied to I/O Modules) <br> CPU-21-E: 4.6 A, 5 VDC (3.2 A supplied to I/O Modules) <br> CPU-31-E: 4.6 A, 5 VDC (3.0 A supplied to I/O Modules) <br> HS-CPU01-E, HS-CPU21-E, HS-CPU31-E 4.6 A, 5 VDC (3.9 A <br> supplied to I/O Modules) <br> Expansion I/O Rack: 3 A, 5 VDC (2.7 A supplied to I/O Modules) | CPU03-E: 3 A, 5 VDC (1.6 A supplied to I/O Modules) <br> CPU-23-E: 3 A, 5 VDC (1.6 A supplied to I/O Modules) <br> HS-CPU03-E, HS-CPU23-E, HS-CPU33-E: <br> 3 A, 5 VDC (2.3 A supplied to I/O Modules) <br> Expansion I/O Rack: 3 A, 5 VDC (2.7 A <br> supplied to I/O Modules) |
| Fuse | $2 \mathrm{~A}, 250 \mathrm{~V}, 5.2$ dia. x 20 (MF51NR) | $2 \mathrm{~A}, 125 \mathrm{~V}, 5.2$ dia. $\times 20$ (MF51NR) |
| Input power supply | 0.3 A, 24 VDC +10\%/-20\% | - |
| Insulation resistance* | $20 \mathrm{M} \Omega$ between AC terminals and the GR terminal at 500 VDC |  |
| Dielectric strength* | 2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 minute between AC terminals and housing 500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 minute between DC terminals and housing. Leakage current: 10 mA max. |  |
| Noise immunity | 1,500 Vp-p, pulse width: 100 ns to 1 ms , rise time: 1 ns (by noise simulator) |  |
| Vibration** | Mechanical durability: 10 to $35 \mathrm{~Hz}, 1 \mathrm{~mm}$ double amplitude ( 2.5 G ) in $\mathrm{X}, \mathrm{Y}$, and Z directions, for 2 hours each (When mounted on DIN track, $16.7 \mathrm{~Hz}, 1 \mathrm{~mm}$ double amplitude ( 0.5 G ) in X , Y , and $Z$ directions, for 1 hour each) Malfunction durability: 2 to $55 \mathrm{~Hz}, 2 \mathrm{G}$, in $\mathrm{X}, \mathrm{Y}$, and Z directions, for 20 minutes each (When mounted on DIN track 2 to $55 \mathrm{~Hz}, 0.3 \mathrm{G}$, in $X, Y$, and $Z$ directions, for 20 minutes each) |  |
| Shock | 10 G in X, Y, and Z directions, 3 times each |  |
| Ambient temperature | Operating: $0^{\circ}$ to $55^{\circ} \mathrm{C}\left(0^{\circ}\right.$ to $45^{\circ} \mathrm{C}$ for Programming Console) Storage: $-20^{\circ}$ to $65^{\circ} \mathrm{C}$ |  |
| Humidity | 35\% to 85\% (without condensation) |  |
| Atmosphere | Must be free of the following: Corrosive gases; Abrupt temperature changes; Direct sunlight; Dust, salt, or metal filings; Water, oil, or chemicals |  |
| Grounding | Less than $100 \Omega$ |  |
| Enclosure rating | IEC IP30 (mounted in a panel) |  |

Note *Disconnect the LG terminal of the Power Supply Module from the GR terminal when performing insulation and dielectric strength tests. If the tests are performed with the LG and GR terminals short-circuited, the internal components will be damaged. Do not conduct a dielectric strength test on the C200H-CPU03-E, C200H-CPU23-E, C200H-PS211, C200H-RT002-P, or C200H-RT202 modules. The power supply input line and internal circuit of the 24 VDC power supply are not isolated from each other. If a dielectric strength test is conducted, the power supply will be damaged.

```
** Acceleration (G)
    M,


\section*{General Information}

Memory Packs store programs and data for C 200 H controllers. Select 4 or 8 K word memory packs to match your requirements. To take advantage of the clock/calender option for C200H-CPU21 and -CPU23, select a memory pack with clock. Increase the C200HS built-in RAM with an additional 16 K words of file memory for large processing loads.

\section*{Features}
- Three types available: EPROM, EEPROM, RAM
- Optional clock and calender for C200H-CPU21/CPU23
- File memory boards available for C200HS-CPU01/CPU03
- C200HS has built-in RAM memory
\begin{tabular}{|c|c|c|}
\hline Name & Description & Part number \\
\hline \multicolumn{3}{|l|}{Required Parts} \\
\hline \multirow[t]{11}{*}{Memory Packs (Not required for C200HS)} & RAM, 4 K words, battery back-up; no clock & C200H-MR431 \\
\hline & RAM, 8 K words, battery back-up; no clock & C200H-MR831 \\
\hline & RAM, 4 K words, capacitor back-up; no
clock & C200H-MR432 \\
\hline & RAM, 8 K words, capacitor back-up; no
clock & C200H-MR832 \\
\hline & RAM, 4 K words, battery back-up; with clock (CPU21, CPU23 only) & C200H-MR433 \\
\hline & RAM, 8 K words, battery back-up; with clock (CPU21, CPU23 only) & C200H-MR833 \\
\hline & EPROM, 8 K words, no clock & C200H-MP831 \\
\hline & EEPROM, 4 K words, no clock & C200H-ME431 \\
\hline & EEPROM, 8 K words, no clock & C200H-ME831 \\
\hline & EEPROM, 4 K words, battery back-up; with clock (CPU21, CPU23 only) & C200H-ME432 \\
\hline & EEPROM, 8 K words, battery back-up; with clock (CPU21, CPU23 only) & C200H-ME832 \\
\hline \multicolumn{3}{|l|}{Optional Parts} \\
\hline \multirow[t]{2}{*}{File Memory Boards (C200HS only)} & EPROM, 16 K words & C200HS-MP16K \\
\hline & EEPROM, 16 K words & C200HS-ME16K \\
\hline
\end{tabular}

C200H Series
Memory Packs


C200H-BC101-V2

\section*{C200H Backplanes}

These C200H Backplanes are used for CPU Racks, Local, and Remote Expansion Racks. They are available with \(3,5,8\), and 10 I/O slots. The power supplies for these racks are built into the SYSMAC BUS Remote Slave Modules. The CPU, Power Supply (for Local Expansion Racks), or SYSMAC BUS Remote Slave/Power Supply mounts in the right-most slot of the Rack.
\begin{tabular}{l|l} 
Number of slots & Part number \\
\hline 3 slots & C200H-BC031-V2 \\
\hline 5 slots & C200H-BC051-V2 \\
\hline 8 slots & C200H-BC081-V2 \\
\hline 10 slots & \(\mathrm{C} 200 \mathrm{H}-\mathrm{BC} 101-\mathrm{V} 2\)
\end{tabular}

\section*{General Information}

The ASCII/BASIC Module provides a 24-Kbyte programmable coprocessor module that operates independently of the PLC. Two built-in RS-232C ports provide easy interface to a variety of external devices including other manufacturers' PLCs, computer terminals, operator stations, bar code readers, and any other device utilizing a serial interface. The module is programmable in either BASIC or Assembly providing a platform for complex calculations and algorithms at the PLC level. This includes PID, gas flow calculations and complex math and string manipulation functions. Communications can be initiated by either the module or the PLC.

\section*{Features}
- \(24-\mathrm{Kb}\), battery-backed RAM and \(24-\mathrm{Kb}\) EEPROM programmable in BASIC or Assembly languages
- Special commands to initiate
communication with the PLC
- Two RS-232C ports, 19,200 baud maximum speed
- Built-in clock/calendar including year, month, day, date, hour, minute, second (accurate to 30 seconds/year)

\section*{Specifications}
\begin{tabular}{l|l}
\hline \multicolumn{2}{c}{ Name } \\
\begin{tabular}{l} 
ASCII/BASIC Module Utility \\
\begin{tabular}{l} 
Software
\end{tabular}
\end{tabular} & \begin{tabular}{l} 
For AT-compatible computers; enables program development, downloadingSYSMATE-ASC91-V1 \\
uploading, etc.
\end{tabular} \\
\hline \multirow{2}{*}{ Programming Cable } & C200H-ASC02 to computer (9-pin RS-232)
\end{tabular}

Specifications
\begin{tabular}{|c|c|}
\hline Part number & C200H-ASC02 \\
\hline Communication mode & Half duplex \\
\hline Synchronization & Start-stop \\
\hline Baud rate & Port 1: \(300 / 600 / 1200 / 2400 / 4800 / 9600\) bps
Port 2: \(300 / 600 / 1200 / 2400 / 4800 / 9600 / 19,200\) bps (switch selectable) \\
\hline Transmission mode & Point-to-point \\
\hline Transmission distance & \(15 \mathrm{~m}(49 \mathrm{ft})\) max. \\
\hline Interface & Conforms to RS-232C. Two ports (D-sub 9-pin connectors) \\
\hline Memory capacity & 24 Kbytes RAM battery backup) 24 Kbytes EEPROM for program storage Multiple program storage capability \\
\hline Transfer capacity & 255 words at a maximum of 20 words per scan \\
\hline Transfer method & Write/read data exchange I/O data exchange \\
\hline Clock/calendar & \begin{tabular}{l}
Year, month, day, date, hour, minute, second Programmable leap year \\
Accuracy: month +30 seconds/month at \(25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)\)
\end{tabular} \\
\hline Diagnostic functions & CPU watchdog timer, battery voltage drop \\
\hline Battery life & 5 years at \(25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)\). Battery life is shortened if ASCII Module is used at higher temperatures. \\
\hline EEPROM & Guaranteed lifetime of 5000 saves \\
\hline Manual & \begin{tabular}{l}
PLC Module: W165 \\
The manual is included with the software.
\end{tabular} \\
\hline
\end{tabular}



C200H-AD002

\section*{General Information}

Analog I/O Modules provide an interface to a variety of analog signals including both voltage and current ranges. Both input and output versions are available in a variety of densities.

\section*{Features}
- Cost-effective single-slot modules available with 4 or 8 analog inputs
- Opto-isolated input reliability
- 12-bit resolution
- Selectable ranges include 1 to \(5 \mathrm{~V}, 0\) to 10 V , and 4 to 20 mA

\section*{Specifications}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Part number} & C200H-AD001 & C200H-AD002 \\
\hline \multicolumn{2}{|l|}{Number of points} & 4 & 8 \\
\hline \multirow[t]{2}{*}{Signal ranges} & Voltage & 1-5 VDC or 0-10 VDC & 1-5 V, 0-10 V, -10 to +10 V \\
\hline & Current & 4-20 mA & 4-20 mA \\
\hline \multicolumn{2}{|l|}{Intelligent functions} & Input conversion & Input conversion, scaling, average, Peak hold, BCD, Upper and Lower limit alarm \\
\hline \multicolumn{2}{|l|}{Resolution} & 12-bit & 12-bit \\
\hline \multicolumn{2}{|l|}{Accuracy} & \(\pm 1.0 \%\) maximum full scale, at \(0^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}\) \(\pm 0.1 \%\) maximum linearity error & \(\pm 0.6 \%\) maximum full scale, at \(0^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}\), for voltage input \(\pm 0.1 \%\) maximum linearity error \\
\hline \multicolumn{2}{|l|}{A/D conversion time} & 2.5 ms maximum/point & 2.5 ms maximum/point \\
\hline \multirow[t]{2}{*}{Input impedance} & Voltage & \(1 \mathrm{M} \Omega\) minimum & \(1 \mathrm{M} \Omega\) minimum \\
\hline & Current & 250, & \(250 \Omega\) \\
\hline Manual & & W127 & W229 \\
\hline
\end{tabular}

\section*{Typical Application}


Furnace Control with Analog Input


C200H-DA001


C200H-DA002

\section*{General Information}

Analog I/O Module provides an interface to a variety of analog devices that accept voltage and current ranges.

\section*{Features}
- Cost-effective single-slot module offers two or four analog outputs
- Selectable ranges include 1 to \(5 \mathrm{~V}, 0\) to \(10 \mathrm{~V},-10\) to +10 V , and 4 to 20 mA

\section*{Specifications}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Part number} & C200H-DA001 & C200H-DA002 \\
\hline \multicolumn{2}{|l|}{Number of output points} & 2 & 4 \\
\hline \multirow[t]{2}{*}{Signal ranges} & Voltage & 1 to 5 V , 0 to 10 V & -10 to +10 V \\
\hline & Current & 4 to 20 mA & 4 to 20 mA \\
\hline \multicolumn{2}{|l|}{Intelligent functions} & Output limit, upper and lower limit alarms, pulse output & - \\
\hline \multirow[t]{2}{*}{Resolution} & Voltage & 12-bit & 13-bit \\
\hline & Current & 12-bit & 12-bit \\
\hline \multicolumn{2}{|l|}{Accuracy} & \(\pm 1.0 \%\) maximum full scale, at \(0^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}\) & \(\pm 1.0 \%\) maximum full scale, at \(0^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{A/D conversion time} & 2.5 ms maximum/point & 2.5 ms maximum/point \\
\hline \multirow[t]{2}{*}{Input impedance} & Max. Load & \(400 \Omega\) & \(350 \Omega\) \\
\hline & Max. Load Current & 15 mA & 10 mA \\
\hline Manual & & W127 & W260 \\
\hline
\end{tabular}

\section*{Typical Application}


Position Control with Analog Output

High-speed Counter Modules
C200H-CT001-V1, C200H-CT002


C200H-CT001-V1


C200H-CT002

\section*{General Information}

The high-speed counter modules provide an interface for applications where the counting speed exceeds the PLCs processing speed. Typical applications include frequency inputs, rotary encoder interface, position control, cut to length, and motion control. Built-in I/O and front panel indicators on the module allow for faster throughput and easy visual monitoring of module status. Interface signals include count inputs, integral outputs, and external resets.

\section*{Features}
- Three types of input to enable a wide variety of encoder/sensor compatibility
- Can be operated in any one of six modes
- Set values can be changed during operation
- Mode selection made through front panel DIP switches
- Up to eight external outputs

Specifications
\begin{tabular}{lll}
\hline Part number & C200H-CT001-V1 & C200H-CT002 \\
\hline Number of axes & One per module & \\
\hline Operating modes & \begin{tabular}{l} 
Any of the following six: \\
Linear \\
Preset \\
Latch \\
Circular \\
Gate \\
Sampling
\end{tabular} & \\
\hline Count input mode & Differential, phase, up/down, pulse/direction & \\
\hline Count signal level & 5,12, or 24 VDC (wired for one) & \begin{tabular}{l} 
Same as RS-422 line driver \\
(Am26LS31-compatible)
\end{tabular} \\
\hline Counting speed & \begin{tabular}{l} 
50 kHz max. \\
(depends on encoder when using offset phase \\
inputs)
\end{tabular} & \begin{tabular}{l}
\(75 \mathrm{kHz} \mathrm{max}\). \\
(depends on encoder when using offset phase \\
inputs)
\end{tabular} \\
\hline Input multiplier & x2, x4 available for offset phase input & \\
\hline Input signals & \begin{tabular}{l} 
Input Z \\
Control input 1 \\
Control input 2
\end{tabular} & \\
\hline External outputs & 8 total & \\
\hline l/O (points) required & 64 (4 words) & \\
\hline Manual & W141 &
\end{tabular}

Typical Application


\section*{Accessories}
\begin{tabular}{ll} 
Description & Part number \\
\hline Encoder Adapter & 3G2A5-AE001
\end{tabular}


C200H-NC112

\section*{General Information}

Position control modules provide either a step and direction pulse train or CW/CCW pulse trains to control a single-axis stepper or servo motor driver. Interface signals include CW and CCW limits, origin approach, origin stop, emergency stop, and interrupt signals. Automatic backlash and origin offset functions are now included for precise positioning requirements. Move parameters can be set up in either ladder logic, or by connecting the hand-held programming console, and are stored in battery-backed memory. Extensive diagnostics are also available to the PLC for quick error detection and troubleshooting.

\section*{Features}
- Pulse output for stepper motor or servo motor driver
- Origin and backlash compensation for precision positioning
- Teach mode or storage of calculated movement parameters
- Internal diagnostics
- External signal interface for CW, CCW, origin, emergency stop, mode, and interrupt
- Parameters, speeds, and positions set in CPU DM area

\section*{Specifications}
\begin{tabular}{|c|c|}
\hline Part number & C200H-NC112 \\
\hline Number of axes & One axis per module \\
\hline Control system & Automatic trapezoidal acceleration/deceleration \\
\hline Position Data points & 53 \\
\hline Range & \(-8,388,607\) to \(+8,388,606\) pulses \\
\hline Speed Data points & 15 \\
\hline Range & 1 to 250,000 pulses per second \\
\hline Speed adjustment rate & 2 to \(2,000 \mathrm{pps} / \mathrm{s}\) \\
\hline Origin Origin proximity & Selectable; absent, Normally Open, Normally Closed \\
\hline search Origin signal & Selectable; Normally Open or Normally Closed input \\
\hline Origin compensation & 0 to 9,999 pulses \\
\hline Origin search speed & High speed and proximity speed available \\
\hline Backlash compensation & 0 to 9,999 pulses \\
\hline Manual operations & High-speed jog, low-speed jog, inching \\
\hline Manual & W128 \\
\hline
\end{tabular}




\section*{General Information}

The two-axis position control module provides signals to control two servo motor drivers either independently or simultaneously. Interface signals include CW and CCW, origin approach, origin, stop, emergency stop, and interrupt signals. Automatic backlash and origin correction functions are now included for precise positioning requirements. Move parameters can be set up in either ladder logic, or by connecting the hand-held Programming Console, and are stored in battery-backed memory. Extensive diagnostics are available through the PLC for quick error detection and troubleshooting.

\section*{Features}
- 2 axes of control
- Provides independent or simultaneous axis control
- Origin and backlash compensation
- Teach mode and external display for fast and efficient programming and diagnostic functions
- Linear interpolation capability
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Part number} & C200H-NC211 \\
\hline \multicolumn{2}{|l|}{Number of axes} & Two axes per module \\
\hline \multicolumn{2}{|l|}{Control system} & Automatic trapezoidal acceleration/deceleration \\
\hline \multirow[t]{2}{*}{Position} & Data points & 53 per axis \\
\hline & Range & \(-8,388,607\) to \(+8,388,606\) pulses \\
\hline \multirow[t]{2}{*}{Speed} & Data points & 15 \\
\hline & Range & 1 to 250,000 pulses per second \\
\hline \multicolumn{2}{|l|}{Acceleration/deceleration} & 2 to \(2,000 \mathrm{pps} / 1 \mathrm{~ms}\) \\
\hline Origin search & Origin proximity & Selectable; absent, Normally Open input, Normally Closed input \\
\hline \multirow[t]{3}{*}{Origin search} & Origin signal & Selectable; Normally Open or Normally Closed input \\
\hline & Origin compensation & 0 to +9,999 pulses \\
\hline & Origin search speed & Selectable; high speed and proximity speed available Stop at origin signal after proximity signal has turned ON Stop at origin signal after proximity signal has turned OFF \\
\hline \multicolumn{2}{|l|}{Backlash compensation} & 0 to 9,999 pulses \\
\hline \multicolumn{2}{|l|}{Manual operations} & High-speed jog, low-speed jog, inch \\
\hline \multicolumn{2}{|l|}{Manual} & W166 \\
\hline
\end{tabular}

\section*{Typical Application}



C200H-TS001

\section*{General Information}

Monitor up to 4 temperature inputs directly from the PLC rack. Choose thermocouple inputs (types \(J\) and \(K\) ), or platinum RTD inputs. Each module offers multiple ranges and a choice of Fahrenheit or Celsius scaling.

\section*{Features}
- Available for thermocouple types J and K , or platinum RTD temperature sensors
- Selectable number of inputs
- Wide range of temperature settings

Specifications
\begin{tabular}{lll}
\hline Part number & C200H-TS001 & CS200H-TS101 \\
\hline Sensing element & Thermocouple: Type K or J selectable & Platinum RTD: Pt \(=100 \Omega\) \\
\hline External input points & 4 points max. per module (1, 2, or 4 points selectable) \\
\hline Output code to PLC & 4 -digit BCD & \\
\hline Accuracy & \(\pm\left(1 \%\right.\) Full scale \(\left.+1^{\circ} \mathrm{C}\right)\) max. & \\
\hline Conversion time & 1.2 sec max. per point & \\
\hline Conversion cycle & 4.8 sec max. at 4 points per module \\
& 2.4 sec max. at 2 points per module \\
& 1.2 sec max. at 1 point per module & \\
\hline PLC booting time & Conversion cycle +1 PLC scan time & \\
\hline Terminal connections & Terminal block (removable & \\
\hline Insulation mode & Non-insulated between terminals. Insulated by photocoupler between terminal block and PLC backplane. \\
\hline Diagnostics & Outside range, broken wire, temperature setting error \\
\hline Manual & W124
\end{tabular}

\section*{Typical Application}



\section*{General Information}

Omron has put two X-Series Temperature Controllers in a single slot module to provide advanced PID control with auto-tuning directly on the PLC rack. Display and set parameters with the C200H-DSC01 Data Setting Console.

\section*{Features}
- Auto-tuning of PID constants
- Eight banks of settings data
- Heater burnout detection
- Ten alarm modes
- Thermocouple or RTD inputs
- Transistor, current or voltage outputs
- Optional data setting console

C200H-TCO_ _

Specifications
\begin{tabular}{lll}
\hline Part numbers & C200H-TC0 _- & C200H-TC1_- \\
\hline Inputs & 2 (two independent control loops) & \\
\hline Temperature sensor inputs & Thermocouple (R, S, K, J, T, E, B, N, L, V) & RTD (JPt 100, Pt 100) \\
\hline Control mode & \(\mathrm{PID}, \mathrm{ON} / \mathrm{OFF}\) (Advanced PID with auto-tuning) & \\
\hline Setting indication accuracy & \begin{tabular}{l}
\(\pm 0.5 \%\) of set/indication value or \(\pm 2^{\circ} \mathrm{C}\) whichever \\
is larger, \(\pm 1\) digit max.
\end{tabular} & \begin{tabular}{l}
\(\pm 0.5 \%\) of set/indication value or \(\pm 1^{\circ} \mathrm{C}\) whichever \\
is larger, \(\pm 1\) digit max.
\end{tabular} \\
\hline Hysteresis & \(0.0^{\circ}\) to \(999.9^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) (in units of \(0.1^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) ) (during ON/OFF control) \\
\hline Proportional band & \(0.0^{\circ}\) to \(999.9^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) (in units of \(0.1^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) ) & \\
\hline Integral (reset) time & 0 to 9999 s (in units of 1 s ) & \\
\hline Derivative (rate) time & 0 to 9999 s (in units of 1 s ) & \\
\hline Control period & 1 to 99 s (in units of 1 s ) & \\
\hline Sampling period & 500 ms & \(-99.9^{\circ}\) to \(999.9^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) (in units of \(0.1^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) ) \\
\hline Output refresh period & 500 ms & \\
\hline Input shift range & \(-99.9^{\circ}\) to \(999.9^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) (in units of \(0.1^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) ) & \\
\hline Alarm output setting range & \(-999^{\circ}\) to \(9999{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) (in units of \(1^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) ) & \\
\hline Alarm modes & \begin{tabular}{l} 
Upper- and lower-limit alarm, upper-limit alarm, lower-limit alarm, upper- and lower-limit range alarm, \\
upper- and lower-limit alarm with standby sequence, upper-limit alarm with standby sequence, \\
lower-limit alarm with standby sequence, absolute-value upper-limit alarm, absolute-value lower-limit \\
alarm
\end{tabular} \\
\hline Manual & W225
\end{tabular}

\section*{Typical Application}


C 200 H PC

Temperature Control Unit
C200H-TC00 (for thermocouples)
C200H-TC10_ (for platinum RTDs)


\section*{Output Characteristics}

Transistor Output (Pulse)
C200H-TC_01
\begin{tabular}{|c|c|c|}
\hline & External supply voltage & 24 VDC +10\%/15\% \\
\hline & Max. load voltage & 24 VDC max. \\
\hline & Max. load current & 100 mA max. \\
\hline & Residual voltage when ON & 3 V max. \\
\hline & Leakage current when OFF & 0.3 mA max. \\
\hline Voltage Output (Pulse) C200H-TC_02 & & \\
\hline & Output voltage & 12 VDC \\
\hline & Max. load current & 40 mA max. (with short-protective circuit) \\
\hline Current Output (Linear)
C \(200 \mathrm{H}-\mathrm{TC} 03\) C200H-TC_03 & & \\
\hline & Output current & 4 to 20 mA \\
\hline & Permissible load impedance & \(600 \Omega\) max. \\
\hline & Current value accuracy & \(4 \pm 0.3\) to \(20 \pm 1 \mathrm{~mA}\) \\
\hline
\end{tabular}


C200H-TV001

\section*{General Information}

Two heat/cool temperature controllers are built into a single slot module. Use them to control processes near ambient temperature or an application with a cooling jacket. These controllers offer PID with auto-advanced tuning of parameters. Use the C200H-DSC01 Data Setting Console to program and monitor settings.

\section*{Features}
- Auto-tuning of PID parameters
- Heating and cooling in same module
- Eight banks of settings data
- Heater burnout detection alarm
- Ten alarm modes
- Thermocouple or RTD inputs
- Transistor, current or voltage outputs
- Optional data setting console

Specifications
\begin{tabular}{|c|c|c|}
\hline Part numbers & C200H-TVO _ _ & C200H-TV1 _ _ \\
\hline Inputs & 2 (two independent control loops) & \\
\hline Temperature sensor inputs & Thermocouple (R, S, K, J, T, E, B, N, L, V) & RTD (JPt 100, Pt 100) \\
\hline Control mode & PID, ON/OFF (Advanced PID with auto-tun & \\
\hline Setting indication accuracy & \(\pm 0.5 \%\) of set/indication value or \(\pm 2^{\circ} \mathrm{C}\) whichever is larger, \(\pm 1\) digit max. & \(\pm 0.5 \%\) of set/indication value or \(\pm 1^{\circ} \mathrm{C}\) whichever is larger, \(\pm 1\) digit max. \\
\hline Hysteresis & \(0.0^{\circ}\) to \(999.9{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) (in units of \(0.1{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) ) (durin & ring ON/OFF control) \\
\hline Proportional band & \(0.0^{\circ}\) to \(999.9^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) (in units of \(0.1^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) ) & \\
\hline Integral (reset) time & 0 to 9999 s (in units of 1 s ) & \\
\hline Derivative (rate) time & 0 to 9999 s (in units of 1 s ) & \\
\hline Control period & 1 to 99 s (in units of 1 s ) & \\
\hline Deadband & -999 to 999.9 s & \\
\hline Cooling coefficient & 0.01 to 99.99 & \\
\hline Sampling period & 500 ms & \\
\hline Output refresh period & 500 ms & \\
\hline Input shift range & \(-99.9{ }^{\circ}\) to \(999.9^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) (in units of \(0.1{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) ) & \\
\hline Alarm output setting range & \(-999^{\circ}\) to \(9999^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) (in units of \(1^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) ) & \(-99.9^{\circ}\) to \(999.9^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) (in units of \(0.1{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) ) \\
\hline Manual & W240 & \\
\hline
\end{tabular}

\section*{Typical Application}


\section*{Output Characteristics}

Transistor Output (Pulse)
C200H-TV_01
\begin{tabular}{ll} 
External supply voltage & 24 VDC \(+10 \% /-15 \%\) \\
\hline Max. load voltage & 24 VDC (collector supplied voltage) max. \\
\hline Max. load current & \(100 \mathrm{~mA} \mathrm{max}\). \\
\hline Residual voltage when ON & 3 V max. \\
\hline Leakage current when OFF & \(0.3 \mathrm{~mA} \mathrm{max}\).
\end{tabular}

Voltage Output (Pulse)
C200H-TV_02
\begin{tabular}{lll}
\hline & Output voltage & 12 VDC \\
\cline { 2 - 3 } \begin{tabular}{l} 
Current Output (Linear) \\
C200H-TV_03
\end{tabular} & Max. load current & 40 mA (with short-protective circuit) \\
\hline & & \\
\cline { 2 - 3 } & Output current & 4 to 20 mA \\
\cline { 2 - 3 } & Permissible load impedance & \(600 \Omega \mathrm{max}\). \\
\hline & \(4 \pm 0.3\) to \(20 \pm 1 \mathrm{~mA}\)
\end{tabular}


C200H-PID01

\section*{General Information}

This module provides two independent PID loops for process control right on the PLC rack. Based on Omron's E5EX-LA process controller the C200H-PIDO_ accepts both current and voltage analog inputs for pressure, flow and other measurements. The module can be programmed and controlled from the PLC or Data Setting Console.

\section*{Features}
- Auto-tuning of PID constants
- High-speed sampling period
- Input noise reduction filter
- Eight banks of settings data
- Optional data setting console
- Transistor, current or voltage outputs

\section*{Specifications}
\begin{tabular}{ll}
\hline Part numbers & C200H-PIDO \(\_\) \\
\hline Inputs & 2 (two independent control loops) \\
\hline Input signals & \(4-20 \mathrm{~mA}, 1-5 \mathrm{~V}, 0-5 \mathrm{~V}, 0-10 \mathrm{~V}\) \\
\hline Control mode & \(\mathrm{PID}, \mathrm{ON} / \mathrm{OFF}^{\prime}\) (advanced PID with auto-tuning) \\
\hline Setting indication accuracy & \(\pm 0.5 \% \pm 1\) digit max. The SV and displayed value match. There is no relative error. \\
\hline Hysteresis & \(0.0^{\circ}\) to \(100.0 \%\) FS (in units of \(0.1 \%\) FS) \\
\hline Alarm hysteresis & \(0.0^{\circ}\) to \(100.0 \%\) FS (in units of \(0.1 \% \mathrm{FS}\) ) \\
\hline Proportional band & 0.0 to \(999.9 \mathrm{~s} \mathrm{(in} \mathrm{units} \mathrm{of} 0.1\) ) \\
\hline Integral (reset) time & 0 to 9999 s (in units of 1 s ) \\
\hline Derivative (rate) time & 0 to 9999 s (in units of 1 s ) \\
\hline Control period & 1 to 99 s (in units of 1 s ) \\
\hline Sampling period & 100 ms \\
\hline Output refresh period & 100 ms \\
\hline Scaling setting range & \(-999^{\circ}\) to 9999 (Decimal point position is designated by parameter settting) \\
\hline Digital filter setting range & 0 to 100 s (in units of 1 s ) \\
\hline Manual output setting range & -5 to \(105 \%\) \\
\hline Manual & W241
\end{tabular}

\section*{Typical Application}

SYSMAC C200H PC


\section*{Output Characteristics}

Transistor Output (Pulse)
C200H-PID01
\begin{tabular}{|c|c|c|}
\hline & External supply voltage & 24 VDC +10\%/-15\% \\
\hline & Max. load voltage & 24 VDC (collector supplied voltage) max. \\
\hline & Max. load current & 100 mA max. \\
\hline & Residual voltage when ON & 3 V max. \\
\hline & Leakage current when OFF & 0.3 mA max. \\
\hline Voltage Output (Pulse) C200H-PID02 & & \\
\hline & Output voltage & 12 VDC \\
\hline & Max. load current & 40 mA (with short-protective circuit) \\
\hline Current Output (Linear) C200H-PID03 & & \\
\hline & Output current & 4 to 20 mA \\
\hline & Permissible load impedance & 600 \({ }^{\text {max. }}\) \\
\hline & Current value accuracy & \(4 \pm 0.3\) to \(20 \pm 1 \mathrm{~mA}\) \\
\hline
\end{tabular}


C200H-CP114

\section*{General Information}

The C200H-CP114 Cam Positioner Module simulates a rotating mechanical cam, drum sequencer, or programmable limit switch in a PLC I/O module. The module provides a resolver interface and uses the Data Setting Console for displaying values.

\section*{Features}
- 16 external and 32 internal cam outputs
- 7 ON/OFF points per cam output
- ON/OFF data can be set or altered by moving the machine
- Uses data setting console for inputting data and displaying values

Specifications
\begin{tabular}{ll}
\hline Part number & C200H-CP114 \\
\hline Cam outputs & \(48(16\) external; 32 internal) \\
\hline External outputs & NPN transistor; 100 mA switching at 24 VDC \\
\hline Simultaneous ON points & 8 points, max. \\
\hline Resolvers & 3 F88L-RS17, 3F88L-RS17T, 3F88L-RS15, 3F88L-RS15W \\
\hline Resolver response & 800 rpm (resolver rpm) \\
\hline Resolver resolution & \(1^{\circ}\) \\
\hline Origin adjustment & \(1^{\circ}\) to \(359^{\circ}\) \\
\hline Angle detection cycle & \(200 \mu \mathrm{~s} \mathrm{(at} \mathrm{a} \mathrm{sampling} \mathrm{frequency} \mathrm{of} \mathrm{5} \mathrm{kHz)}\) \\
\hline Cam output response time & \(400 \mu \mathrm{~s}(800 \mathrm{rpm})\) \\
\hline Manual & W224
\end{tabular}

NOTE: 3F88L-RS15 and 3F88L-RS15W each require a resolver cable.

\section*{Typical Application}



C200H-DSC01

\section*{General Information}

The C200H-DSC01 Data Setting Console displays data on its front panel and allows data monitoring and setting when connected to C 200 H Temperature Controller, Cam Positioner, or PID modules. One Data Setting Console can monitor a single Module. Included with the C200H-DSC01 are mounting brackets, panel decals for modules to identify units and a temperature unit label.

\section*{Features}
- Fits 1/8 DIN cutouts
- 2 m or 4 m cable
- Change set values, parameters
- Monitor present value, set value and memory bank number as well as output status

Specifications
\begin{tabular}{ll}
\hline Part number & C200H-DSC01 \\
\hline Size & \(1 / 8 \mathrm{DIN}(48 \times 96 \mathrm{~mm})\) \\
\hline Applicable modules & C200H-TC___, C200H-TV _ _, C200H-PID__, C200H-CP114 \\
\hline Display data & \begin{tabular}{l} 
Set value, present value, bank number, auto-tuning, heater burnout alarm, mode, bank, step, \\
cam number, ON/OFF, run, alarm 1 and 2
\end{tabular} \\
\hline Connecting cables & \begin{tabular}{l}
\(2 \mathrm{~m}:\) C200H-CN225 \\
\(4 \mathrm{~m}:\) C200H-CN425
\end{tabular} \\
\hline Enclosure rating & IP20 (For NEMA 4 rating, use a Y29-49N cover.)
\end{tabular}

Special I/O Modules
Data Setting
Console
C200H-DSC01


C200H-IDS01

\section*{General Information}

The RF ID Modules provide a direct interface to Omron's V600 and V620 C200H RF ID Sensor Read/Write Heads. The module acts as the controller for Read/Write Heads that exchange data with data carriers using RF technology. Applications include conveyor and pallet storage, product labeling, warehousing applications, and more. Up to 8 Kb of data can be stored on a single data carrier. The interface modules provide a quick and easy interface to the production line PLC using ladder diagram programming.

\section*{Features}
- Provide flexibility in handling individual workpieces or pallets by reading product specifications can be read from ID data carriers (tags)
- Allows up-to-date access information on inventory and material flow
- System consists of an ID controller or SYSMAC C200H-IDS module, Read/Write (R/W) heads, and data carriers (tags)
- Three read/write ranges available
- Direct monitoring from the C200H-IDS module with hand-held programming console

Specifications


\section*{Typical Application}



C200H-FZ001

\section*{General Information}

The Fuzzy Coprocessor Module allows state-of-the-art fuzzy inference capabilities to be closely integrated with Omron's large-rack PLCs. In addition to normal ladder logic control, the PLC CPU allows pre-processing and post-processing of fuzzy I/O, which is provided by standard Analog I/O Modules, and/or internal registers in the PLC CPU, using intelligent I/O READ and WRITE instructions in ladder logic.

\section*{Features}
- Up to 8 inputs, 4 outputs
- Up to 128 rules
- User-definable membership functions
- PLC provides pre-processing and post-processing of fuzzy I/O
- Simple integration into existing control systems

Specifications
\begin{tabular}{ll}
\hline Part number & C200H-FZO01 \\
\hline Rule format & 8 conditions, 2 conclusions \\
\hline Maximum number of rules & 128 rules \\
\hline Inference system & MIN-MAX logic \\
\hline Inference speed & Max. \(125 \mu \mathrm{~s}\) per rule \\
\hline Inference time formula & \((125 \mu \mathrm{~s} \times\) number of rules) \(+600 \mu \mathrm{~s}\) \\
\hline Defuzzification method & Centroid \\
\hline Conditions (IF) section & Continuous-function type, maximum 7 definable points \\
\hline Conclusion (THEN) section & Discrete-type, 25 sections on horizontal axis, 2048 steps on vertical axis \\
\hline Inputs & 8 maximum, 12 bit/input \\
\hline Outputs & 4 maximum, 12 bit/output \\
\hline Transmission speeds & Up to 19,200 bps (set by internal switch) \\
\hline Interface & RS-232C, 1 port \\
\hline Manual & W208
\end{tabular}

\section*{Typical Application}


Note: Do not mount the C200H-FZ001 in the 2 slots next to the CPU on the CPU Rack.


C200HS-INT01

\section*{General Information}

The Interrupt Input Module allows real world discrete inputs to interrupt the scan of the main ladder logic program and execute specific interrupt ladder logic. For systems requiring immediate response and fast throughput from field input signals, the Interrupt Input Module can provide fast sub-scan execution and response times. The Module can be configured to provide immediate interrupts and scheduled interrupts which repeat execution on a preset time base. Interrupts can also be configured to interrupt currently executing interrupt logic.

\section*{Features}
- High-speed immediate or scheduled logic execution
- Provides sub-scan response to field input signals
- Ladder Instructions control and monitor Interrupt Inputs

\section*{Specifications}
\begin{tabular}{ll}
\hline Part number & C200HS-INT01 \\
\hline Points per module & 8 isolated \\
\hline Input voltage & 12 to 24 VDC \\
\hline Input current & 13 mA at 24 VDC \\
\hline Input impedance & \(1.5 \mathrm{k} \Omega\) \\
\hline ON voltage & 10.2 VDC minimum \\
\hline OFF voltage & 3.0 VDC maximum \\
\hline ON delay & 1 ms maximum \\
\hline OFF delay & 1.5 ms maximum \\
\hline Manual & W263 C200HS Installation Guide
\end{tabular}

\section*{Typical Application}


Input Devices
- Computer
- Microphone
- Tape recorder

\section*{Output Devices}
- Computer
- Printer
- Speaker

C200H-OV001


\section*{General Information}

Use this module for operator interface messages. Record up to 60 voice messages on site, or use a tape recorder and transfer the messages to the module. Messages can also be uploaded or downloaded through the RS-232C port on the front panel. The built-in speaker enables immediate message verification. Message length and sound quality are selectable.

\section*{Features}
- Microphone jack enables live message broadcast
- Flexible message length
- Messages can be interrupted to start another message
- Messages can be recorded in phrase and word combination formats
- Upload or download messages through the RS-232C port on the front panel

\section*{Specifications}
\begin{tabular}{|c|c|}
\hline Part number & C200H-OV001 \\
\hline Voice synthesis method & Adaptive Differential Pulse-Coded Modulation (ADPCM) \\
\hline Message recording time & 32/48/64 seconds (switch selectable) \\
\hline Message capacity & 60 max. \\
\hline \multirow[t]{2}{*}{Message input
(switch-selectable) MIC IN} & Microphone input: unbalanced dynamic microphone (600 \(\Omega\) ) \\
\hline & Tape input: Input impedance: \(50 \mathrm{k} \Omega\), unbalanced Maximum input voltage: 3.3 V \\
\hline \multirow[t]{2}{*}{\begin{tabular}{ll} 
Message output & SPEA \\
(switch-selectable) & OUT \\
\cline { 2 - 3 } &
\end{tabular}} & Built-in amplifier output: 0.14 W (8 \(\Omega\) speaker) \\
\hline & \begin{tabular}{l}
External amplifier output: \(600 \Omega\) unbalanced transformer output Maximum output voltage: 0.5 V rms (effective value) \\
Both balanced and unbalanced external amplifiers can be connected.
\end{tabular} \\
\hline Built-in monitor speaker & Diameter \(27 \mathrm{~mm}, 0.1 \mathrm{~W}(8 \Omega)\) \\
\hline Input frequency & \begin{tabular}{l}
32-second recordings: 8 kHz \\
48-second recordings: 5.3 kHz \\
64-second recordings: 4 kHz
\end{tabular} \\
\hline Output frequency characteristics & 32-second recordings: 100 Hz to 3.2 kHz 48/64-second recordings: 100 Hz to 2.2 kHz \\
\hline Lowpass filter function & Cutoff frequency: 3.2 kHz for 32-second recordings, 2.2 kHz for 48/64-second recordings \\
\hline Message memory & 128K bytes RAM (battery powered) \\
\hline External communications & RS-232C (Baud rate: 19,200/9,600/4,800/2,400 bps. XON/XOFF: yes/no, CTS/RTS: yes/no) \\
\hline Self-diagnosis function & CPU watchdog timer, LOW battery voltage detection \\
\hline Battery life & 5 years at \(25^{\circ} \mathrm{C}\) (battery life is shorter for higher temperatures) \\
\hline Manual & W172 \\
\hline
\end{tabular}

\section*{Typical Application}



\section*{General Information}

The analog timer module lets the user adjust timer values without going into the program. The module has four independently set and monitored timers that each have variable ranges. The user may select, by DIP switch, for each point to use front panel variable resistor or external variable resistors. Through internal bit allocation, each timer can be started and paused, allowing for them to be used as cumulative timers.

\section*{Features}
- Four front panel variable resistors are used to set the timers
- Connections available for external variable resistors
- Indicators show operation and time-up status
- Cumulative timer available using pause bits

\section*{Specifications}
\begin{tabular}{ll}
\hline Part number & C200H-TM001 \\
\hline Number of timers & 4 \\
\hline Time setting range (DIP switch & Use the DIP switches to set any of the following 4 ranges: \\
selectable) & 0.1 to 1 second (typical) \\
& 1 to 10 seconds (typical) \\
& 10 to 60 seconds (typical) \\
& 1 to 10 minutes (typical) \\
\hline Indicators & SET and TIME UP \\
\hline Timer pause function & Timing can be paused if specified by program. The timers can be used as cumulative timers. \\
\hline External variable resistor & External variable resistors can be used to set the time value when the IN/EXT selector is set to EXT. \\
\hline Manual & C200H Installation Guide: W111
\end{tabular}

\section*{Typical Application}



C200H-ID215
C200H-ID501

\section*{General Information}

The High-density Input Modules let you pack more I/O points into a single I/O slot for greater space savings. Being treated as Special I/O modules, they do not use standard I/O points. Thus, they increase the overall I/O capacity. They provide 32 discrete input points with selectable response times of 2.5 ms or 15 ms . For even shorter signals, 8 inputs can be designated as quick-response inputs, to receive selectable 1 ms or 4 ms signals. The modules can also be used with Omron's input blocks, reducing wiring between control panels as well as within control panels.

\section*{Features}
- 8 quick-response inputs available to receive short signals
- Easy cable connection to I/O Block
- Selectable input response time
- Up to 10 special high-density modules per PLC

Specifications
\begin{tabular}{lll}
\hline Part number & C200H-ID215 & C200H-ID501 \\
\hline Input voltage & \(24 \mathrm{VDC}+10 \% /-15 \%\) & \(5 \mathrm{VDC} \pm 10 \%\) \\
\hline No. of inputs (per common) & \begin{tabular}{l}
32 pts (8 pts/com, 4 circuits) \\
\\
\end{tabular} & 8 quick-response points available
\end{tabular}

\section*{Group 1 Highdensity/Multiplex I/O}

C200H-MD115/MD215/ MD501


C200H-MD115
C200H-MD215
C200H-MD501

\section*{General Information}

The high-density/multiplex mixed Input/Output modules let you pack more I/O points into a single I/O slot for greater space savings. Treated as Special I/O modules, they do not use standard I/O points. Thus, they increase the overall I/O capacity.

In static high-density mode, they provide 16 discrete input points and 16 discrete output points with selectable input response times of 2.5 ms or 15 ms . For even shorter input signals, 8 inputs can be designated as quick-response inputs, to receive selectable 1 ms or 4 ms signals. In this mode, the modules can also be used with Omron's I/O Blocks, reducing wiring between control panels as well as within control panels.

In dynamic multiplex input mode, the modules provide 128 dynamic input points. In this mode they can be used with keyboards, thumbwheel switches, etc.

\section*{Features}
- Provide 16 inputs and 16 outputs per module in static mode; 128 inputs in dynamic mode
- Easy cable connection to I/O block
- Selectable input response time
- Up to 10 Special I/O modules per PLC
- Provide interface to keyboards, thumbwheel switches, etc. in dynamic mode

\section*{Specifications (Static High-density Setting), Input Side (CN2)}
\begin{tabular}{|c|c|c|c|}
\hline Part number & C200H-MD115 & C200H-MD215 & C200H-MD501 \\
\hline Mounting & CPU Rack: Yes Expansion I/O Rack: Yes Remote I/O Rack: Yes & CPU Rack: Yes Expansion I/O Rack: Yes Remote I/O Rack: Yes & CPU Rack: Yes Expansion I/O Rack: Yes Remote I/O Rack: Yes \\
\hline Input voltage & 12 VDC +10\%/-15\% & 24 VDC \(\pm 10 \%\) & \(5 \mathrm{VDC} \pm 10 \%\) \\
\hline No. of inputs (per common) & 16 pts ( \(8 \mathrm{pts} / \mathrm{com}, 2\) circuits) 8 quick-response points available & 16 pts ( 8 pts/com, 2 circuits) 8 quick-response points available & 16 pts ( 8 pts/com, 2 circuits) 8 quick-response points available \\
\hline Input current & 4.1 mA , typical & 4.1 mA , typical & 3.5 mA , typical \\
\hline Operating voltage ON & 8.0 VDC min . & 14.4 VDC min. & 3.0 VDC min. \\
\hline OFF & 3.0 VDC max. & 5.0 VDC max. & 1.0 VDC max. \\
\hline Input response time ON & 2.5 ms max. \(/ 15 \mathrm{~ms}\) max. (selectable) & 2.5 ms max./ 15 ms max. (selectable) & 2.5 ms max./15 ms max. (selectable) \\
\hline OFF & 2.5 ms max. \(/ 15 \mathrm{~ms}\) max. (selectable) & 2.5 ms max./15 ms max. (selectable) & 2.5 ms max. \(/ 15 \mathrm{~ms}\) max. (selectable) \\
\hline External connections & Connector & Connector & Connector \\
\hline Input device requirement & \[
\begin{aligned}
& \text { Sinking (NPN) or sourcing } \\
& \text { (PNP) }
\end{aligned}
\] & \(\underset{\substack{\text { Sinking (NPN) or sourcing } \\(P N P)}}{ }\) & Sinking (NPN) or sourcing
\((\mathrm{PNP})\) \\
\hline
\end{tabular}

\section*{Specifications (Static High-density Setting), Output Side (CN1)}
\begin{tabular}{|c|c|c|c|}
\hline Part number & C200H-MD115 & C200H-MD215 & C200H-MD501 \\
\hline Max. Ioad current & 16 mA 4.5 VDC to 100 mA 26.4 VDC/pt, \(800 \mathrm{~mA} /\) common, 1.6 A/module & 16 mA 4.5 VDC to 100 mA \(26.4 \mathrm{VDC} / \mathrm{pt}, 800 \mathrm{~mA} / \mathrm{common}\), 1.6 A/module & \(35 \mathrm{~mA} / \mathrm{pt}, 280 \mathrm{~mA} /\) common, \(560 \mathrm{~mA} /\) module \\
\hline Rated load voltage & 5 to \(24 \mathrm{VDC} \pm 10 \%\) & 5 to \(24 \mathrm{VDC} \pm 10 \%\) & \(5 \mathrm{VDC} \pm 10 \%\) \\
\hline No. of outputs (per common) & 16 pts (8 pts/com, 2 circuits) & 16 pts (8 pts/com, 2 circuits) & 16 pts (8 pts/com, 2 circuits) \\
\hline Residual voltage & 0.7 V max. & 0.7 V max. & 0.4 V max. \\
\hline \multirow[t]{2}{*}{Output response times} & 0.2 ms max . & 0.2 ms max. & 0.2 ms max . \\
\hline & 0.6 ms max. & 0.6 ms max. & 0.3 ms max. \\
\hline External connections & Connector & Connector & Connector \\
\hline Leakage current & 0.1 mA max. & 0.1 mA max. & 0.1 mA max. \\
\hline Fuse & 1 fuse/circuit, 2 circuits (not use & -replaceable) & \\
\hline External power supply & 5 to \(24 \mathrm{VDC}, 45 \mathrm{~mA}\) min. & 5 to \(24 \mathrm{VDC}\),45 mA min. & \(5 \mathrm{VDC}, 20 \mathrm{~mA}\) min. \\
\hline Operation & Sinking (NPN) & Sinking (NPN) & Sinking (NPN) \\
\hline
\end{tabular}

Specifications (Dynamic Multiplex Setting); Input Only
\begin{tabular}{|c|c|c|c|}
\hline Part number & C200H-MD115 & C200H-MD215 & C200H-MD501 \\
\hline Input voltage & 12 VDC +10\%/-15\% & 24 VDC \(\pm 10 \%\) & \(5 \mathrm{VDC} \pm 10 \%\) \\
\hline No. of inputs (per common) & 128 pts (64 pts/com, 2 circuits) & 128 pts (64 pts/com, 2 circuits) & 128 pts (64 pts/com, 2 circuits) \\
\hline Input current & 4.1 mA , typical & 4.1 mA , typical & 3.5 mA , typical \\
\hline \multirow[t]{2}{*}{Operating voltage} & \(8.0 \mathrm{VDC} \mathrm{min}\). & 14.4 VDC min. & 3.0 VDC min. \\
\hline & 3.0 VDC max. & 5.0 VDC max. & 1.0 VDC max. \\
\hline External connections & Connector & Connector & Connector \\
\hline Input device requirement & Sinking (NPN) & Sinking (NPN) & Sinking (NPN) \\
\hline
\end{tabular}


C200H-OD215
C200H-OD501

\section*{General Information}

The High-density/Multiplex Output Modules let you pack more I/O points into a single I/O slot for greater space savings. Treated as Special I/O modules, they do not use standard I/O points. Thus, they increase the overall I/O capacity. In static high-density mode, they provide 32 discrete output points. In this mode, the modules can also be used with Omron's Output Blocks, reducing wiring between control panels as well as within control panels. In dynamic multiplex mode, the modules provide 128 dynamic output points. In this mode they can be used with numeric displays, etc.

\section*{Features}
- Provide 32 outputs per module in static mode
- Easy cable connection to I/O block
- Up to 10 special high-density modules per PLC
- Provide interface to numeric displays, etc. in dynamic mode

\section*{Specifications (Static High-density Setting)}
\begin{tabular}{|c|c|c|}
\hline Part number & C200H-OD215 & C200H-OD501 \\
\hline Max. Ioad current & 16 mA 4.5 VDC to \(100 \mathrm{~mA} 26.4 \mathrm{VDC} / \mathrm{pt}\), \(800 \mathrm{~mA} /\) common, 3.2 A/module & \(35 \mathrm{~mA} / \mathrm{pt}\), \(280 \mathrm{~mA} /\) common, 1.12 A/module \\
\hline Rated load voltage & 5 to \(24 \mathrm{VDC} \pm 10 \%\) & \(5 \mathrm{VDC} \pm 10 \%\) \\
\hline No. of outputs (per common) & 32 pts (8 pts/com, 4 circuits) & 32 pts (8 pts/com, 4 circuits) \\
\hline Residual voltage & 0.7 V max. & 0.4 V max. \\
\hline \multirow[t]{2}{*}{Output response times} & 0.2 ms max . & 0.2 ms max. \\
\hline & 0.6 ms max. & 0.3 ms max . \\
\hline External connections & Connector & Connector \\
\hline Leakage current & 0.1 mA max. & 0.1 mA max. \\
\hline Fuse & 1 fuse/circuit, 4 circuits (not user-replaceable) & \\
\hline External power supply & 5 to 24 VDC, 90 mA min. & 5 VDC, 39 mA min. \\
\hline Operation & Sinking (NPN) & Sinking (NPN) \\
\hline Manual & W133 & \\
\hline
\end{tabular}

Specifications (Dynamic Multiplex Setting)
\begin{tabular}{|c|c|c|}
\hline Part number & C200H-OD215 & C200H-OD501 \\
\hline Max. load current & \(100 \mathrm{~mA} / \mathrm{pt}, 800 \mathrm{~mA} /\) common, \(3.2 \mathrm{~A} /\) module & \(35 \mathrm{~mA} / \mathrm{pt}, 280 \mathrm{~mA} /\) common, \(1.12 \mathrm{~A} / \mathrm{module}\) \\
\hline Rated load voltage & 5 to \(24 \mathrm{VDC} \pm 10 \%\) & \(5 \mathrm{VDC} \pm 10 \%\) \\
\hline No. of outputs (per common) & 128 dynamic pts (64 pts/com, 2 circuits) & 128 dynamic pts (64 pts/com, 2 circuits) \\
\hline Residual voltage & 0.7 V max. & 0.4 V max. \\
\hline \multirow[t]{2}{*}{Output response times} & 0.2 ms max . & 0.2 ms max . \\
\hline & 0.6 ms max. & 0.3 ms max . \\
\hline External connections & Connector & Connector \\
\hline Leakage current & 0.1 mA max. & 0.1 mA max. \\
\hline Fuse & 1 fuse/circuit, 4 circuits (not user-replaceable) & \\
\hline External power supply & 5 to \(24 \mathrm{VDC}, 90 \mathrm{~mA}\) min. & \(5 \mathrm{VDC}, 39 \mathrm{~mA}\) min. \\
\hline Operation & Sinking (NPN) & Sinking (NPN) \\
\hline
\end{tabular}


C200H-ID216


C200H-ID217

\section*{General Information}

The High-density input modules for \(\mathrm{C} 200 \mathrm{H}-\) CPU21,-CPU23,-CPU31 and C200HS CPUs let you pack more I/O points into a single I/O slot for greater space savings. These modules do not use standard I/O points. Thus, they increase the overall I/O capacity. They provide 32 or 64 discrete input points. The modules can be used with Omron's Input Blocks, reducing wiring between control panels as well as within control panels.

\section*{Features}
- Easy cable connection to input blocks
- Up to five 64-point modules or 32-point modules per PLC

\section*{Specifications}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Part number} & C200H-ID216 & C200H-ID217 \\
\hline \multicolumn{2}{|l|}{Input voltage} & 24 VDC & 24 VDC \\
\hline \multicolumn{2}{|l|}{No. of inputs (per common)} & 32 (32 points/com, 1 circuit) & 64 (32 points/com, 2 circuits) \\
\hline \multicolumn{2}{|l|}{Input current} & 4.1 mA & 4.1 mA \\
\hline \multirow[t]{2}{*}{Operating voltage} & ON & 14.4 VDC min. & 14.4 VDC min. \\
\hline & OFF & 5.0 VDC max. & 5.0 VDC max. \\
\hline \multirow[t]{2}{*}{Input response time} & ON & 1.0 ms max. & 1.0 ms max. \\
\hline & OFF & 1.0 ms max. & 1.0 ms max. \\
\hline \multicolumn{2}{|l|}{External connections} & Connector & Connector \\
\hline \multicolumn{2}{|l|}{Input device requirement} & Sinking (NPN) or sourcing (P) & Sinking (NPN) or sourcing (PNP) \\
\hline
\end{tabular}

NOTE: High density input modules for C200H-CPU21. -CPU23, -CPU31, and C200HS CPU's only.


C200H-OD218


C200H-OD219

\section*{General Information}

The high-density output modules for C 200 H CPU21, -CPU23, -CPU31 and C200HS CPUs let you pack more I/O points into a single I/O slot for greater space savings. These modules do not use standard I/O points. Thus, they increase the overall I/O capacity. They provide 32 or 64 discrete output points. The modules can be used with Omron's output blocks, reducing wiring between control panels as well as within control panels.

\section*{Features}
- Easy cable connection to output blocks
- Up to five 64-point modules or 32-point modules per PLC

\section*{Specifications}
\begin{tabular}{|c|c|c|}
\hline Part number & C200H-OD218 & C200H-OD219 \\
\hline Max. load current & 16 mA 4.5 VDC to 100 mA 26.4 VDC & \(16 \mathrm{~mA} \mathrm{4.5} \mathrm{VDC}\) to \(100 \mathrm{~mA} \mathrm{26.4} \mathrm{VDC}\) \\
\hline Rated load voltage & 5 to 24 VDC & 5 to 24 VDC \\
\hline No. of outputs (per common) & 32 (32 points/com, 1 circuit) & 64 (32 points/com, 2 circuits) \\
\hline Residual voltage & 0.8 V max. & 0.8 V max. \\
\hline \multirow[t]{2}{*}{Output response times} & 0.1 ms max. & 0.1 ms max. \\
\hline & 0.4 ms max. & 0.4 ms max . \\
\hline External connections & Connector & Connector \\
\hline Leakage current & 0.1 mA max. & 0.1 mA max. \\
\hline Fuse & 3.5 A (not user-replaceable) & Two, 3.5 A (not user-replaceable) \\
\hline External power supply & 5 to 24 VDC, 110 mA min . & 5 to \(24 \mathrm{VDC}, 220 \mathrm{~mA} \mathrm{~min}\). \\
\hline Operation & Sinking (NPN) & Sinking (NPN) \\
\hline
\end{tabular}

NOTE: High density input modules for C200H-CPU21. -CPU23, -CPU31, and C200HS CPU's only.


C200H-B7AI1


C200H-B7AO1

\section*{General Information}

The \(\mathrm{C} 200 \mathrm{H}-\mathrm{B} 7 \mathrm{~A}\) Interface Modules reduce wiring from 16 input devices or 16 output devices to a few wires. You save control panel space, wiring time, and man-hours required for installation. These modules can be used with the full range of B7A input and output blocks for 16 I/O. The modules require a power supply, as do the terminal blocks.

\section*{Features}
- Connect directly to the B7A I/O blocks using a two-conductor wire
- Transmission distance up to 500 m max.
- Used as a standard I/O module with 16 points

\section*{Specifications}
\begin{tabular}{lll}
\hline Part number & C200H-B7Al1 & C200H-B7AO1 \\
\hline I/O points & 16 or 15 input points with 1 error bit & 16 output points \\
\hline Transmission distance (note) & 500 m max. & 500 m max. \\
\hline I/O delay & 19.2 ms (typical); 31 ms max. & 19.2 ms (typical); 31 ms max. \\
\hline Current consumption & 100 mA, max. at 5 VDC & 100 mA, max. at 5 VDC \\
\hline Power supply & \(10 \mathrm{~mA} \mathrm{min}\).at 12 to \(24 \mathrm{VDC} \pm 10 \%\) & \(30 \mathrm{~mA} \mathrm{min}\).at 12 to \(24 \mathrm{VDC} \pm 10 \%\) \\
\hline Manual & W 236 &
\end{tabular}

NOTE: A maximum transmission distance of 500 m is possible if the B7A Interface module and B7A Link Terminal each connect to an external DC power supply with 12 to 24 VDC. A maximum transmission distance of 100 m is possible if a single power supply of 24 VDC \(\pm 10 \%\) is connected to either the B7A Link Terminal or the interface module.

\section*{Typical Application}



\section*{General Information}

Discrete I/O modules are available in a number of voltages, densities, terminal block, and connector types. Connector-style high-density l/O modules with 32 or 64 discrete l/O points per module have solder connectors included with the module.

Optional wiring methods are available using Omron's I/O blocks, screw terminal, crimp and ribbon connectors, and pre-terminated cables. These versatile high-density configuration options minimize rack space and wiring time. The Omron I/O Blocks provide single-point isolation and up to 5 A current capacity per point. Replaceable relays and solid-state plug-in modules allow easy maintenance.

There are five styles of discrete I/O modules in the C 200 H family. The profiles of each are shown here. Each module in the following pages is cross-referenced to the module style.

Modules include the appropriate connectors. Replacement connectors and terminal blocks for each style are shown here.
\begin{tabular}{ll} 
Style & Replacement Connector/Terminal \\
\hline \(\mathbf{A}\) & \(4571022-4\), PTC-2103 \\
\hline B & 4571023-2, PTC-219 \\
\hline C,D & C500-CE401 Solder, 40-pin \\
& C500-CE402 Crimp, 40-pin \\
& C500-CE403 Ribbon, 40-pin \\
& C500-CE404 Solder, right angle \\
& C500-CE405 Crimp, right angle \\
\hline E & C500-CE241 Solder, 24-pin \\
& C500-CE242 Crimp, 24 pin \\
& C500-CE243 Ribbon, 24 pin
\end{tabular}

\section*{Specifications}
\begin{tabular}{|c|c|c|}
\hline Part number & C200H-ID001 & C200H-ID002 \\
\hline Number of inputs (per common) & 8 pts (8 pts/com, 1 circuit) & 8 pts (8 pts/com, 1 circuit) \\
\hline Input voltage & No-voltage contact/NPN output type (negative common) & No-voltage contact/NPN output type positive common) \\
\hline Input current & 7 mA , typical & 7 mA , typical \\
\hline \multicolumn{3}{|l|}{Operating voltage} \\
\hline ON & 14.4 VDC min. & 14.4 VDC min. \\
\hline OFF & 5.0 VDC max. & 5.0 VDC max. \\
\hline \multicolumn{3}{|l|}{Input response time} \\
\hline ON & 1.5 ms max . & 1.5 ms max . \\
\hline OFF & 1.5 ms max. & 1.5 ms max. \\
\hline Style/External connections & A/Removable terminal block & \\
\hline Input device requirement & - & - \\
\hline Manual & C200H Installation Guide: W111 & \\
\hline
\end{tabular}

Specifications
\begin{tabular}{|c|c|c|}
\hline Part number & C200H-ID211 & C200H-ID212 \\
\hline Number of inputs (per common) & 8 pts (8 pts/com, 1 circuit) & 16 pts (16 pts/com, 1 circuit) \\
\hline Input voltage & 12 to 24 VDC +10\%/-15\% & 24 VDC +10\%/-15\% \\
\hline Input current & \(10 \mathrm{~mA}, 24 \mathrm{VDC}\) & 7 mA , typical 24 VDC \\
\hline \multicolumn{3}{|l|}{Operating voltage} \\
\hline ON & 10.2 VDC min. & 14.4 VDC min. \\
\hline OFF & 3.0 VDC max. & 5.0 VDC max. \\
\hline \multicolumn{3}{|l|}{Input response time} \\
\hline ON & 1.5 ms max . & 1.5 ms max . \\
\hline OFF & 1.5 ms max. & 1.5 ms max. \\
\hline Style/External connections & A/Removable terminal block & B/Removable terminal block \\
\hline Input device requirement & Sinking (NPN) or sourcing (PNP) & Sinking (NPN) or sourcing (PNP) \\
\hline Manual & C200H Installation Guide: W111 & \\
\hline
\end{tabular}

Specifications
\begin{tabular}{|c|c|c|}
\hline Part number & C200H-IA121 & C200H-IA122 \\
\hline Number of inputs (per common) & 8 pts (8 pts/com, 1 circuit) & 16 pts (16 pts/com, 1 circuit) \\
\hline Input voltage & 100 to 120 VAC +10\%/-15\% & 100 to 120 VAC +10\%/-15\% \\
\hline Input current & \(10 \mathrm{~mA}, 100 \mathrm{VAC}\) & \(10 \mathrm{~mA}, 200 \mathrm{VAC}\) \\
\hline \multicolumn{3}{|l|}{Operating voltage} \\
\hline ON & 60 VAC min & 60 VAC min \\
\hline OFF & 20 VAC max & 20 VAC max \\
\hline \multicolumn{3}{|l|}{Input response time} \\
\hline ON & 35 ms max & 35 ms max \\
\hline OFF & 55 ms max & 55 ms max \\
\hline Style/External connections & A/Removable terminal block & B/Removable terminal block \\
\hline Manual & C200H Installation Guide: W & \\
\hline
\end{tabular}

\section*{Specifications}
\begin{tabular}{|c|c|c|}
\hline Part number & C200H-IA221 & C200H-IA222 \\
\hline Number of inputs (per common) & 8 pts (8 pts/com, 1 circuit) & 16 pts (16 pts/com, 1 circuit) \\
\hline Input voltage & 200 to 240 VAC +10\%/-15\% & 200 to 240 VAC +10\%/-15\% \\
\hline Input current & \(10 \mathrm{~mA}, 100\) VAC & \(10 \mathrm{~mA}, 200\) VAC \\
\hline \multicolumn{3}{|l|}{Operating voltage} \\
\hline ON & 120 VAC min & 120 VAC min \\
\hline OFF & 40 VAC max & 40 VAC max \\
\hline \multicolumn{3}{|l|}{Input response time} \\
\hline ON & 35 ms max & 35 ms max \\
\hline OFF & 55 ms max & 55 ms max \\
\hline Style/External connections & A/Removable terminal block & B/Removable terminal block \\
\hline Manual & C200H Installation Guide: W111 & \\
\hline
\end{tabular}

\section*{Specifications}
\begin{tabular}{|c|c|c|}
\hline Part number & C200H-IM211 & C200H-IM212 \\
\hline Number of inputs (per common) & 8 pts (8 pts/com, 1 circuit) & 16 pts (16 pts/com, 1 circuit) \\
\hline Input voltage & 12 to 24 VAC/DC +10\%/-15\% & 24 VAC/DC +10\%/-15\% \\
\hline Input current & \(10 \mathrm{~mA}, 24 \mathrm{VAC/DC}\) & \(7 \mathrm{~mA}, 24 \mathrm{VAC/DC}\) \\
\hline \multicolumn{3}{|l|}{Operating voltage} \\
\hline ON & 10.2 VAC/DC & 14.4 VAC/DC \\
\hline OFF & 3.0 VAC/DC & 5.0 VAC/DC \\
\hline \multicolumn{3}{|l|}{Input response time} \\
\hline ON & 1.5 ms max. & 1.5 ms max. \\
\hline OFF & 1.5 ms max. & 1.5 ms max. \\
\hline Style/External connections & A/Removable terminal block & \(\mathrm{B} /\) Removable terminal block \\
\hline Type of common & Bipolar common & Bipolar common \\
\hline Manual & C200H Installation Guide: W1 & \\
\hline
\end{tabular}

\section*{Specifications}
\begin{tabular}{|c|c|c|}
\hline Part number & C200H-OD211 & C200H-OD212 \\
\hline Number of outputs (per common) & 12 pts (12 pt/com, 1 circuit) & 16 pts (16 pts/com, 1 circuit) \\
\hline Max. load current & \(0.3 \mathrm{~mA} / \mathrm{pt}\), \(2 \mathrm{~A} / \mathrm{module}\) & \(0.3 \mathrm{~mA} / \mathrm{pt}\), \(2 \mathrm{~A} / \mathrm{module}\) \\
\hline Rated load voltage & 24 VDC \(\pm 10 \% /-15 \%\) & 24 VDC \(\pm 10 \% /-15 \%\) \\
\hline Min. switching capacity & Residual voltage: 1.4 V max. & Residual voltage: 1.4 V max. \\
\hline \multicolumn{3}{|l|}{Output response times} \\
\hline ON & 0.2 ms max. & 0.2 ms max. \\
\hline OFF & 0.3 ms max. & 0.3 ms max. \\
\hline Style/External connections & B/Removable terminal block & B/Removable terminal block \\
\hline Leakage current & 0.1 mA max. & 0.1 mA max. \\
\hline Fuse & \(125 \mathrm{~V}, 5 \mathrm{~A}\) & \(125 \mathrm{~V}, 8 \mathrm{~A}\) \\
\hline External power supply & 24 VDC, 25 mA min. & \(24 \mathrm{VDC}, 35 \mathrm{~mA} \mathrm{~min}\). \\
\hline Operation & Sinking (NPN) & Sinking (NPN) \\
\hline Manual & C200H Installation Guide: W111 & \\
\hline
\end{tabular}

\section*{Specifications}
\begin{tabular}{|c|c|c|}
\hline Part number & C200H-OD213 & C200H-OD214 \\
\hline Number of outputs (per common) & 8 pts (8 pts/com, 1 circuit) & 8 pts (8 pts/com, 1 circuit) \\
\hline Max. load current & 2.1 A/pt, 5.2 A/module & 0.8 A/pt, 2.4 A/module \\
\hline Rated load voltage & 24 VDC \(\pm 10 \% /-15 \%\) & 24 VDC \(\pm 10 \% /-15 \%\) \\
\hline Min. switching capacity & Residual voltage: 1.4 V max. & Residual voltage: 1.5 V max. \\
\hline \multicolumn{3}{|l|}{Output response times} \\
\hline ON & 0.2 ms max. & 1 ms max. \\
\hline OFF & 0.3 ms max. & 1 ms max. \\
\hline Style/External connections & A/Removeable terminal block & A/Removeable terminal block \\
\hline Leakage current & 0.1 mA max. & 0.1 mA max. \\
\hline Fuse & \(125 \mathrm{~V}, 8 \mathrm{~A}\) & Short-circuit protection \\
\hline External power supply & \(24 \mathrm{VDC}, 30 \mathrm{~mA} \mathrm{~min}\). & \(24 \mathrm{VDC}, 150 \mathrm{~mA} \mathrm{~min}\). \\
\hline Operation & Sinking (NPN) & Sourcing (PNP) \\
\hline Manual & C200H Installation Guide: W1 & \\
\hline
\end{tabular}

\section*{Specifications}
\begin{tabular}{lll}
\hline Part number & C200H-OD216 & C200H-OD217 \\
\hline \begin{tabular}{l} 
Number of outputs (per \\
common)
\end{tabular} & \(8 \mathrm{pts}(8 \mathrm{pts} / \mathrm{com}, 1\) circuit) & \(12 \mathrm{pts}(12 \mathrm{pts} / \mathrm{com}, 1\) circuit) \\
\hline Max. load current & \(0.3 \mathrm{~A} / \mathrm{pt}\) & \(0.3 \mathrm{~A} / \mathrm{pt}\) \\
\hline Rated load voltage & 5 to \(24 \mathrm{VDC},+10 \% /-15 \%\) & \(5 \mathrm{to} 24 \mathrm{VDC},+10 \% /-15 \%\) \\
\hline Min. switching capacity & \(10 \mathrm{~mA}, 5 \mathrm{VDC}\) & \(10 \mathrm{~mA}, 5 \mathrm{VDC}\) \\
\hline \begin{tabular}{ll} 
Output response times \\
ON
\end{tabular} & 1.5 ms max. & \(1.5 \mathrm{~ms} \mathrm{max}\). \\
\(\quad\) OFF & 2 ms max. & 2 ms max. \\
\hline Style/External connections & A/Removeable terminal block & \(\mathrm{B} /\) Removeable terminal block \\
\hline Leakage current & 0.1 mA max. & 0.1 mA max. \\
\hline Fuse & - & - \\
\hline External power supply & - & - \\
\hline Operation & Sourcing (PNP) & Sourcing (PNP) \\
\hline Manual & C200H Installation Guide: W111 & \\
\hline
\end{tabular}

\section*{Specifications}
\begin{tabular}{ll}
\hline Part number & C200H-OD411 \\
\hline \begin{tabular}{l} 
Number of outputs (per \\
common)
\end{tabular} & 8 pts (8 pts/com, 1 circuit) \\
\hline Max. load current & \(1 \mathrm{~A} / \mathrm{pt},(3 \mathrm{~A} / \mathrm{module})\) \\
\hline Rated load voltage & 12 to \(48 \mathrm{VDC},+10 \% /-15 \%\) \\
\hline Min. switching capacity & Residual voltage: 1.4 V max. \\
\hline \begin{tabular}{ll} 
Output response times \\
\(\quad\) ON \\
\(\quad\) OFF
\end{tabular} & 0.2 ms max. \\
\hline Style/External connections & 0.3 ms max. \\
\hline Leakage current & 0.1 mA max. \\
\hline Fuse & \(125 \mathrm{~V}, 5 \mathrm{~A}\) \\
\hline External power supply & \(12 \mathrm{to} \mathrm{48} \mathrm{VDC,30mA} \mathrm{min}\). \\
\hline Operation & Sinking (NPN) \\
\hline Manual & C 200 H Installation Guide: W111
\end{tabular}

\section*{Specifications}
\begin{tabular}{|c|c|c|}
\hline Part number & C200H-OA221 & C200H-OA222 \\
\hline Number of outputs (per common) & 8 pts (8 pts/com, 1 circuit) & 12 pts (8 pts/com, 2 circuits) \\
\hline Max. load current & \(1 \mathrm{~A} / \mathrm{pt}, 4 \mathrm{~A} /\) module & . \(3 \mathrm{~A} / \mathrm{pt}, 5 \mathrm{~A} / \mathrm{module}\) \\
\hline Rated load voltage & 200 to 240 VAC & 100 to 240 VAC \\
\hline Min. switching capacity & Resistance load: 10 mA inductive load: 40 mA 10 VAC & Resistance load: 10 mA inductive load: 40 mA 10 VAC \\
\hline \multicolumn{3}{|l|}{Output response times} \\
\hline ON & 1 ms max . & 1 ms max. \\
\hline OFF & 1/2 load frequency max. & 1/2 load frequency max. \\
\hline Style/External connections & A/Removeable terminal block & B/Removeable terminal block \\
\hline \multicolumn{3}{|l|}{Leakage current} \\
\hline 200 VAC & 6 mA max. & 6 mA max. \\
\hline 100 VAC & 3 mA max. & 3 mA max. \\
\hline Fuse & 250 V, 5 A & 250 V, 3 A \\
\hline External power supply & - & - \\
\hline Manual & C200H Installation Guide: W111 & \\
\hline
\end{tabular}

\section*{Specifications}
\begin{tabular}{|c|c|}
\hline Part number & C200H-OA121-E \\
\hline Number of outputs (per common) & 8 pts (8 pts/com, 1 circuit) \\
\hline Max. load current & \(1 \mathrm{~A} / \mathrm{pt}, 4 \mathrm{~A} / \mathrm{module}\) \\
\hline Rated load voltage & 100 to 120 VAC \\
\hline Min. switching capacity & Resistance load: 10 mA inductive load: 40 mA 10 VAC \\
\hline \multicolumn{2}{|l|}{Output response times} \\
\hline ON & 1 ms max. \\
\hline OFF & 1/2 load frequency max. \\
\hline Style/External connections & A/Removeable terminal block \\
\hline \multicolumn{2}{|l|}{Leakage current} \\
\hline 200 VAC & 3 mA max. \\
\hline 100 VAC & - \\
\hline Fuse & \(125 \mathrm{~V}, 5 \mathrm{~A}\) \\
\hline External power supply & - \\
\hline Manual & C200H Installation Guide: W111 \\
\hline
\end{tabular}

\section*{Specifications}
\begin{tabular}{|c|c|c|}
\hline Part number & C200H-OC221 & C200H-OC222 \\
\hline Number of outputs (per common) & 8 pts (8 pts/com, 1 circuit) & 12 pts (12 pt/com, 1 circuit), max. 8 ON simultaneously \\
\hline \multicolumn{3}{|l|}{Max. load current} \\
\hline AC & \(2 \mathrm{~A} /\) pt. (p.f. \(=1\) ), \(2 \mathrm{~A} /\) pt. (p.f. \(=0.4\) ) & \(2 \mathrm{~A} / \mathrm{pt} .(\mathrm{p.f}=1),. 2 \mathrm{~A} / \mathrm{pt} .(\) p.f. \(=0.4\) ) \\
\hline DC & \(2 \mathrm{~A} / \mathrm{pt}\)., 8 A/module & \(2 \mathrm{~A} / \mathrm{pt}\)., 8 A/module \\
\hline Rated load voltage & 250 VAC, 24 VDC max. & 250 VAC, 24 VDC max. \\
\hline Min. switching capacity & \(10 \mathrm{~mA}, 5 \mathrm{VDC}\) & \(10 \mathrm{~mA}, 5 \mathrm{VDC}\) \\
\hline \multicolumn{3}{|l|}{Output response times} \\
\hline ON & 10 ms max . & 10 ms max. \\
\hline OFF & 10 ms max . & 10 ms max . \\
\hline Style/External connections & A/Removeable terminal block & \(\mathrm{B} /\) Removeable terminal block \\
\hline External power supply & \(10 \mathrm{~mA}, 24 \mathrm{VDC} / \mathrm{pt}\) & \(10 \mathrm{~mA}, 24 \mathrm{VDC} / \mathrm{pt}\) \\
\hline Manual & C200H Installation Guide: W111 & \\
\hline
\end{tabular}

Specifications
\begin{tabular}{lll}
\hline Part number & C200H-OC223 & C200H-OC224 \\
\hline \begin{tabular}{l} 
Number of outputs (per \\
common)
\end{tabular} & \(5 \mathrm{pts}(1 \mathrm{pt} /\) com, 5 circuits) & \(8 \mathrm{pts}(1 \mathrm{pt} / \mathrm{com}, 8\) circuits \()\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Max. load current} \\
\hline AC & \(2 \mathrm{~A} /\) pt. \((\) p.f. \(=1\) ), \(2 \mathrm{~A} /\) pt. \((\) p.f. \(=0.4\) ) & \(2 \mathrm{~A} /\) pt. \((\) p.f. \(=1\) ), \(2 \mathrm{~A} /\) pt. \((\) p.f. \(=0.4\) ) \\
\hline DC & \(2 \mathrm{~A} / \mathrm{pt}\)., \(8 \mathrm{~A} / \mathrm{module}\) & \(2 \mathrm{~A} / \mathrm{pt}\)., \(8 \mathrm{~A} / \mathrm{module}\) \\
\hline Rated load voltage & 250 VAC, 24 VDC max. & 250 VAC, 24 VDC max. \\
\hline Min. switching capacity & \(10 \mathrm{~mA}, 5 \mathrm{VDC}\) & \(10 \mathrm{~mA}, 5 \mathrm{VDC}\) \\
\hline \multicolumn{3}{|l|}{Output response times} \\
\hline ON & 10 ms max . & 10 ms max. \\
\hline OFF & 10 ms max. & 10 ms max. \\
\hline Style/External connections & A/Removeable terminal block & A/Removeable terminal block \\
\hline External power supply & \(10 \mathrm{~mA}, 24 \mathrm{VDC} / \mathrm{pt}\) & \(10 \mathrm{~mA}, 24 \mathrm{VDC} / \mathrm{pt}\) \\
\hline Manual & C200H Installation Guide: W111 & \\
\hline
\end{tabular}

\section*{Specifications}
\begin{tabular}{|c|c|}
\hline Part number & C200H-OC225 \\
\hline Number of outputs (per common) & 16 pts (1 pt/com, 1 circuit), 8 ON simultaneously \\
\hline \multicolumn{2}{|l|}{Max. Ioad current} \\
\hline AC & \(2 \mathrm{~A} /\) pt. (p.f. \(=1\) ), \(2 \mathrm{~A} /\) pt. (p.f. \(=0.4\) ) \\
\hline DC & \(2 \mathrm{~A} / \mathrm{pt}\)., 8 A/module \\
\hline Rated load voltage & 250 VAC, 24 VDC max. \\
\hline Min. switching capacity & \(10 \mathrm{~mA}, 5 \mathrm{VDC}\) \\
\hline \multicolumn{2}{|l|}{Output response times} \\
\hline ON & 10 ms max . \\
\hline OFF & 10 ms max . \\
\hline Style/External connections & B/Removeable terminal block \\
\hline External power supply & \(10 \mathrm{~mA}, 24 \mathrm{VDC} / \mathrm{pt}\) \\
\hline Manual & C200H Installation Guide: W111 \\
\hline
\end{tabular}

\section*{Screw Terminals \\ XW2B}


XW2B-20G4

\section*{General Information}

XW2B screw terminals allow clean, single-cable connection to 32-point or 64-point high-density I/O modules. The screw terminals enable easier installation, saving time, reducing system cost, and simplifying maintenance. The screw terminals are available in 20 - and 40-point densities. The I/O connecting cables are available in lengths from 1 to 5 meters.


XW2B-40G5

\section*{Features}
- Available with either M2.4 or M3.5 terminal screws
- Easily mounted to DIN rail or control panel
- Rated for 1 A, 125 VAC or 1 A, 30 VDC
\begin{tabular}{|c|c|c|}
\hline Part Number & Description & Compatible PLC I/O Modules \\
\hline XW2B-20G4 & 20-point terminal w/M2.4 screws & \multirow[t]{4}{*}{C200H-ID215, C200H-OD215, C200H-MD115,
C200H-MD215, C200H-MD501, C200H-ID501,
C200H-OD501, C500-ID218CN, C500-ID501CN,
C500-OD415CN, C500-OD501CN} \\
\hline XW2B-20G5 & 20-point terminal w/M3.5 screws & \\
\hline XW2B-40G5-T & 40-point terminal w/M3.5 screws (Has two connectors; same as using two XW2B-20G5s) & \\
\hline XW2B-20G5-D & 20-point terminal w/M3.5 screws (Daisy chain application) & \\
\hline XW2B-40G4 & 40-point terminal w/M2.4 screws & C200H-ID216, C200H-OD218, C200H-ID217, \\
\hline XW2B-40G5 & 40-point terminal w/M3.5 screws & C500-OD213 \\
\hline
\end{tabular}

For Connecting Cable part numbers, refer to the following page.

\section*{Special 32-point Module}

Note The odd numbers on the screw terminals correspond to column A in the PLC module.


Screw Terminals
XW2B-20G4
XW2B-20G5
XW2B-40G5-T (same as using two XW2B-20G5 Terminals) XW2B-20G5-D

\section*{Group 2}

32 and 64-point Module
Note The odd numbers on the screw terminals

\section*{I/O Module}

C200H-ID216
C200H-ID217 C200H-OD218 C200H-OD219
(For 32 pt use one screw terminal) correspond to column A in the PLC module. The even numbers correspond to column \(B\) in the PLC module.


B7A-R6A13
B7A-R6A33
B7A-R6A18 B7A-R6A38

B7A-T6A1
B7A-T6B1
B7A-T6A6
B7A-T6B6
B7A-T6C1
B7A-T6C6


B7R-B3A13
B7R-B3A33
B7R-B3A18 B7R-B3A38


\section*{General Information}

The B7A Output Connectors connect directly to high-density input modules. The connectors communicate to B7A Input Blocks in a remote location by means of two wires. Field input devices are then wired to the input blocks. This reduces wiring between control panels while saving space and wiring time.

\section*{Features}
- Transmit 16 input signals to high-density input modules over two wires, or 32 input signals over four wires
- Transmission distances of 100 or 500 meters (high-speed I/O delay of 3 ms )
- Both NPN and PNP models available
- LED indicators for easy confirmation of input status
- Small size of \(167 \mathrm{~mm} \times 37 \mathrm{~mm}\) (6.57 in x 1.45 in ) allows installation in small enclosures
- DIN rail or control panel mounting

B7A 16-point Output Connectors

\section*{Specifications - Hold Output}
\begin{tabular}{lll}
\hline Part number & B7A-R6A13 & B7A-R6A18 \\
\hline Rated load voltage & 5 to 24 VDC & 5 to 24 VDC \\
\hline Rated load current & 50 mA max./point & 50 mA max./point \\
\hline Output configuration & NPN open collector & NPN open collector \\
\hline I/O delay & Normal-speed 19.2 ms & High-speed 3 ms
\end{tabular}

Specifications - Load OFF
\begin{tabular}{lll}
\hline Part number & B7A-R6A33 & B7A-R6A38 \\
\hline Rated load voltage & 5 to 24 VDC & 5 to 24 VDC \\
\hline Rated load current & 50 mA max./point & 50 mA max./point \\
\hline Output configuration & NPN open collector & NPN open collector \\
\hline I/O delay & Normal-speed 19.2 ms & High-speed 3 ms
\end{tabular}

All B7A Input Blocks require a 12 to 24 VDC power supply. Omron recommends the S82K family of power supplies. Refer to System Configuration for current consumption and formulas for determining the appropriate power supply requirements.

\section*{B7A 32-point Output Connectors}

\section*{Specifications - Hold Output}
\begin{tabular}{lll}
\hline Part number & B7A-R3A13 & B7A-R3A18 \\
\hline Rated load voltage & 5 to 24 VDC & 5 to 24 VDC \\
\hline Rated load current & 50 mA max./point & 50 mA max./point \\
\hline Output configuration & NPN open collector & NPN open collector \\
\hline \begin{tabular}{l} 
I/O delay \\
Specifications - Load \\
OFF
\end{tabular} & High-speed 3 ms \\
\hline Part number & B7A-R3A33 & \\
\hline Rated load voltage & 5 to 24 VDC & B7A-R3A38 \\
\hline Rated load current & 50 mA max./point & 5 to 24 VDC \\
\hline Output configuration & NPN open collector & 50 mA max./point \\
\hline I/O delay & Normal-speed 19.2 ms & NPN open collector \\
\hline
\end{tabular}

\section*{B7A 16-point Input Blocks}

Specifications
\begin{tabular}{llll}
\hline Part number & B7A-T6A1 & B7A-T6B1 & B7A-T6A6 \\
\hline Input configuration & NPN compatible & NPN compatible & NPN compatible \\
\hline Input voltage & \begin{tabular}{l} 
No-voltage contact, two-wire \\
sensors with DC output, NPN \\
output type
\end{tabular} & \begin{tabular}{l} 
No-voltage contact, two-wire \\
sensors with DC output, NPN \\
output type
\end{tabular} & \begin{tabular}{l} 
No-voltage contact, two-wire \\
sensors with DC output, NPN \\
output type
\end{tabular} \\
\hline Input current range & 3 to 6 mA & 3 to 6 mA & 3 to 6 mA \\
\hline Input voltage range & 0 VDC to supply voltage & 0 VDC to supply voltage & 0 VDC to supply voltage \\
\hline I/O delay & Normal-speed 19.2 ms & Normal-speed 19.2 ms & High-speed 3 ms \\
\hline Internal I/O common & - common & \(\pm\) common & - common
\end{tabular}

Specifications
\begin{tabular}{llll}
\hline Part number & B7A-T6B6 & B7A-T6C1 & B7A-T6C6 \\
\hline Input configuration & NPN compatible & PNP compatible & PNP compatible \\
\hline Input voltage & \begin{tabular}{l} 
No-voltage contact, two-wire \\
sensors with DC output, NPN \\
output type
\end{tabular} & \begin{tabular}{l} 
No-voltage contact, two-wire \\
sensors with DC output, PNP \\
output type
\end{tabular} & \begin{tabular}{l} 
No-voltage contact, two-wire \\
sensors with DC output, PNP \\
output type
\end{tabular} \\
\hline Input current range & 3 to 6 mA & 3 to 6 mA & 3 to 6 mA \\
\hline Input voltage range & 0 VDC to supply voltage & 0 VDC to supply voltage & 0 VDC to supply voltage \\
\hline I/O delay & High-speed 3 ms & Normal-speed 19.2 ms & High-speed 3 ms \\
\hline Internal I/O common & \(\pm\) common & \(\pm\) common & \(\pm\) common
\end{tabular}

All B7A Input Blocks require a 24 VDC power supply. Omron recommends the S82K family of power supplies. Refer to Standard Parts for part numbers. Refer to System Configuration for current consumption and formulas for determining the appropriate power supply requirements.

\section*{Special 32-point Module}


32 and 64-point Modules


Removeable
Relay Module



G7TC-I

\section*{General Information}

Input Blocks connect to Omron's high-density input modules or G71 SYSMAC BUS or wired remote I/O stand-alone slaves. Using the Blocks with High-density Input Modules saves Rack space and reduces total system cost. The Block and Slave combination is a cost effective distributed control system when dealing with a small number of input points at a given location. Both applications provide fully isolated input points.

\section*{Features}
- Mix and match input modules, either AC or DC relay and SSR
- Blocks available with a wide variety of input voltages 12 VDC, 24 VDC, 110/120 VAC, and 220/240 VAC
- Modules are easily changed for flexibility and servicing
- Built-in surge suppressors and LED indicators
- Mounts easily on DIN Rail

All Remote I/O Blocks require a 24 VDC power supply. Omron recommends the S82K family of power supplies. Refer to System Configuration, for current consumption and formulas for determining the appropriate power supply requirements.

\section*{P7TF, G7TC Input Blocks}

Specifications
\begin{tabular}{llll}
\hline Part number & P7TF-IS16-DC24V & P7TF-IS16-AC110/120V & P7TF-IS16-AC220/240V \\
\hline No. of points & 16 & 16 & 16 \\
\hline Input voltage & User-selectable & User-selectable & User-selectable \\
\hline Supply voltage & 24 VDC & 24 VDC & 24 VDC \\
\hline Internal circuit & NPN (neg. com.) & NPN (neg. com.) & NPN (neg. com.) \\
\hline \begin{tabular}{ll} 
Applicable Input Module part \\
numbers
\end{tabular} & G7T-1122S-DC24V & G7T-1122S-AC110/120V & G7T-1122S-AC220/240V \\
& G3TA-IDZR02S-DC5-24V & G3TA-IAZR02S-AC100-240V & G3TA-IAZR02S-AC100-240V
\end{tabular}

\section*{Specifications}
\begin{tabular}{llll}
\hline Part number & G7TC-ID16-DC12V & G7TC-ID16-DC24V & G7TC-IA16-AC110/120V \\
\hline No. of points & 16 & 16 & 16 \\
\hline Input voltage & 12 VDC & 24 VDC & \(110-120\) VAC \\
\hline Supply voltage & 12 VDC & 24 VDC & 24 VDC \\
\hline Internal circuit & NPN (neg. com.) & NPN (neg. com.) & NPN (neg. com.) \\
\hline Input Module part number & G7T-1122S-DC12V & G7T-1122S-DC24V & G7T-1122S-AC110/120V
\end{tabular}

Specifications
\begin{tabular}{ll}
\hline Part number & G7TC-IA16-AC220/240V \\
\hline No. of points & 16 \\
\hline Input voltage & User-selectable \\
\hline Supply voltage & 24 VDC \\
\hline Internal circuit & NPN (neg. com.) \\
\hline Input Module part number & G7T-1122S-DC24V
\end{tabular}

G7T and G3T Relay and SSR Input Modules for G7TC and P7TF Input Blocks
Specifications
\begin{tabular}{llll}
\hline Part number & G7T-1122S-DC12V & G7T-1122S-DC24V & G7T-1122S-AC110/120V \\
\hline Input device & Relay & Relay & Relay \\
\hline Input voltage & 12 VDC & 24 VDC & \(110-120 \mathrm{VAC}\) \\
\hline Input current & 42 mA & 21 mA & \(6.4-7.0 \mathrm{~mA}\) \\
\hline ON time & 15 ms & 15 ms & 15 ms \\
\hline OFF time & 15 ms & 15 ms & 15 ms \\
Specifications & & & \\
\hline Part number & G7T-1122S-AC220/240V & G3TA-IAZR02S-AC100/240V & G3TA-IDZR02S-DC5-24V \\
\hline Input device & Relay & Transistor & Transistor \\
\hline Input voltage & \(220-240 \mathrm{VAC}\) & \(100-240 \mathrm{VAC}\) & \(5-24 \mathrm{VDC}\) \\
\hline Input current & \(3.2-3.5 \mathrm{~mA}\) & 5 mA & 5 mA \\
\hline ON time & 15 ms & 20 ms & 0.5 ms \\
\hline OFF time & 15 ms & 20 ms & 0.5 ms
\end{tabular}

\section*{16-point Module}


Input Block
G7TC-ID16
G7TC-IA16
P7TF-IS16

Input Blocks
P7TF, G7TC

\section*{Special}

32-point Modules

Group 2
32 and 64-point Modules


Input Module
C200H-ID215
C200H-MD215 (Input side only)

Input Blocks
G7TC-ID16
G7TC-IA16 P7TF-IS16



B7A-T6E3
B7A-T6E8


B7A-T3E3
B7A-T3E8

\section*{General Information}

The B7A Input Connectors connect directly to high-density output modules. The connectors communicate to B7A output blocks in a remote location by means of only two wires. Field output devices are then wired to the output blocks. This reduces wiring between control panels while also saving space and wiring time.
\begin{tabular}{ll} 
B7A-R6B11 & B7A-R6C11 \\
B7A-R6B31 & B7A-R6C31 \\
B7A-R6B16 & B7A-R6C16 \\
B7A-R6B36 & B7A-R6C36 \\
B7A-R6F11 & B7A-R6G11 \\
B7A-R6F31 & B7A-R6G31 \\
B7A-R6F16 & B7A-R6G16 \\
B7A-R6F36 & B7A-R6G36
\end{tabular}


\section*{Features}
- Transmit 16 output signals to high-density output modules over two wires, or 32 output signals over four wires.
- Transmission distances of 100 or 500 meters (high-speed I/O delay of 3 ms )
- Rated load of \(100 \mathrm{~mA}, 5\) to 24 VDC maximum per point
- Models available with 500 mA maximum per point switching capacity
- Models available with the hold function or load OFF function for signal transmission errors
- LED indicators for easy confirmation of output status and transmission errors
- Small size of \(167 \times 37 \mathrm{~mm}\) ( \(6.57 \times 1.45 \mathrm{in}\).) allows installation in small enclosures
- DIN rail or control panel mounting

\section*{B7A 16-Point Input Connectors}

Specifications
\begin{tabular}{lll}
\hline Part number & B7A-T6E3 & B7A-T6E8 \\
\hline Input configuration & NPN compatible & NPN compatible \\
\hline Input current range & 0.6 mA to 1.5 mA & 0.6 mA to 1.5 mA \\
\hline Input voltage range & 0 VDC to supply voltage & 0 VDC to supply voltage \\
\hline I/O delay & Normal-speed 19.2 ms & High-speed 3 ms
\end{tabular}

B7A 32-Point Input Connectors
Specifications
\begin{tabular}{lll}
\hline Part number & B7A-T3E3 & B7A-T3E8 \\
\hline Input configuration & NPN compatible & NPN compatible \\
\hline Input current range & 0.6 mA to 1.5 mA & 0.6 mA to 1.5 mA \\
\hline Input voltage range & 0 VDC to supply voltage & 0 VDC to supply voltage \\
\hline I/O delay & Normal-speed 19.2 ms & High-speed 3 ms
\end{tabular}

All B7A Output Blocks require a 12- to \(24-V D C\) power supply. Omron recommends the S82K family of power supplies. Refer to System Configuration for current consumption and formulas for determining the appropriate power supply requirements.

\section*{B7A Input Connectors and Output Blocks}

\section*{B7A 16-point (100-mA Switching Capacity) Output Blocks}

\section*{Specifications}
\begin{tabular}{|c|c|c|c|}
\hline Part number & B7A-R6B11 & B7A-R6B31 & B7A-R6B16 \\
\hline Output configuration & NPN open collector & NPN open collector & NPN open collector \\
\hline Rated load voltage & 5 to 24 VDC & 5 to 24 VDC & 5 to 24 VDC \\
\hline Rated load current & 100 mA max./point & 100 mA max./point & 100 mA max./point \\
\hline I/O delay & Normal-speed 19.2 ms & Normal-speed 19.2 ms & High-speed 3 ms \\
\hline Internal I/O common & + common & + common & + common \\
\hline Error processing & Hold & Load OFF & Hold \\
\hline \multicolumn{4}{|l|}{Specifications} \\
\hline Part number & B7A-R6B36 & B7A-R6F11 & B7A-R6F31 \\
\hline Output configuration & NPN open collector & PNP open collector & PNP open collector \\
\hline Rated load voltage & 5 to 24 VDC & 5 to 24 VDC & 5 to 24 VDC \\
\hline Rated load current & 100 mA max./point & 100 mA max./point & 100 mA max./point \\
\hline I/O delay & High-speed 3 ms & Normal-speed 19.2 ms & Normal-speed 19.2 ms \\
\hline Internal I/O common & + common & - common & - common \\
\hline Error processing & Load OFF & Hold & Load OFF \\
\hline \multicolumn{4}{|l|}{Specifications} \\
\hline Part number & B7A-R6F16 & B7A-R6F36 & \\
\hline Output configuration & PNP open collector & PNP open collector & \\
\hline Rated load voltage & 5 to 24 VDC & 5 to 24 VDC & \\
\hline Rated load current & 100 mA max./point & \(100 \mathrm{~mA} \mathrm{max./point}\) & \\
\hline I/O delay & High-speed 3 ms & High-speed 3 ms & \\
\hline Internal I/O common & - common & - common & \\
\hline Error processing & Hold & Load OFF & \\
\hline
\end{tabular}

B7A 16-point ( \(500-\mathrm{mA}\) Switching Capacity) Output Blocks
Specifications
\begin{tabular}{llll}
\hline Part number & B7A-R6C11 & B7A-R6C31 & B7A-R6C16 \\
\hline Output configuration & NPN open collector & NPN open collector & NPN open collector \\
\hline Rated load voltage & 5 to 24 VDC & 5 to 24 VDC & 5 to 24 VDC \\
\hline Rated load current & 500 mA max./point & 500 mA max./point & 500 mA max./point \\
\hline I/O delay & Normal-speed 19.2 ms & Normal-speed 19.2 ms & High-speed 3 ms \\
\hline Internal I/O common & + common & + common & + common \\
\hline Error processing & Hold & Load OFF & Hold
\end{tabular}

\section*{Specifications}
\begin{tabular}{llll}
\hline Part number & B7A-R6C36 & B7A-R6G11 & B7A-R6G31 \\
\hline Output configuration & NPN open collector & PNP open collector & PNP open collector \\
\hline Rated load voltage & 5 to 24 VDC & 5 to 24 VDC & 5 to 24 VDC \\
\hline Rated load current & 500 mA max./point & 500 mA max./point & 500 mA max./point \\
\hline I/O delay & High-speed 3 ms & Normal-speed 19.2 ms & Normal-speed 19.2 ms \\
\hline Internal I/O common & + common & - common & - common \\
\hline Error processing & Load OFF & Hold & Load OFF
\end{tabular}

Specifications
\begin{tabular}{lll}
\hline Part number & B7A-R6G16 & B7A-R6G36 \\
\hline Output configuration & PNP open collector & PNP open collector \\
\hline Rated load voltage & 5 to 24 VDC & 5 to 24 VDC \\
\hline Rated load current & 500 mA max./point & 500 mA max./point \\
\hline I/O delay & High-speed 3 ms & High-speed 3 ms \\
\hline Internal I/O common & - common & - common \\
\hline Error processing & Hold & Load OFF
\end{tabular}


B7A-R6B11 B7A-R6C11
B7A-R6B31 B7A-R6C31
B7A-R6F11 B7A-R6G11
B7A-R6F31 B7A-R6G31
B7A-R6B16 B7A-R6C16
B7A-R6B36 B7A-R6C36
B7A-R6F16 B7A-R6G16
B7A-R6F36 B7A-R6G36

Group 2
32 and 64-point Modules


Output Blocks
B7A-R6B11 B7A-R6C11
B7A-R6B31 B7A-R6C31
B7A-R6F11 B7A-R6G11
B7A-R6F31 B7A-R6G31
B7A-R6B16 B7A-R6C16
B7A-R6B36 B7A-R6C36
B7A-R6F16 B7A-R6G16
B7A-R6F36 B7A-R6G36

\section*{Output Blocks}

P7TF, G7TC


Relay Module


Removeable
Relay Module
G7TC-OC08



G7TC-OC16

\section*{General Information}

Output blocks connect to Omron's high-density output modules or G71 SYSMAC BUS or wired remote output stand-alone slaves. Using the blocks with high-density output modules saves rack space and reduces total system cost. The block and slave combination is a cost-effective distributed control system when dealing with a small number of output points at a given location. Both applications provide fully isolated output points with large switching capacities.

\section*{Features}
- 8 and 16-point blocks available
- Mix and match output modules, AC and DC relay or SSR isolated
-5-A switching capacity
- Modules are easily changed for flexibility and servicing
- Built-in surge suppressers and LED indicators
- Mounts easily on DIN rail

\section*{P7TF, G7TC Output Blocks}

Specifications
\begin{tabular}{llll}
\hline Part number & P7TF-OS16-DC12V & P7TF-OS08-DC12V & P7TF-OS16-DC24V \\
\hline No. of points & 16 & 8 & 16 \\
\hline Switching capacity & User-selected & User-selected & User-selected \\
\hline Current consumption & \(80 \mathrm{~mA}, 12 \mathrm{VDC}\) & \(40 \mathrm{~mA}, 12 \mathrm{VDC}\) & \(80 \mathrm{~mA}, 24 \mathrm{VDC}\) \\
\hline Internal circuit & NPN (pos. com.) & NPN (pos. com.) & NPN (pos. com.) \\
\hline Applicable relay module part & G7T-1112S-DC12V & G7T-1112S-DC12V & G7T-1112S-DC24V \\
numbers & G7T-1012S-DC12V & G7T-1012S-DC12V & G7T-1012S-DC24V \\
& & & G3TA-OA202S-DC24V \\
& & G3TA-ODX02S-DC24V \\
& & G3TA-OD201S-DC24V
\end{tabular}

\section*{Specifications}
\begin{tabular}{llll}
\hline Part number & P7TF-OS16-1-DC24V & P7TF-OS08-DC24V & P7TF-OS08-1-DC24V \\
\hline No. of points & 16 & 8 & 8 \\
\hline Switching capacity & User-selected & User-selected & User-selected \\
\hline Current consumption & \(80 \mathrm{~mA}, 24 \mathrm{VDC}\) & \(40 \mathrm{~mA}, 12 \mathrm{VDC}\) & \(40 \mathrm{~mA}, 12 \mathrm{VDC}\) \\
\hline Internal circuit & PNP (neg. com.) & NPN (pos. com.) & PNP (neg. com.) \\
\hline Applicable relay module part & G7T-1112S-DC24V & G7T-1112S-DC24V & G7T-1112S-DC24V \\
numbers & G7T-1012S-DC24V & G7T-1012S-DC24V & G7T-1012S-DC24V \\
& G3TA-OA202S-DC24V & G3TA-OA202S-DC24V & G3TA-OA202S-DC24V \\
& G3TA-ODX02S-DC24V & G3TA-ODX02S-DC24V & G3TA-ODX02S-DC24V \\
& G3TA-OD201S-DC24V & G3TA-OD201S-DC24V & G3TA-OD201S-DC24V
\end{tabular}

Specifications
\begin{tabular}{llll}
\hline Part number & G7TC-OC16-DC12V & G7TC-OC16-DC24V & G7TC-OC16-1-DC24V \\
\hline No. of points & 16 & 16 & 16 \\
\hline Max. switching current & 5 A & 5 A & 5 A \\
\hline Max. switching voltage & \(250 \mathrm{VAC}, 125 \mathrm{VDC}\) & \(250 \mathrm{VAC}, 125 \mathrm{VDC}\) & 250 VAC, 125 VDC \\
\hline Max. switching power & \(12 \mathrm{~W}, \mathrm{DC} ; 440\) VA, AC & \(12 \mathrm{~W}, \mathrm{DC} ; 440\) VA, AC & 12 W, DC; 440 VA, AC \\
\hline Current consumption & \(752 \mathrm{~mA}, 12 \mathrm{VDC}\) & \(416 \mathrm{~mA}, 24\) VDC & \(416 \mathrm{~mA}, 24 \mathrm{VDC}\) \\
\hline Internal circuit & NPN (pos. com.) & NPN (pos. com.) & PNP (neg. com.) \\
\hline Relay module part number & G7T-1112S-DC12V & G7T-1112S-DC24V & G7T-1112S-DC24V
\end{tabular}

\section*{Specifications}
\begin{tabular}{lll}
\hline Part number & G7TC-OC08-DC24V & G7TC-OC08-1-DC24V \\
\hline No. of points & 8 & 8 \\
\hline Max. switching current & 5 A & 5 A \\
\hline Max. switching voltage & \(250 \mathrm{VAC}, 125 \mathrm{VDC}\) & \(250 \mathrm{VAC}, 125 \mathrm{VDC}\) \\
\hline Max. switching power & \(12 \mathrm{~W}, \mathrm{DC} ; 440 \mathrm{VA}\), AC & \(12 \mathrm{~W}, \mathrm{DC} ; 440 \mathrm{VA}\), AC \\
\hline Current consumption & \(208 \mathrm{~mA}, 24 \mathrm{VDC}\) & \(208 \mathrm{~mA}, 24 \mathrm{VDC}\) \\
\hline Internal circuit & NPN (pos. com.) & PNP (neg. com.) \\
\hline Relay module part number & G7T-1112S-DC24V & G7T-1112S-DC24V
\end{tabular}

G7T and G3TA Relay and SSR Output Modules for G7TC and P7TF Output Blocks
Specifications
\begin{tabular}{lll}
\hline Part number & G7T-1112S-DC12V & G7T-1112S-DC24V \\
\hline Output type & NO Relay & NO Relay \\
\hline Input voltage & 12 VDC & 24 VDC \\
\hline Max. switching current & 5 A & 5 A \\
\hline Max. switching voltage & \(250 \mathrm{VAC}, 125 \mathrm{VDC}\) & \(250 \mathrm{VAC}, 125 \mathrm{VDC}\) \\
\hline Max. switching power & \(12 \mathrm{~W}, \mathrm{DC} ; 440 \mathrm{VA}\), AC & \(12 \mathrm{~W}, \mathrm{DC} ; 440 \mathrm{VA}\), AC \\
\hline ON time & 15 ms & 15 ms \\
\hline OFF time & 15 ms & 15 ms
\end{tabular}

Specifications
\begin{tabular}{lll}
\hline Part number & G7T-1012S-DC12V & G7T-1012S-DC24V \\
\hline Output type & NC Relay & NC Relay \\
\hline Input voltage & 12 VDC & 24 VDC \\
\hline Max. switching current & 5 A & 5 A \\
\hline Max. switching voltage & 250 VAC, 125 VDC & 250 VAC, 125 VDC \\
\hline Max. switching power & 12 W, DC; 440 VA, AC & 12 W, DC; 440 VA, AC \\
\hline ON time & 15 ms & 15 ms \\
\hline OFF time & 15 ms & 15 ms
\end{tabular}

Specifications
\begin{tabular}{lll}
\hline Part number & G3TA-ODX02S-DC24V & G3TA-OD201S-DC24V \\
\hline Output type & Transistor & Transistor \\
\hline Input voltage & 24 VDC & 24 VDC \\
\hline Load current & 2 A & 40 to 200 VDC \\
\hline Load voltage & \(4-60 \mathrm{VDC}\) & 1 A \\
\hline ON time & 0.5 ms & 2 ms \\
\hline OFF time & 2 ms & 2 ms
\end{tabular}

Specifications
\begin{tabular}{ll}
\hline Part number & G3TA-OA202SZ-DC24V \\
\hline Output type & Triac \\
\hline Input voltage & 24 VDC \\
\hline Load voltage & 2 A \\
\hline Load current & 75 to 264 VDC \\
\hline ON time & \(1 / 2\) of power supply cycle +1 ms \\
\hline OFF time & \(1 / 2\) of power supply cycle +1 ms
\end{tabular}

\section*{16-point Modules}


\section*{32-point Modules}


\section*{Output Blocks}

P7TF, G7TC

\section*{Output Wiring Accessories}

Group 2 32-point Modules

Output Module for CPU21/23/31/HS

C200H-OD218


Group2
64-point Modules for CPU 21/23/31/HS

Connecting Cable
G79-O100C-75
G79-O150C-125
G79-O200C-175
G79-O300C-275
G79-O500C-475


\section*{SYSMAC BUS Remote} Master and Slave Modules
C200H-RM201, C200H-RM001-P C200H-RT001-P, C200H-RT002-P C200H-RT201, C200H-RT202


C200H-RM201


C200H-RT201


C200H-RM001


C200H-RT002-P


\section*{SYSMAC BUS Remote Master Modules}

The SYSMAC BUS remote master modules expand the PLC system and provide the communication interface to SYSMAC BUS remote I/O systems. Each remote master module can control several remote expansion racks including C500 remote expansion racks and C 200 H remote expansion racks. In addition, fiber-optic remote master modules can also control SYSMAC BUS fiber-optic remote I/O blocks. Wired remote master modules can also control SYSMAC BUS wired remote I/O blocks, analog I/O blocks, programmable terminals, and third party devices. Multiple SYSMAC BUS masters can be used in a single PLC. The modules are C 200 H I/O modules, and can be installed in the CPU rack or local expansion rack.

\section*{SYSMAC BUS Remote Slave Modules}

These remote slave modules connect C200H remote expansion racks to the SYSMAC BUS remote master module. Both fiber-optic and twisted pair versions are available. The module mounts in the right-most slot of the remote expansion rack. The power supply is also built-in. Multiple racks can be connected to a single master module.

Remote Master Modules
\begin{tabular}{lll}
\hline & Transmission media & Part number \\
\hline & Fiber-optic cable & C200H-RM001-P \\
& Twisted pair conductor & C200H-RM201
\end{tabular}

Remote Slave/Power Supply Modules
\begin{tabular}{lll}
\hline Power Suppy & Transmission media & Part number \\
\hline 120 VAC & Fiber-optic cable & C200H-RT001-P \\
24 VDC & Fiber-optic cable & C200H-RT02-P \\
120 VAC & Twisted pair conductor & C200H-RT201 \\
24 VDC & Twisted pair conductor & C200H-RT202
\end{tabular}


\section*{General Information}

SYSMAC BUS fiber-optic remote I/O blocks can be connected to SYSMAC BUS fiber-optic remote I/O systems to provide a smaller number of I/O points at remote locations. Each SYSMAC BUS fiber-optic remote I/O block provides 8 input or output points.

\section*{Features}
- Uses standard Omron fiber-optic cables and connectors
- Simple cable configuration and termination in the field

SYSMAC BUS Fiber-optic Remote Input Blocks
Specifications
\begin{tabular}{|c|c|c|c|}
\hline Part number & 3G5A2-ID001-(P)E & 3G5A2-IA121-(P)E & 3G5A2-IA221-(P)E \\
\hline Input voltage & No-voltage contacts & 100 VAC +10\%/-15\% 50/60 Hz & 200 VAC +10\%/-15\% 50/60 Hz \\
\hline Input impedance & - & \[
\begin{aligned}
& 9.7 \mathrm{k} \Omega(50 \mathrm{~Hz}) \\
& 8 \mathrm{k} \Omega(60 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 22 \mathrm{k} \Omega(50 \mathrm{~Hz}) \\
& 18 \mathrm{k} \Omega(60 \mathrm{~Hz})
\end{aligned}
\] \\
\hline Input current & 10 mA typical & 10 mA typical (at 100 VAC ) & 10 mA typical (at 100 VAC ) \\
\hline ON delay time & 10 ms max . & 10 ms max . & 10 ms max . \\
\hline OFF delay time & 15 ms max . & 15 ms max . & 15 ms max . \\
\hline Number of circuits & 8 pts. (per common) & 8 pts. (per common) & 8 pts. (per common) \\
\hline ON voltage & - & 60 VAC min. & 120 VAC min. \\
\hline OFF voltage & - & 20 VAC max. & 40 VAC max. \\
\hline Power supply voltage & 120 VAC & 120 VAC & 120 VAC \\
\hline Power consumption & 25 VA max. & 20 VA max. & 20 VA max. \\
\hline
\end{tabular}

Specifications
\begin{tabular}{ll}
\hline Part number & 3G5A2-IM211-(P)E \\
\hline Input voltage & 12 to \(24 \mathrm{VAC} / \mathrm{DC}+10 \% /-15 \%\) \\
\hline Input impedance & \(1.8 \mathrm{k} \Omega\) \\
\hline Input current & 10 mA typical (at 24 VDC) \\
\hline ON delay time & 10 ms max. \\
\hline OFF delay time & 15 ms max. \\
\hline Number of circuits & 8 pts. (per common) \\
\hline ON voltage & \(10.2 \mathrm{VDC} \mathrm{min}\). \\
\hline OFF voltage & \(3.0 \mathrm{VDC} \mathrm{max}\). \\
\hline Power supply voltage & 120 VAC \\
\hline Power consumption & 20 VA max.
\end{tabular}

\section*{SYSMAC BUS Fiber-optic Remote Output Blocks}

\section*{Specifications}
\begin{tabular}{|c|c|c|c|}
\hline Part number & 3G5A2-OC221-(P)E & 3G5A2-OD411-(P)E & 3G5A2-OA222-(P)E \\
\hline Max. switching capacity & Resistive: 2 A, 250 VAC (p.f. =1) \(2 \mathrm{~A}, 24 \mathrm{VDC}\) Inductive: \(0.5 \mathrm{~A}, 250\) VAC (p.f. \(=0.4\) ) & 0.3 A, 12 to 48 VDC +10\%/15\%, & 1 A, 120/240 VAC +10\%/-15\% \\
\hline Min. switching capacity & \(100 \mathrm{~mA}, 5 \mathrm{VDC}\) & - & \(10 \mathrm{~mA}, 100 \mathrm{VAC}\) \\
\hline Leakage current & - & \(100 \mu \mathrm{~A}\) max. & 3 mA max. (at 100 VAC ) \\
\hline Saturation voltage & - & 1.5 V max. & 1.2 V max. \\
\hline ON delay time & 15 ms max. & 0.2 ms max . & 1 ms max . \\
\hline OFF delay time & 15 ms max . & 0.3 ms max . & Max. 1/2 of load frequency \\
\hline Number of circuits & 8 pts. (per common) & 8 pts. (per common) & 8 pts. (per common) \\
\hline Service life & \[
\begin{aligned}
& \text { Electrical: } \\
& 300,000 \text { operations } \\
& \text { (resistive load) } \\
& \text { 100,000 operations } \\
& \text { (inductive load) } \\
& \text { Mechanical: } \\
& 50,000,000 \text { operations }
\end{aligned}
\] & - & - \\
\hline Fuse capacity & - & - & 250 V, 5 A \\
\hline Power supply voltage & 120/240 VAC & 120/240 VAC & 120/240 VAC \\
\hline Power consumption & 20 VA max. & 20 VA max. & 20 VA max. \\
\hline
\end{tabular}


\section*{General Information}

The remote I/O blocks integrate the functions of the remote I/O stand-alone slave and the I/O block. The remote I/O blocks connect to SYSMAC BUS wired remote I/O systems.

\section*{Features}
- Cost-effective distribution to 16 I/O points
- LED indicators for power, transmission, errors, and I/O status
- DIN Rail or control panel mounting


G72C-VID16-DC24V
G72C-VOC16-DC24V
\begin{tabular}{lll} 
Specifications - Input & & \\
\hline Part number & G72C-ID16-DC24V & G72C-VID16-DC24V \\
\hline Points & \(16(8 / c o m)\). & \(16(16 / \mathrm{com})\). \\
\hline Required supply voltage & \(200 \mathrm{~mA}, 24 \mathrm{VDC}\) & \(200 \mathrm{~mA}, 24 \mathrm{VDC}\) \\
\hline Internal circuit & NPN (pos. com.) & NPN (pos. com.) \\
\hline Device & Transistor & Transistor \\
\hline Input current & \(9.7 \mathrm{~mA} / \mathrm{pt}\). & \(9.7 \mathrm{~mA} / \mathrm{pt}\). \\
\hline Input voltage & 24 VDC & 24 VDC \\
\hline ON time & 1.5 ms & 1.5 ms \\
\hline OFF Time & 1.5 ms & 1.5 ms
\end{tabular}

Specifications - Output
\begin{tabular}{lll}
\hline Part number & G72C-OD16-DC24V & G72C-VOD16-DC24V \\
\hline Points & \(16(8 /\) com. \()\) & \(16(16 / \mathrm{com})\). \\
\hline Switching capacity & \(0.3 \mathrm{~A} /\) pt., 24 VDC & \(0.3 \mathrm{~A} / \mathrm{pt}.(2.4 \mathrm{~A}\) total), 24 VDC \\
\hline Required supply voltage & \(200 \mathrm{~mA}, 24 \mathrm{VDC}\) & \(200 \mathrm{~mA}, 24 \mathrm{VDC}\) \\
\hline Internal circuit & NPN (pos. com.) & NPN (neg. com.) \\
\hline Device & Transistor & Transistor
\end{tabular}

All Remote I/O Blocks require a 24 VDC power supply. Omron recommends the S82K family of power supplies.


\section*{General Information}

Remote I/O stand-alone slaves connect to SYSMAC BUS wired remote I/O systems. The remote stand-alone slave connects directly to I/O blocks.

\section*{Features}
- Remote I/O stand-alone slave and block combinations offer flexible system design
- Compatible with C-series and CV-series PLCs
- Can be located closer to field I/O devices, effectively reducing wiring costs, and lowering the cost of the distributed control system
- LED indicators for power, transmission, and errors
- DIN rail or control panel mounting

Specifications - Input
\begin{tabular}{ll}
\hline Part number & G71-IC16-DC24V \\
\hline Points & \(16(8 / \mathrm{com})\). \\
\hline Input voltage & 24 VDC \\
\hline Input current & \(6.7 \mathrm{~mA} / \mathrm{pt}\). \\
\hline ON time & 9 ms, max. \\
\hline OFF time & 14.5 ms, max. \\
\hline ON voltage & \(15 \mathrm{VDC}, \max\). \\
\hline OFF voltage & \(5.6 \mathrm{VDC}, \max\). \\
\hline Internal circuit & \(\mathrm{NPN}(\) pos. com. \()\)
\end{tabular}

Specifications - Output
\begin{tabular}{ll}
\hline Part number & G71-OD16-DC24V \\
\hline Points & \(16(8 /\) com. \()\) \\
\hline Input voltage & 24 VDC \\
\hline Output current & \(30 \mathrm{~mA} / \mathrm{pt}\). \\
\hline Residual voltage & 1.2 V, max. \\
\hline Leakage current & \(100 \mu \mathrm{~A}\), max. \\
\hline Internal circuit & NPN (neg. com.)
\end{tabular}

\section*{Specifications}
\begin{tabular}{lll}
\hline Part number & G71-IC16-DC24V & G71-OD16-DC24V \\
\hline Applicable I/O Blocks & G7TC-IA16, G7TC-ID16, P7TF-IS16 & G7TC-OC16, G7TC-OC08, P7TF-OS16,
\end{tabular}

All Remote I/O blocks require a 24 VDC power supply. Omron recommends the S82K family of power supplies.


C200HS-SNT32


C200H-CE001


\section*{General Information}

The C200HS-SNT32 SYSMAC NET interface module connects the PLC to Omron's fiber-optic token ring LAN. A direct connection to the dual media, automatic loopback fiber-optic network is provided on the front of the module. An external power supply connection provides a pass through communications option in case of PLC or module failure.

\section*{Features}
- Direct fiber-optic dual media connection in a single module
- External indicators for operating mode and diagnostics
- External power supply connection for pass through communications

\section*{Specifications}
\begin{tabular}{ll}
\hline Part number & C200HS-SNT32 \\
\hline Number of modules per PLC & 2 maximum with C200H-CPU31-E or C200HS-CPU31-E \\
\hline Module mounting location & rack, right two slots \\
\hline Module type & Special I/O module \\
\hline \begin{tabular}{l} 
Communication styles \\
Datagram service \\
Data link
\end{tabular} & \begin{tabular}{l} 
SEND, RECEIVE \\
Automatic peer-to-peer
\end{tabular} \\
\hline Datagram size & \(2 k\) bytes maximum per command \\
\hline Data link size & 3,854 words maximum \\
\hline SYSMAC NET connection & Two Omron S3200-COCH62M fiber-optic connectors \\
\hline Fiber-optic cable & Omron HPCF, PCF \\
\hline External rotary switches & Set unit address and node address \\
\hline External indicators & RUN, power supply, error, communication detect, data \\
\hline \begin{tabular}{l} 
RAS (reliability, assurance, \\
safety) functions:
\end{tabular} & \begin{tabular}{l} 
Automatic loopback, node bypass (with external power supply), internode tests, watchdog timer, \\
CRCCITT error detection, error log
\end{tabular} \\
\hline Required connectors & One module: C200H-CE001; two modules: C200H-CE002 \\
\hline Manual & \begin{tabular}{l} 
W114
\end{tabular} \\
\hline & \begin{tabular}{l} 
Refer to this catalog for information about SYSMAC NET fiber-optic token ring LAN and the network \\
functionality, performance, and configuration.
\end{tabular} \\
\hline
\end{tabular}


S3200-NSB11-E

\section*{General Information}

The S3200-NSB11-E network support board is an ISA bus computer interface card for SYSMAC NET. The network support board provides high-speed, high-capacity communications between computers linked to a SYSMAC NET network and the PLCs on that network. The board can be used as a high-speed interface for third party software allowing communications at speeds more than one hundred times faster than average serial communication. Fiber-optic communications allow high noise immunity and reliable transfer of data between PLCs and computers.

\section*{Features}
- High-speed data transfer between PLCs and personal computers
- Redundant fiber-optic communications 2 independent loops
- Automatic loopback

Specifications
\begin{tabular}{ll}
\hline Part number & S3200-NSB11-E \\
\hline Data transmission speed & 2 Mbps \\
\hline Distance between nodes & 1 km max. \\
\hline Number of nodes & 126 per network \\
\hline Message length & 2 K bytes maximum per message \\
\hline Bus type & ISA (IBM PC/AT) \\
\hline Media & 200 micron fiber-optic cable \\
\hline \begin{tabular}{l} 
Number of boards per \\
computer
\end{tabular} & One \\
\hline External connection & External back-up power source
\end{tabular}


Line Server: S3200-LSU03-01E
The S3200-LSU03-01E Line Server is responsible for monitoring the health of the network. The line server provides the token and maintains the network, and coordinates the loopback functionality of the SYSMAC NET network. Additional line servers used as repeaters in situations where distances greater than 1 km are required.


Network Service Unit: S3200-NSUA1-00E
The S3200-NSUA1-00E Network Service Unit is used to connect serial communication devices to the SYSMAC NET network. The unit converts between serial and fiber-optic signals, allowing intelligent devices such as mainframe computers, robots, CNC machines, or bar code systems access to other devices on the network. The unit is available with two RS-232C ports or one RS-232C and one RS-422 port. Synchronous or asynchronous communication may be selected at speeds of 1200 to 9600 baud.


\section*{Local Bridge: S3200-NSUG4-00E}

The S3200-NSUG4-00E Local Bridge is used to inter-connect two individual SYSMAC NET loops. The bridge allows nodes on separate SYSMAC NET loops to communicate. Each loop can support up to twenty bridges.


C200HS-SLK12


C200H-CE001


\section*{General Information}

The C200HS-SLK12 SYSMAC LINK fiber-optic module connects the PLC to the SYSMAC LINK fiber-optic token bus peer-to-peer communications network. An external power supply option provides direct pass-through communications in case of module or PLC failure.

\section*{Features}
- Direct fiber-optic connection
- Back-up power supply connection for passthrough communications
- Token bus with floating master for reliability and network integrity
- External indicators for operating mode and diagnostics

\section*{Specifications}
\begin{tabular}{ll}
\hline Part number & C200HS-SLK12 \\
\hline Number of modules per PLC & 2 maximum with C200H-CPU31-E or C200HS-CPU31-E (including co-axial and fiber-optic modules) \\
\hline Module mounting location & CPU rack, right two slots \\
\hline Module type & Special I/O Module \\
\hline \begin{tabular}{l} 
Communication styles \\
CPU bus link bbits \\
Data read/write \\
Automatic and \\
manual data link
\end{tabular} & \begin{tabular}{l} 
Error, set up, status, and error indication \\
SEND, RECEIVE, DELIVER commands \\
Peer-to-peer
\end{tabular} \\
\hline Data read/write size & 512 bytes maximum per command \\
\hline Data link size & \begin{tabular}{l}
2,966 words per network \\
918 words with a C200H connected
\end{tabular} \\
\hline Data link words per node & 254 CIO and 254 DM words maximum \\
\hline SYSMAC LINK connection & 2 - Omron S3200-COCF2011 Fiber-optic Connectors \\
\hline External rotary switches & Set unit address and node address \\
\hline External indicators & \begin{tabular}{l} 
RUN, power supply, communication error, PLC error, communication detect, polling Module, transfer, \\
receive, test, Data Link
\end{tabular} \\
\hline External connector & RJ11 for C1000H-APS01 Auxiliary Power Supply \\
\hline \begin{tabular}{l} 
RAS (reliability, assurance, \\
safety) functions
\end{tabular} & \begin{tabular}{l} 
Automatic polling Module backup, self diagnostics, watchdog timer, CRCCITT error detection, error \\
log
\end{tabular} \\
\hline Required connectors & One module: C200H-CE001; two modules: C200H-CE002 \\
\hline Manual & W174 \\
\hline & \begin{tabular}{l} 
Refer to this catalog for information about SYSMAC LINK Token Bus functionality, performance, and \\
configuration.
\end{tabular} \\
\hline
\end{tabular}


C200H-APS01

\section*{General Information}

The C200H-APS01 auxilliary power supply provides back-up power to the SYSMAC LINK fiber-optic interface module in case of module or PLC failure. The power supply provides pass-through communications capability allowing the rest of the Network to function normally.

\section*{Features}

Provides an auxilliary power source for two SYSMAC LINK fiber-optic modules
- Provides pass-through communications for added reliability
- Ready-made cables for easy connection to the SYSMAC LINK modules

\section*{Specifications}
\begin{tabular}{ll}
\hline Part number & C200H-APS01 \\
\hline Number of modules supported & Two fiber-optic SYSMAC LINK \\
\hline Input voltage & 100 to 120 or 200 to 240 VAC \\
\hline Operating voltage range & 85 to 132 or 170 to 264 VAC \\
\hline External connections & Back-up AC power terminals, 2 power supplies \\
\hline External indicators & Power supply indicator lit when AC power is supplied \\
\hline Cable & RJ11 from power supply to C200H-SLK11; two included \\
\hline Mounting location & Power supply mounted next to SLK11 module \\
\hline Manual & W212
\end{tabular}


C200HS-SLK22


C200H-CE001


\section*{General Information}

The C200HS-SLK22 SYSMAC LINK module connects the PLC to the SYSMAC LINK token bus peer-to-peer communications network. A pass through coaxial cable connection is provided on the front of the module.

\section*{Features}
- Co-axial cable pass-through connection
- Token Bus with floating master provides network integrity and reliability
- External indicators for operating mode and diagnostics

\section*{Specifications}
\begin{tabular}{ll}
\hline Part number & C200HS-SLK22 \\
\hline Number of modules per PLC & 2 maximum with C200H-CPU31-E or C200HS-CPU31-E (including co-axial and fiber-optic modules) \\
\hline Module mounting location & CPU rack \\
\hline Module type & Special I/O module \\
\hline \begin{tabular}{l} 
Communication styles \\
CPU bus link bits \\
Data read/write \\
Automatic and \\
manual data link
\end{tabular} & \begin{tabular}{l} 
Error, set up, status, and error indication \\
SEND, RECEIVE, DELIVER commands \\
peer-to-peer
\end{tabular} \\
\hline Data read/write size & 512 bytes maximum per command \\
\hline Data link size & \begin{tabular}{l}
2,966 words per network \\
918 words with a C200H connected
\end{tabular} \\
\hline Data link words per node & 254 CIO and 254 DM words maximum \\
\hline SYSMAC LINK connection & BNC coaxial connectors to Omron F connector \\
\hline External rotary switches & Set unit address and node address \\
\hline External indicators & \begin{tabular}{l} 
RUN, power supply, communication error, PLC error, communication detect, polling module, transfer, \\
receive, test, data link
\end{tabular} \\
\hline \begin{tabular}{ll} 
RAS (reliability, assurance \\
safety) functions
\end{tabular} & \begin{tabular}{l} 
Automatic polling module backup, self diagnostics, watchdog timer, CRCCITT error \\
\hline Required connectors
\end{tabular} \\
\hline One module: C200H-CE001; two modules: C200H-CE002 \\
\hline Manual & W174 \\
\hline
\end{tabular}

\section*{General Information}

The 3G8F5-SLK21-E SYSMAC LINK support board is an ISA bus computer interface card for SYSMAC LINK. The board provides high-speed, high-capacity communications between computers linked to a SYSMAC LINK network and the PLCs on that network. The board can be used as a high-speed interface for third party software allowing communications at speeds more than one hundred times faster than average serial communication.

\section*{Features}
- High-speed data transfer between PLCs and personal computers
- Distributed control with data link

3G8F5-SLK21-E

Specifications
\begin{tabular}{ll}
\hline Part number & 3G8F5-SLK21-E \\
\hline Data transmission speed & 2 Mbps \\
\hline Message length & 512 bytes max. \\
\hline Media & Co-axial cable \\
\hline Bus type & ISA (IBM PC/AT) \\
\hline Data link words & 2966 words max., 918 max. with C200H in Data Link \\
\hline Link functions & Data Link read/write service
\end{tabular}


C200H-LK201-V1

\section*{General Information}

Host Link allows any computer to communicate to a single (RS-232C), or multiple (RS-422) Omron PLCs. Multiple system levels can be connected to the same PLC with up to 32 PLCs connected to one computer. Omron's Host Link protocol is well-defined and available for custom software driver development and operator interface connection to Omron PLCs. Most major operator interface companies have Host Link interfaces and drivers available. Host Link systems allow using Omron's Ladder Support Software (LSS) to program and monitor any PLC in the system.
The Host Link protocol is common to all Omron PLCs including the C20, K-type, Block-style H-type, CQM1, C200H, C1000H, C2000H, and CV-series PLCs.

\section*{Features}
- Up to 32 PLCs can be connected to a single host computer
- Twisted pair or fiber-optic transmission media

Specifications
\begin{tabular}{ll}
\hline Number of modules per PLC & 2 max. \\
\hline Module mounting location & CPU rack or expansion rack \\
\hline Module type & Special I/O module \\
\hline Communication ports & \begin{tabular}{l}
\(1 \mathrm{RS}-232 \mathrm{C}, 25\) pin female (C200H-LK201) \\
\(1 \mathrm{RS}-422\) (C200H-LK202) \\
1 fiber port (C200H-LK101-P)
\end{tabular} \\
\hline Communication method & Half or full duplex \\
\hline Band rate & \(300,600,1200,2400,4800,9600,19,200\) or 38,400 bps (switch-selectable) \\
\hline Stop bits & 1 or 2 \\
\hline Parity & Even, odd \\
\hline Data bits & ASCII (7 bits) or JIS (8 bits) \\
\hline CT's signal control & X on X off control \\
\hline Retry on interrupted & Transmission delay time setting 0 to 510 ms \\
transmission & \\
\hline Front panel indicators & Run, error, send, receive \\
\hline Manual & W143
\end{tabular}


C200H-LK401

\section*{General Information}

PC Link is a peer-to-peer communication system allowing high-speed transfer of data between PLCs over long distances. Both small and large rack PLCs can be connected to the same system. Standard link adapters are available for fiber-optic media and longer transmission distances. No special programming is required to transfer data and multi-level systems can be connected to a single PLC.

\section*{Features}
- High-speed data transfer between up to 32 PLCs
- No special programming required
- Muti-level capability

Specifications
\begin{tabular}{llllll}
\hline Part number & C200H-LK401 & & & \\
\hline Communication method & Peer-to-peer & & & \\
\hline Network topology & Multi-drop using Omron link adapters & & \\
\hline Number of nodes & PLC of polling link & Single-level & Multilevel & \\
\hline & C200H, C1000H, C2000H & 32 & 16 & \\
\hline & C500 & 8 & 8 & \\
\hline Transimission media & Twisted pair; fiber-optic when using Omron link adapters & & \\
\hline Distance & \(500 \mathrm{~m}(1640\) ft) total cable length (without fiber-optic links), including branch lines \\
& Distances can be extended using link adapters & & \\
\hline Transmission speed & 128 kbps & & & & \\
\hline Protocol & Omron PC Link, RS-485 & & & & \\
\hline PLC interfaces & C200H, C500, C1000H, C2000H & 2 links & \(3-4\) links & \(5-8\) links & \(9-16\) links \\
\hline Data transfer capacity & PLC of polling link & 512 & 256 & 128 & 64 \\
(bits/node) & C200H, C1000H, C2000H links & 512 & 32 \\
\hline & C500 & 256 & 128 & 64 & - \\
\hline Diagnostic functions & CPU watchdog timer, CRC transmission error check & & - \\
\hline Manual & W135 & & & & \\
\hline
\end{tabular}


3G2A9-AL001
The 3G2A9-AL001 Link Adapter is used to branch cable for RS-422 cable drops to linkable modules. This adapter can be used for SYSMAC WAY Host Link or any other linkable modules.


\section*{3G2A9-AL002-E/AL002-PE}

The 3G2A9-AL002 Link Adapters are used to branch for drops to linkable PLC Modules using fiber-optic cable.


\section*{3G2A9-AL004-E/AL004-PE}

The 3G2A9-AL004 Link Adapters are used to convert RS-232C or RS-422 to fiber-optic cable. This adapter can be used to convert an RS-232C port from a computer to RS-422 or fiber-optic cable.


\section*{3G2A9-AL005-E/AL005-PE}

The 3G2A9-AL005 Link Adapters are used to convert between plastic fiber-optic Cable (APF or PCF) and glass crystal fiber-optic cable (AGF).

\section*{Link Adapters}


3G2A9-AL006-E/AL006-PE
The 3G2A9-AL006 Link Adapters are used to convert between plastic fiber-optic Cable (APF or PCF) and glass crystal fiber-optic cable. The adapter also has an extra branch for a glass crystal fiber-optic cable drop.


B500-AL007-P
The B500-AL007-P Link Adapter is used to convert between fiber-optic cable and RS-485. This adapter is used for SYSMAC BUS wired remote I/O systems only.

\section*{9 System Configuration}
Overview ..... 106
CPU Rack ..... 107
CPU Rack, Local Expansion Racks ..... 108
Configuring Remote I/O Systems ..... 109
Configuring SYSMAC BUS Fiber-optic Remote I/O Systems ..... 110
Configuring SYSMAC BUS Wired Remote I/O Systems ..... 112
Configuration Summary Tables ..... 114
Current Consumption ..... 116
System Configuration Worksheets ..... 124
Dimensions ..... 129

\section*{General Information}

The System Configuration section describes the various PLC system configurations possible and assists in selecting the necessary components to complete a required parts list. Specific details about configuring PLC systems are described throughout the section. System Configuration Worksheets have also been provided to simplify the configuration and parts selection. Some basic control system application information is required in order to select the proper components.
- Number of I/O
- Type of I/O: discrete, analog, special I/O, interrupt and communications
- Distribution of I/O: Local or remote I/O requirements, location of I/O and number of I/O required at each location
- Communication system requirements
- Man-machine interface requirements

There are several system configurations that are possible with the C 200 H system. The following paragraphs briefly describe the types of possible C 200 H system configurations.
Additional configuration and technical information can be found in the detailed product manuals. Refer to Section 6 of this catalog for a list of publications.

\section*{Local I/O Systems}

Local I/O System configurations are designed to accommodate large amounts of I/O that are located within 12 meters ( 39 ft .) of the CPU Rack. The CPU rack can be expanded with two additional racks to accommodate large amounts of I/O. Several different configurations are possible depending on the distance and I/O requirements of the system.
- CPU Rack only
- CPU Rack and Local Expansion Racks

\section*{Remote I/O Systems}

Remote I/O systems are used in applications requiring I/O to be located at long distances from the CPU. In a C200H system, remote I/O are counted separately from local I/O, allowing expansion up to 512 remote I/O points. Multiple remote I/O systems can be added to a single PLC for additional configuration flexibility. These systems are available in fiber-optic and wired (twisted pair) versions. This section includes configuration information for the following:
- SYSMAC BUS Fiber-optic Remote I/O System
- SYSMAC BUS Wired Remote I/O System

\section*{General Information}

The following configurations describe the guidelines for building a system from the components listed in the Standard Parts section.

\section*{Features}
-3-, 5-, 8-, or 10-slot CPU racks
- CPUs with 120/240 VAC or 24 VDC power supplies
- RAM, EPROM, or EEPROM memory available
- 3-, 5-, 8-, or 10-slot expansion I/O racks
- Up to two local expansion I/O racks can be added with I/O connecting cables for a maximum of 880 I/O

\section*{CPU Rack}


CPU/Power Supply
C200H-CPU01-E
C200H-CPU03-E
C200H-CPU21-E
C200H-CPU23-E
C200H-CPU31-E
C200HS-CPU01-E
C200HS-CPU03-E
C200HS-CPU21-E
C200HS-CPU23-E
C200HS-CPU31-E
C200HS-CPU33-E
CPU Backplane
\(3,5,8\) or 10 slots


C200H Special I/O Modules

\section*{General Information}

Use this configuration when:
- Connecting up to 2 local expansion racks.
- Up to 880 local remote I/O are allowed.


\section*{Configuring C200H Remote I/O Systems}

There are a number of guidelines to be followed when configuring remote I/O for a C 200 H PLC system. Because Omron offers a true family of PLCs, C 200 H can use expansion I/O racks and I/O modules from C500 large-rack style PLC's as well as C 200 H style racks and I/O modules. Two SYSMAC BUS fiber-optic or wired remote I/O systems can be added to a C 200 H PLC. The following tables provide guidelines and limits that must be considered when adding remote I/O systems to a PLC.

\section*{SYSMAC BUS Remote I/O System}

Multiple SYSMAC BUS remote I/O systems can be added to a C 200 H PLC. These general guidelines must be followed:
\begin{tabular}{|c|c|}
\hline Max. masters per PLC & 2 fiber or wired \\
\hline Max. remote expansion racks per master & 5 (5 remote racks per PLC max., regardless of number of masters) \\
\hline Max. I/O points (words) per master & 512 (32 words) \\
\hline Max. points per PLC & 512 \\
\hline Distances & \begin{tabular}{l}
Wire: 200 m ( 656 ft .) total distance APF Fiber: 20 m ( 65 ft. ) between nodes PCF Fiber 200 m ( 656 ft .) between nodes \\
HPCF Fiber 100 m ( 328 ft .) between nodes
\end{tabular} \\
\hline
\end{tabular}

\section*{Configurations}

The following pages provide additional configuration information for:
- SYSMAC BUS fiber-optic remote I/O systems
- SYSMAC BUS wired remote I/O systems

For additional information regarding configuring, extended distances, addresses and general information, refer to the following manual:
SYSMAC BUS Remote I/O Manual W120

\section*{General Information}

The following information can be used to configure SYSMAC BUS fiber-optic remote I/O systems connected to a PLC. Multiple remote I/O systems may be added to a single PLC. A fiber-optic remote I/O system consists of a remote master module, remote expansion racks, and Remote I/O devices, and fiber-optic cable and connectors.

\section*{Remote Master Module}

Each remote I/O subsystem has a master module that is mounted in the


\section*{C200H Remote Expansion Racks}

Up to 5 C 200 H Remote Expansion Racks can be connected to a single Remote Master Module.


\section*{Remote I/O Devices}

Other Remote I/O Devices can be connected to SYSMAC BUS Fiber-optic Remote I/O Systems. These include the following:
- SYSMAC BUS Fiber-optic Remote I/O Blocks

When Configuring a SYSMAC BUS fiber-optic remote I/O system:
- A total of 32 words ( 512 bits) can be connected to a single Remote master.
- The following table indicates the number of I/O allowed for each Remote expansion rack and I/O device.

No. of words
No. of I/O points
\begin{tabular}{ll}
\hline \begin{tabular}{ll} 
C500 Remote Expansion \\
Racks
\end{tabular} & Depends on I/O Modules mounted* \\
\hline \begin{tabular}{ll} 
C200H Remote \\
Expansion Racks
\end{tabular} & Depends on I/O Modules mounted* \\
\hline Fiber-optic Remote I/O & \(1(0.5)^{\star}\) \\
\begin{tabular}{l} 
Blocks
\end{tabular} & 8
\end{tabular}
*Refer to the SYSMAC BUS Remote I/O System Manual (Cat. No. W120) for additional configuration information.



\section*{Remote I/O Devices}

Other remote I/O devices can be connected to SYSMAC BUS wired remote I/O systems. These include the following:
- G7 Remote I/O Blocks and stand-alone slaves
- K3FS Remote Analog I/O Blocks
- NT20M, NT600M, NT2000M Programmable Terminals
- Third Party Devices: air valves, AC variable frequency drives, etc.

When configuring a SYSMAC BUS wired remote I/O network:
- A total of 32 words ( 512 bits) can be connected to a single Remote master.
- The following table indicates the number of I/O required for each remote rack and remote I/O device.
\[
\text { No. of words } \quad \text { No. of l/O points }
\]
\begin{tabular}{lll}
\hline \begin{tabular}{lll}
\hline C500H Remote \\
Expansion Rack
\end{tabular} & Depends on I/O Modules mounted* \\
\hline \begin{tabular}{lll} 
C200H Remote \\
Expansion Rack
\end{tabular} & Depends on I/O Modules mounted* \\
\hline G7 Remote I/O Block & 1 & 16 \\
\hline \begin{tabular}{lll} 
NT20M Programmable & 4 & 64 \\
Terminal
\end{tabular} & 64 \\
\hline \begin{tabular}{lll} 
NT600M Programmable & 4 & 16 \\
Terminal
\end{tabular} & \\
\hline \begin{tabular}{ll} 
K3FS Remote Analog I/O \\
Block
\end{tabular} & 1 & \\
\hline \begin{tabular}{l} 
Other devices \\
*Refer to the SYSMAC BUS Remote I/O System Manual (Cat. No. W120) \\
for additional configuration information.
\end{tabular} \\
\hline
\end{tabular}

\section*{Rack Configurations}

The following table summarizes the components required to form each type of rack in the different configurations. The number of each component required for the System is given in parentheses. The following combinations form the basic racks to which the other modules indicated in the first part of this section can be added.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Configuration} & CPU Rack & \multirow[t]{2}{*}{Connecting cable} & Local Expansion Rack \\
\hline & CPU Backplane & & Expansion Backplane \\
\hline CPU Rack only & \(\mathrm{C} 200 \mathrm{H}-\mathrm{BC} 031-\mathrm{V} 2\)
\(\mathrm{C} 200 \mathrm{H}-\mathrm{BC051-V} 2\)
\(\mathrm{C} 200 \mathrm{H}-\mathrm{BC} 081-\mathrm{V} 2\)
\(\mathrm{C} 200 \mathrm{H}-\mathrm{BC} 101-\mathrm{V} 2\)
(one) & Not needed & Not needed \\
\hline \begin{tabular}{l}
CPU Rack with \\
Single Local \\
Expansion Rack
\end{tabular} & \[
\begin{aligned}
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 031-\mathrm{V} 2 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 051-\mathrm{V} 2 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 081-\mathrm{V} 2 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 101-\mathrm{V} 2 \\
& \text { (one) }
\end{aligned}
\] & \(\mathrm{C} 200 \mathrm{H}-\mathrm{CN}\) & \[
\begin{aligned}
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 031-\mathrm{V} 2 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 051-\mathrm{V} 2 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 081-\mathrm{V} 2 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 101-\mathrm{V} 2 \\
& \text { (one) }
\end{aligned}
\] \\
\hline CPU Rack and Local Expansion Racks & \[
\begin{aligned}
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 031-\mathrm{V} 2 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 051-\mathrm{V} 2 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 081-\mathrm{V} 2 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 101-\mathrm{V} 2 \\
& \text { (one) }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{C200H}-\mathrm{CN} \quad 1 \\
& \text { (one for each Local Expansion Rack) }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 031-\mathrm{V} 2 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 051-\mathrm{V} 2 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 081-\mathrm{V} 2 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{BC} 101-\mathrm{V} 2 \\
& \text { (one for each Local Expansion Rack) }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Mounting Locations}

The following table below summarizes the Modules that can be mounted to CPU, CPU Expansion, Local Expansion, and Remote Expansion Racks. For detailed information about the Modules listed below, refer to the manual for the individual Module.
\begin{tabular}{|c|c|c|c|c|}
\hline Module & CPU Rack & Local
Expansion
Racks & SYSMAC BUS Remote Expansion Racks & Remarks \\
\hline C200H-ASC02 ASCII/BASIC & Yes & Yes & Yes & \multirow[t]{10}{*}{Up to 10 Special I/O modules can be used with any C200H CPU. Refer to the following pages to determine rack current capacities.} \\
\hline \[
\begin{aligned}
& \hline \mathrm{C} 200 \mathrm{H}-\mathrm{AD} 001 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{AD} 002 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{DA} 001 \\
& \text { Analog I/O Modules }
\end{aligned}
\] & Yes & Yes & Yes & \\
\hline \[
\begin{array}{|l}
\hline \text { C200H-CT001 } \\
\text { C200H-CT002 } \\
\text { High-speed Counters } \\
\hline
\end{array}
\] & Yes & Yes & Yes & \\
\hline \[
\begin{aligned}
& \mathrm{C} 200 \mathrm{H}-\mathrm{NC} 112 \\
& \mathrm{C} 200 \mathrm{H}-\mathrm{NC} 211 \\
& \text { Position Control } \\
& \text { Modules }
\end{aligned}
\] & Yes & Yes & Yes & \\
\hline \[
\begin{aligned}
& \text { C200H-TSO01 } \\
& \text { C200H-TS101 } \\
& \text { Temperature Sensor } \\
& \text { Module }
\end{aligned}
\] & Yes & Yes & Yes & \\
\hline \[
\begin{aligned}
& \text { C200H-TC - - - } \\
& \text { C200H-TV- } \\
& \text { Temperature Controller } \\
& \text { Modules }
\end{aligned}
\] & Yes & Yes & Yes & \\
\hline C200H-PID PID Module & Yes & Yes & Yes & \\
\hline C200H-CP114 Cam Positioner & Yes & Yes & Yes & \\
\hline \[
\begin{array}{|l}
\hline \text { C200H-ID501-V1 } \\
\text { C200H-ID521 } \\
\text { RFID Modules }
\end{array}
\] & Yes & Yes & Yes & \\
\hline \begin{tabular}{l}
C200H-FZ001 \\
Fuzzy Interference
\end{tabular} & Yes & Yes & No & \\
\hline \[
\begin{aligned}
& \text { C200HS-INT01 } \\
& \text { (C200HS only) }
\end{aligned}
\] & Yes & No & No & Requires HS CPU and -V2 Backplane. 1 module max. \\
\hline \begin{tabular}{l}
C200H-OV001 \\
Voice output
\end{tabular} & Yes & Yes & Yes & \multirow[t]{3}{*}{Up to 10 Special I/O modules can be used with any C200H CPU. Refer to the following pages to determine rack current capacities.} \\
\hline \begin{tabular}{l}
C200H-TM001 \\
Analog Timer Module
\end{tabular} & Yes & Yes & Yes & \\
\hline Special High Density I/O Modules & Yes & Yes & Yes & \\
\hline Group 2 High-Density I/O Modules & Yes & Yes & No & CPU 21/23/31/HS CPUs only up to five 64 pt. or ten 32 pt . modules. \\
\hline \[
\begin{array}{|l|}
\hline \text { C200H-B7Al1 } \\
\text { C200H-B7A01 } \\
\text { B7A Interface } \\
\hline
\end{array}
\] & Yes & Yes & Yes & \\
\hline Discrete I/O Modules & Yes & Yes & Yes & \\
\hline \begin{tabular}{l}
SYSMAC NET \\
Modules (CPU 31 only)
\end{tabular} & Yes & No & No & \multirow[t]{2}{*}{C200H-CPU31-E only (up to 2 modules total).} \\
\hline SYSMAC LINK Modules (CPU 31 only) & Yes & No & No & \\
\hline SYSMAC BUS Remote Master Modules & Yes & Yes & No & \\
\hline SYSMAC BUS I/O Link Modules & Yes & Yes & No & \\
\hline \[
\begin{aligned}
& \text { C200H-LK201-V1 } \\
& \text { C200H-LK202-V1 } \\
& \text { Host Link Modules }
\end{aligned}
\] & Yes & Yes & No & \\
\hline
\end{tabular}

\section*{Rack Current Capacity}

The total current capacity for each rack is indicated in the following table, according to CPU, Power Supply, Remote Slave Module model. The internal circuitry of the built-in power supply is divided into three separate circuits. Each of these circuits must be calculated separately first, then collectively. Be sure each of the circuits is within the specification.

*In the C200H-CPU21-E and C200H-CPU31-E, and C200HS-CPU01-E the available total (column D) depends upon the current of column A (5 V), as shown.

\section*{Column A (5 V)}

The maximum column A ( 5 V ) current consumption of each module in the PLC system is shown in the tables that follow. Be sure the total column A current consumption of all the I/O modules planned for any one rack does not exceed the column A current capacity of that rack.

\section*{Column B ( 26 V)}

The maximum column \(B(26 \mathrm{~V})\) current consumption of each module in the PLC system is shown in the tables that follow. Be sure the total column B current consumption of all the I/O modules planned for any one rack does not exceed the column B current capacity of that rack.

\section*{Column C ( 24 V )}

The maximum column C ( 24 V ) current consumption of each Module in the PLC system is shown in the tables that follow. Be sure the total column C current consumption of all the I/O Modules planned for any one Rack does not exceed the column C current capacity of that Rack.

\section*{Column D (Total Capacity)}

Use the following formula to confirm that the total does not exceed column \(D\) (the total capacity for the power supply):
\(A \times 5+B \times 26+C \times 24 \leq D\)
Where,
A = the total current consumption from the column A tables above.
\(B=\) the total current consumption from the column \(B\) tables above.
\(\mathrm{C}=\) the total current consumption from the column C tables above.
\(D=\) the column \(D\) data from the tables above.

\section*{Modules}

The maximum current consumption of each module is shown in the following tables.

\section*{Special I/O Modules}
\begin{tabular}{|c|c|c|}
\hline Description & Part number & Consumption \\
\hline \multicolumn{3}{|l|}{ASCII/BASIC Coprocessor} \\
\hline PLC Module (Rack-mount); RAM, EEPROM & C200H-ASC02 & 0.20 A \\
\hline \multicolumn{3}{|l|}{Analog Input Modules} \\
\hline 4 pts.; 1 to \(5 \mathrm{~V}, 0\) to \(10 \mathrm{~V}, 4\) to 20 mA & C200H-AD001 & 0.55 A \\
\hline 8 pts.; 1 to \(5 \mathrm{~V}, 0\) to \(10 \mathrm{~V}, \pm 10 \mathrm{~V}, 4\) to 20 mA & C200H-AD002 & 0.45 A \\
\hline \multicolumn{3}{|l|}{Analog Output Module} \\
\hline 2 pts.; 1 to \(5 \mathrm{~V}, 0\) to \(10 \mathrm{~V}, 4\) to 20 mA & C200H-DA001 & 0.65 A \\
\hline \multicolumn{3}{|l|}{High-speed Counters} \\
\hline & C200H-CT001-V1 & 0.30 A \\
\hline & C200H-CT002 & 0.30 A \\
\hline \multicolumn{3}{|l|}{1-axis Position Control} \\
\hline & C200H-NC112 & 0.15 A \\
\hline \multicolumn{3}{|l|}{2-axis Position Control} \\
\hline & C200H-NC211 & 0.50A \\
\hline \multicolumn{3}{|l|}{Temperature Sensor Modules} \\
\hline & C200H-TS001 & 0.45 A \\
\hline & C200H-TS101 & 0.45 A \\
\hline \multicolumn{3}{|l|}{Temperature Controller Modules} \\
\hline Thermocouple Input & C200H-TC00_ & 0.33 A \\
\hline RTD Input & C200H-TC10_ & 0.33 A \\
\hline \multicolumn{3}{|l|}{Heat/Cool Temperature Controller Modules} \\
\hline Thermocouple Input & C200H-TV00_ & 0.33 A \\
\hline RTD Input & C200H-TV10_ & 0.33 A \\
\hline \multicolumn{3}{|l|}{PID Modules} \\
\hline & C200H-PIDO_ & 0.33 A \\
\hline \multicolumn{3}{|l|}{Cam Positioner} \\
\hline & C200H-CP114 & 0.30 A \\
\hline \multicolumn{3}{|l|}{Radio Frequency Identification Systems (V600 Short-range RF ID Systems)} \\
\hline PLC Module (Rack-mount) & C200H-IDS01-V1 & 0.25A \\
\hline \multicolumn{3}{|l|}{Radio Frequency Identification Systems (V620 Long-range RF ID Systems)} \\
\hline PLC Module (Rack-mount) & C200H-IDS21 & 0.25A \\
\hline \multicolumn{3}{|l|}{Fuzzy Coprocessor} \\
\hline & C200H-FZ001 & 0.30 A \\
\hline \multicolumn{3}{|l|}{Interrupt Input Module (C200HS only)} \\
\hline & C200HS-INT01 & 0.20 A \\
\hline \multicolumn{3}{|l|}{Voice Output Module} \\
\hline & C200H-OV001 & 0.30 A \\
\hline \multicolumn{3}{|l|}{Analog Timer Input Module} \\
\hline & C200H-TM001 & 0.60 A \\
\hline \multicolumn{3}{|l|}{High-density Input} \\
\hline & C200H-ID215 & 0.13 A \\
\hline & C200H-ID501 & 0.13 A \\
\hline \multicolumn{3}{|l|}{High-density Mixed} \\
\hline & C200H-MD115 & 0.18 A \\
\hline & C200H-MD215 & 0.18 A \\
\hline & C200H-MD501 & 0.18 A \\
\hline \multicolumn{3}{|l|}{High-density Output} \\
\hline & C200H-OD215 & 0.22 A \\
\hline
\end{tabular}
\begin{tabular}{lll}
\multicolumn{1}{c}{ Description } & Part number & Consumption \\
\hline High-density Output & C200H-OD501 & 0.22 A \\
\hline B7A Interface Modules & C200H-B7Al1 & 0.10 A \\
\cline { 2 - 3 } & C200H-B7AO1 & 0.10 A
\end{tabular}

\section*{Discrete Input Modules}
\begin{tabular}{|c|c|c|c|}
\hline Voltage & Points (/common) & Part number & Consumption \\
\hline \multicolumn{4}{|l|}{No Voltage Contact Input} \\
\hline No voltage contact/NPN output type & 8 (8/common) & C200H-ID001 & 0.01 A \\
\hline No voltage contact/PNP output type & 8 (8/common) & C200H-ID002 & 0.01 A \\
\hline \multicolumn{4}{|l|}{DC Inputs} \\
\hline 12 to 24 VDC & 8 (8/common) & C200H-ID211 & 0.01 A \\
\hline 24 VDC & 16 (16/common) & C200H-ID212 & 0.01 A \\
\hline 24 VDC & 32 (32/common) & C200H-ID216* & 0.1 A \\
\hline 24 VDC & 64 (32/common) & C200H-ID217* & 0.12 A \\
\hline \multicolumn{4}{|l|}{AC Inputs} \\
\hline 100 to 120 VAC & 8 (8/common) & C200H-IA121 & 0.01 A \\
\hline 100 to 120 VAC & 16 (16/common) & C200H-IA122 & 0.01 A \\
\hline 200 to 240 VAC & 8 (8/common) & C200H-IA221 & 0.01 A \\
\hline 200 to 240 VAC & 16 (16/common) & C200H-IA222 & 0.01 A \\
\hline \multicolumn{4}{|l|}{AC/DC Inputs} \\
\hline 12 to \(24 \mathrm{VAC/VDC}\) & 8 (8/common) & C200H-IM211 & 0.01 A \\
\hline 24 VAC/VDC & 16 (16/common) & C200H-IM212 & 0.01 A \\
\hline \multicolumn{4}{|l|}{*CPU21, CPU23, CPU31 and HS only (Group 2)} \\
\hline
\end{tabular}

\section*{Discrete Output Modules}
\begin{tabular}{|c|c|c|c|}
\hline Current/voltage & Points (/common) & Part number & Consumption \\
\hline \multicolumn{4}{|l|}{Transistor Outputs} \\
\hline 0.3 A, 24 VDC & 12 (12/common) & C200H-OD211 & 0.16 A \\
\hline 0.3 A, 24 VDC & 16 (16/common) & C200H-OD212 & 0.18 A \\
\hline 2.1 A, 24 VDC & 8 (8/common) & C200H-OD213 & 0.14 A \\
\hline 0.8 A, 24 VDC & 8 (8/common) & C200H-OD214 & 0.14 A \\
\hline 0.3 A, 5 to 24 VDC & 8 (8/common) & C200H-OD216 & 0.01 A \\
\hline 0.3 A, 12 to 24 VDC & 12 (12/common) & C200H-OD217 & 0.01 A \\
\hline 4.5 to 26.4 VDC & 32 (32/common) & C200H-OD218* & 0.18 A \\
\hline 4.5 to 26.4 VDC & 64 (32/common) & C200H-OD219* & 0.27 A \\
\hline 1 A, 12 to 24 VDC & 8 (8/common) & C200H-OD411 & 0.14 A \\
\hline \multicolumn{4}{|l|}{*CPU21, CPU23, CPU31 and HS only (Group 2)} \\
\hline \multicolumn{4}{|l|}{Triac Outputs} \\
\hline 120 VAC & - & C200H-OA121-E & 0.14 A \\
\hline 250 VAC & - & C200H-OA221 & 0.2A \\
\hline 250 VAC & - & C200H-OA222 & 0.14 A \\
\hline \multicolumn{4}{|l|}{Relay Outputs} \\
\hline 24 VDC/250 VAC & 5 (independant commons) & C200H-OC221 & 0.01 A \\
\hline 24 VDC/250 VAC & 8 (independant commons) & C200H-OC222 & 0.01 A \\
\hline 24 VDC/250 VAC & 8 (8/common) & C200H-OC223 & 0.01 A \\
\hline 24 VDC/250 VAC & 12 (12/common) & C200H-OC224 & 0.01 A \\
\hline 24 VDC/250 VAC & 16 (16/common) & C200H-OC225 & 0.05 A \\
\hline
\end{tabular}

\section*{Communication Modules}
\begin{tabular}{lll}
\multicolumn{1}{c}{ Module } & \multicolumn{1}{c}{ Part number } & \multicolumn{1}{c}{ Consumption } \\
\hline SYSMAC NET & C200HS-SNT32 & 1 A \\
\hline SYSMAC LINK & \begin{tabular}{l} 
C200HS-SLK12, \\
C200HS-SLK22
\end{tabular} & 0.8 A each \\
\hline \begin{tabular}{l} 
SYSMAC WAY Host \\
Link Module
\end{tabular} & \begin{tabular}{l} 
C200H-LK101-P, \\
C200H-LK201, \\
C200H-LK202
\end{tabular} & 0.25 A each \\
\begin{tabular}{l} 
SYSMAC BUS \\
Fiber-optic Master
\end{tabular} & C200H-RM001-PV1 & 0.2 A \\
\hline \begin{tabular}{l} 
SYSMAC BUS Wired \\
Master
\end{tabular} & C200H-RM201 & 0.25 A \\
\hline \begin{tabular}{l} 
SYSMAC BUS \\
Fiber-optic Slave
\end{tabular} & C200H-RT002-P & 02.7 A \\
\hline \begin{tabular}{l} 
SYSMAC BUS Wired \\
Slave
\end{tabular} & C200H-RT201 & 0.1 A \\
\hline \begin{tabular}{lll} 
SYSMAC BUS Wired \\
Slave
\end{tabular} & C200H-RT202 & 0.08 A \\
\hline PC Link & C200H-LK401 & 0.35 A
\end{tabular}

\section*{Column B (26 V)}

The maximum column \(B(26 \mathrm{~V})\) current consumption of each module in the PLC system is shown in the table that follows. Be sure the total column B current consumption of all the I/O modules planned for any one rack does not exceed the column B current capacity of the rack.
\begin{tabular}{|c|c|c|}
\hline Module & Part number & Consumption \\
\hline \multicolumn{3}{|l|}{Discrete Output Modules} \\
\hline \multirow[t]{7}{*}{Relay Output (Current draw with eight bits on simultaneously)} & C200H-OC221 & 0.075 A \\
\hline & C200H-OC222 & 0.075 A \\
\hline & C200H-OC223 & 0.075 A \\
\hline & C200H-OC224 & 0.075 A \\
\hline & C200H-OC225 & 0.075 A \\
\hline & C200H-OC216 & 0.075 A \\
\hline & C200H-OC217 & 0.075 A \\
\hline \multicolumn{3}{|l|}{Special I/O Modules} \\
\hline RF ID & C200H-IDS01-V1 & 0.12 A \\
\hline & C200H-IDS21 & 0.12 A \\
\hline
\end{tabular}

\section*{System Configuration}

\section*{Column C (24 V)}

The maximum column \(\mathrm{C}(24 \mathrm{~V})\) current consumption of each module in the PLC system is shown in the table that follows. Be sure the total column C current consumption of all the I/O Modules planned for any one Rack does not exceed the column C current capacity of the Rack.
\begin{tabular}{lll}
\multicolumn{1}{c}{ Module } & \multicolumn{1}{c}{ Part number } & \multicolumn{1}{c}{ Consumption } \\
\hline \begin{tabular}{l} 
Discrete Input Modules \\
\begin{tabular}{l} 
No Voltage Contact \\
Input
\end{tabular} \\
\cline { 2 - 3 }
\end{tabular} & C200H-ID001 & 0.06 A \\
\hline \begin{tabular}{l} 
Other devices \\
Connected to the \\
external 24 VDC power \\
supply
\end{tabular} & 0.06 A \\
\hline
\end{tabular}

Column D (Total Capacity)
Use the following formula to confirm that the total does not exceed column \(D\) (the total capacity for the power supply):
\(A \times 5+B \times 26+C \times 24 \leq D\)
Where,
A = the total current consumption from the column A tables above.
\(B=\) the total current consumption from the column \(B\) tables above.
\(\mathrm{C}=\) the total current consumption from the column C tables above.
\(D=\) the column \(D\) data from the tables above.

\section*{Input Wiring Accessories}

B7A Output Connectors/B7A Input Blocks
\begin{tabular}{|c|c|}
\hline Module part number & Consumption \\
\hline B7A-R6A13 & 0.04 A max. \\
\hline B7A-R6A33 & 0.04 A max. \\
\hline B7A-R6A18 & 0.04 A max. \\
\hline B7A-R6A38 & 0.04 A max. \\
\hline B7A-R3A13 & 0.06 A max. \\
\hline B7A-R3A33 & 0.06 A max. \\
\hline B7A-R3A18 & 0.06 A max. \\
\hline B7A-R3A38 & 0.06 A max. \\
\hline B7A-T6A1 & 0.12 A max. when all Input points are turned on. Excludes exterior sensor unit. \\
\hline B7A-T6B1 & 0.12 A max. when all Input points are turned on. Excludes exterior sensor unit. \\
\hline B7A-T6C1 & 0.12 A max. when all Input points are turned on. Excludes exterior sensor unit. \\
\hline B7A-T6A6 & 0.12 A max. when all Input points are turned on. Excludes exterior sensor unit. \\
\hline B7A-T6B6 & 0.12 A max. when all Input points are turned on. Excludes exterior sensor unit. \\
\hline B7A-T6C6 & 0.12 A max. when all Input points are turned on. Excludes exterior sensor unit. \\
\hline
\end{tabular}

P7TF, G7TC Input Blocks
\begin{tabular}{ll}
\multicolumn{1}{c}{ Module part number } & \multicolumn{1}{c}{ Consumption } \\
\hline G7T-1122S-DC12V & 0.042 A \\
\hline G7T-1122S-DC24V & 0.021 A \\
\hline G7T-1122S-AC110/120V & \(0.0064-0.007 \mathrm{~A}\) \\
\hline G7T-1122S-AC220/240V & \(0.0032-0.0035 \mathrm{~A}\) \\
\hline G3TA-IAZR02S-AC100-240V & 0.005 A \\
\hline G3TA-IDZR02S-DC5-24V & 0.005 A
\end{tabular}

The power supply requirements are calculated as follows:
\(80 \mathrm{~mA}+\mathrm{M}+\mathrm{D}+\mathrm{I}=\mathrm{C}\)
80 mA : current required by Input Block
M: Total current of Input Modules
D: input device current (sensor, etc.)
I: interface device (G71, PLC Input Module, etc.) current
C: required current capacity of power supply

\section*{Output Wiring Accessories}

\section*{B7A Input Connectors/B7A Output Blocks}
\begin{tabular}{|c|c|}
\hline Module part number & Consumption \\
\hline B7A-T6E3 & 0.06 A max. \\
\hline B7A-T6E8 & 0.06 A max. \\
\hline B7A-T3E3 & 0.1 A max. \\
\hline B7A-T3E8 & 0.1 A max. \\
\hline B7A-R6B11 & 0.08 A max. \\
\hline B7A-R6B31 & 0.08 A max. \\
\hline B7A-R6B16 & 0.08 A max. \\
\hline B7A-R6B36 & 0.08 A max. \\
\hline B7A-R6F11 & 0.08 A max. \\
\hline B7A-R6F31 & 0.08 A max. \\
\hline B7A-R6F16 & 0.08 A max. \\
\hline B7A-R6F36 & 0.08 A max. \\
\hline B7A-R6C11 & 0.1 A max. \\
\hline B7A-R6C31 & 0.1 A max. \\
\hline B7A-R6C16 & 0.1 A max. \\
\hline B7A-R6C36 & 0.1 A max. \\
\hline B7A-R6G11 & 0.1 A max. \\
\hline B7A-R6G31 & 0.1 A max. \\
\hline B7A-R6G16 & 0.1 A max. \\
\hline B7A-R6G36 & 0.1 A max. \\
\hline
\end{tabular}

\section*{P7TF, G7TC Output Blocks}
\begin{tabular}{ll}
\multicolumn{1}{c}{ Module part number } & \multicolumn{1}{c}{ Consumption } \\
\hline G7T-1112S-DC12V & 0.042 A \\
\hline G7T-1112S-DC24V & 0.021 A \\
\hline G7T-1012S-DC12V & 0.042 A \\
\hline G7T-1012S-DC24V & 0.021 A \\
\hline G3TA-OA202SZ-DC24V & 0.016 A \\
\hline G3TA-ODX02S-DC24V & 0.005 A \\
\hline G3TA-OD201S-DC24V & 0.005 A
\end{tabular}

The power supply requirements are calculated as follows:
40/80 mA \(+\mathrm{M}+\mathrm{I}=\mathrm{C}\)
40/80 mA: current required by 8/16-point Output Block
M : Total current of Output Modules
I: interface device (G71, PLC Output Module, etc.) current
C: required current capacity of the Power Supply

\section*{Remote I/O Stand-alone Slaves}

G71 SYSMAC BUS Wired Remote I/O Stand-alone Slave
\begin{tabular}{ll}
\multicolumn{1}{c}{ Slave } & \multicolumn{1}{c}{ Consumption } \\
\hline Input G71-IC16-DC24V & \begin{tabular}{l}
\(40 \mathrm{~mA}+(6.7 \mathrm{~mA} \times\) no. of \\
inputs \()\)
\end{tabular} \\
\hline Output G71-OD-DC24V & 40 mA
\end{tabular}

System
Configuration Worksheets

\section*{System Configuration}

\section*{General Information}

To assist in selection of system components, a series of system configuration worksheets have been provided. These worksheets are intended to assist the system designer in determining:
- Required system components and part numbers
- Total I/O requirements
- Power consumption of modules

The worksheets are used in conjunction with the Standard Parts section and the Configuration section of this catalog. The worksheets provided can be duplicated as needed for full system configuration. Separate worksheets are provided for:
- CPU Rack
- Local Expansion Rack
- SYSMAC BUS Remote I/O System




Required for Fiber-optic System
\begin{tabular}{|l|l|l|l|l|}
\hline & Fiber-optic Cable & 1 & & \\
\cline { 2 - 4 } & Fiber-optic Connector & 2 & & \\
\hline Required for Wired System & & & \\
\hline & Twisted-pair wire & & Commercially available & \\
\hline
\end{tabular}


Required for Fiber-optic System
\begin{tabular}{|l|l|l|l|l|}
\hline & Fiber-optic Cable & 1 & & \\
\cline { 2 - 5 } & Fiber-optic Connector & 2 & & \\
\hline Required for Wired System & Twisted-pair wire & 1 & Commercially available & \\
\hline \multicolumn{5}{|l|}{} \\
\hline SYSMAC BUS Remote I/O Devices \\
Device & I/O words & \\
\hline & & & & \\
\hline
\end{tabular}


Unit: mm (inches)

\section*{CPU Backplanes}

\begin{tabular}{|c|c|c|c|c|}
\hline Part number & Slots & L & W & D (CPU alone) and D* (CPU with programming console mounted) \\
\hline C200H-BC031-V2 & 3 & 246 (9.7) & 0 (10.2) & \multirow[t]{4}{*}{\begin{tabular}{ll} 
D: & C200H-CPU01-E/CPU03-E/CPU21-E/CPU23-E: 118 (4.65) \\
& C200H-H-CPU031-E: 143 (5.63) \\
& C200H-HS-CPU01-E/CPU03-E: 113 (4.45) \\
& C200H-HS-CPU21-E/CPU23-E/CPU31-E/CPU33-E: 138 (5.43) \\
D*: & C200H-CPU01/CPU03/CPU21/CPU23: 148 (5.83)
\end{tabular}} \\
\hline C200H-BC051-V2 & 5 & 316 (12.4) & 330 (13) & \\
\hline C200H-BC081-V2 & 8 & 421 (16.6) & 435 (17.1) & \\
\hline C200H-BC101-V2 & 10 & 491 (19.3) & 505 (19.9) & \\
\hline
\end{tabular}

\section*{10 Operator Interfaces}
Programmable Terminals ..... 132
Data Access Console ..... 136


NT20S


NT600M-DT


NT2000M

\section*{General Information}

Omron's NT-series Programmable Terminals combine the latest in flat panel technology and software innovation to meet the most demanding man-machine interface requirements. Flexible configuration, multi-function software capability, and advanced hardware design make the NT-series the best choice for the widest variety of industrial applications. The NT-series Programmable Terminals provide the combined functionality of several devices, including programmable message display, alarm annunciator, operator control station, and graphics display station. These functions are all centralized in a single flexible device that offers immediate access to machinery status or production line information. The NT-series can also eliminate the need for hundreds of pushbuttons, warning lights, thumbwheel switches, message displays and digital readouts and save the cost of installing, maintaining and replacing those devices. The simplicity and accessibility of our NT-series allows you to perform data collection, process monitoring, operator control and alarm verification with certainty.

\section*{Features}
- Programming software required to configure, edit, upload, and download screens
- Plug-in communications modules allow several interface options
- Installed and wired, requires only 3.5 inches of depth to help reduce panel size
- Touch screen or function key types allow for the best application fit

Specifications: NT20M and NT20S
\begin{tabular}{cl}
\hline Display Screen & Dot matrix STN LCD panel with \(4.4 \times 2.2\) inches display area \\
\hline Resolution & \(256 \times 128\) resolution \\
\hline Backlight & Cold cathode tube \\
\hline Dimensions & \(164 \mathrm{H} \times 220 \mathrm{~W} \times 82 \mathrm{D} \mathrm{mm}(6.5 \times 8.7 \times 3.3 \mathrm{in})\). \\
NT20M-DT & \(110 \mathrm{H} \times 220 \mathrm{~W} \times 82 \mathrm{D} \mathrm{mm}(4.33 \times 8.7 \times 3.3 \mathrm{in})\). \\
NT20M-DN & \\
NT20-FK201 & \(110 \mathrm{H} \times 190 \mathrm{~W} \times 53.3 \mathrm{D} \mathrm{mm}(4.33 \times 7.48 \times 2.11 \mathrm{in})\). \\
NT20S & 250 screens maximum, overlapping and continuous functions (chain)
\end{tabular}

Specifications: NT600M
\begin{tabular}{cl}
\hline Display Screen & Dot matrix STN LCD Panel with \(8.1 \times 5.1\) inches display area \\
\hline Resolution & \(640 \times 400\) resolution \\
\hline Backlight & Cold cathode tube \\
\hline Dimensions & \\
NT600M-DT & \(198 \mathrm{H} \times 325 \mathrm{~W} \times 105 \mathrm{D} \mathrm{mm}(7.8 \times 12.8 \times 4.1 \mathrm{in})\). \\
NT600M-DF & \(238 \mathrm{H} \times 325 \mathrm{~W} \times 105 \mathrm{D} \mathrm{mm}(7.8 \times 12.8 \times 4.1 \mathrm{in})\). \\
\hline Display capabilities & 1000 screens maximum, overlapping and continuous functions (chain)
\end{tabular}

Specifications: NT2000M
\begin{tabular}{ll}
\hline Display Screen & Dot matrix STN LCD Panel with bi-color red or white display, \(275 \times 138 \mathrm{~mm}(10.83 \times 5.43 \mathrm{in})\). \\
\hline Resolution & \(256 \times 128\) resolution \\
\hline Backlight & Cold cathode tube \\
\hline Dimensions & \\
NT2000MT-DT131 & \(232.5 \mathrm{H} \times 365 \mathrm{~W} \times 77 \mathrm{D} \mathrm{mm}(9.15 \times 14.37 \times 3.03 \mathrm{in})\). \\
NT2000M-DN131 & \(232.5 \mathrm{H} \times 365 \mathrm{~W} \times 77 \mathrm{D} \mathrm{mm}(9.15 \times 14.37 \times 3.03 \mathrm{in})\). \\
\hline Display capabilities & 250 screens maximum, overlapping and continuous functions (chain)
\end{tabular}

\section*{Communications}

Connecting to SYSMAC WAY Host Link
(NT20S)


Connecting to SYSMAC BUS Wired Remote I/O (NT20M, NT600M, and NT2000M)


Connecting to \(\mathbf{C 2 0 0 H}\) Backplane (NT20M, NT600M, and NT2000M)


\section*{Programmable Terminals}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Description } & \\
\hline NT20S & Part number \\
\hline Touch panel LCD - color biege & NT20S-ST121 \\
\hline Touch panel LCD - color black & \\
\hline NT20M & NT20M-DT121-V2 \\
\hline Touch screen terminal, no memory & NT20M-DT131 \\
\hline Touch screen terminal, no memory, bi-color backlight & NT20M-DN131 \\
\hline Non-touch screen, no memory, bi-color backlight & NT20M-DN121-V2 \\
\hline Non-touch screen, no memory & NT20M-FK210 \\
\hline 12 Function key unit & \\
\hline NT600M & NT600M-DT122 \\
\hline Touch screen terminal, no memory, LCD display & NT600M-DT211 \\
\hline Touch screen terminal, no memory, Electroluminescent display & NT600M-DF122 \\
\hline Function key terminal, no memory, LCD display & NT600M-DN211 \\
\hline Non-touch screen terminal, no memory, Electroluminescent display & NT600M-FK210 \\
\hline 12 Function key unit for NT600M-DN211 & NT600M-MP251 \\
\hline Card with empty socket & NT600M-MR641 \\
\hline Card with 64K RAM & NT600M-MR151 \\
\hline Card with 128K RAM & NT600M-MR151 \\
\hline Card with 128K RAM & NT600M-MR251 \\
\hline Card with 256K RAM & NT600M-SMR01-E \\
\hline System ROM for NT600M & NT600M-SMR02-E \\
\hline System ROM for NT600M & \\
\hline NT2000M & NT2000M-DT131 \\
\hline Touch screen terminal, no memory, bi-color backlight & NT2000M-DN131 \\
\hline Non-touch screen, no memory, bi-color backlight & NT-FK200 \\
\hline System key unit for remote operation & \\
\hline
\end{tabular}

Interface Modules and Accessories
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{|c|}{ Part number } & \multicolumn{1}{c|}{ Required System ROM } \\
\hline NT20M and NT2000M & NT600M-LK201 & NT20M-SMR01-E \\
\hline RS-232C interface module & NT600M-LK202 & NT20M-SMR01-E \\
\hline RS-422 interface module & NT600M-LK201 & NT20M-SMR01-E \\
\hline Host Link interface module & NT600M-RT121 & NT20M-SMR01-E \\
\hline SYSMAC BUS interface (wired) & NT600M-LB121 & NT20M-SMR02-E \\
\hline C200H Expansion I/O Interface & NT600M-LK201 & NT20M-SMR31-E \\
\hline Host Link Interface Definable Addressing & NT600M-LB122 & NT20M-SMR32-E \\
\hline C200H Expansion I/O Interface Definable Addressing & NT20M-CFL01 \\
\hline Backlight unit for NT20M-DT131 and NT20M-DN131 & NT2000M-CFL01 \\
\hline Backlight unit for NT2000M-DT131 and NT2000M-DN131 & CV500-CN228 \\
\hline Cable for programming the terminal & NT20M-KBA01 \\
\hline Cover for NT20M-DT & NT20M-KBA02 \\
\hline Cover for NT20M-DN & NT20M-KBA03 \\
\hline Non-glare sheets & NT20M-KBA04 \\
\hline Oil and waterproof covers & NT20M-CKF01 & \\
\hline Key Sheet replacement for NT20M-DN & & \\
\hline
\end{tabular}

\section*{Interface Modules and Accessories continued}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Description } & Part number & Required System ROM \\
\hline NT600M & & \\
\hline RS-232C/Host Link interface module & NT600M-LK201 & NT-600M-SMR01-EV1 \\
\hline RS-422 interface module & NT600M-RT121 & NT-600M-SMR01-EV1 \\
\hline SYSMAC BUS interface (wired) & NT600M-LB121 & NT-600M-SMR02-EV1 \\
\hline C200H BUS interface & NT600M-LK201 & NT-600M-SMR31-E \\
\hline Host Link direct addressing & NT600M-LB122 & NT-600M-SMR32-E \\
\hline C200H BUS direct addressing & NT600M-KBA01 & \\
\hline Cover for NT600M-DT & NT600M-KBA02 & \\
\hline Cover for NT600M-DF & NT600M-KNA03 & \\
\hline Non-glare sheet & NT600M-KBA04 & \\
\hline Oil and water proof cover & NT600M-CKF01 & \\
\hline Key Sheet replacement for NT600M-DF & C200H-CN311 & \\
\hline Common Accessories & C200H-CN711 & \\
\hline Expansion I/O Connecting Cable; 30 cm & C200H-CN221 & \\
\hline Expansion I/O Connecting Cable; 70 cm & C200H-CN521 & \\
\hline Expansion I/O Connecting Cable; 2 m & C200H-CN131 & \\
\hline Expansion I/O Connecting Cable; 5 m & V015-E1-1 & \\
\hline Expansion I/O Connecting Cable; 10 m & V016-E1-1 & \\
\hline NT Series Host Interface Unit Direct Connection Manual & V001-E1-2 & \\
\hline NT Series RS-232C/RS-422 Interface Unit Operation Manual & V002-E1-2 & \\
\hline NT20M and NT2000M Operation Manual & V003-E1-3 & \\
\hline NT600M Operation Manual & C200H-CN229-EU & \\
\hline Host Interface Units Operation Manual & C200H-CN220-EU & \\
\hline Support Software, 3.5 and 5.25 inch disks & & \\
\hline Programming Cable, PT to computer (9-pin RS-232) & & \\
\hline Programming Cable, PT to computer (25-pin RS-232) & & \\
\hline
\end{tabular}

Memory Chips for NT20M and NT200M
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Memory chips } & \multicolumn{1}{c|}{ Part number } \\
\hline SRAM & 32 K & RAM-22-15 \\
& 128 K & RAM-13-10 \\
\hline EPROM & 64 K & ROM-KD-B \\
& 128 K & ROM-13-12B \\
\hline EEPROM & 32 K & EE22-20 \\
\hline
\end{tabular}

Screen Data Memory Boards (required for NT600M)
\begin{tabular}{|l|l|l|}
\hline Memory capacity & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Part number } \\
\hline Depends on memory chip & IC socket type & NT600M-MP251 \\
\hline 64 K & SRAM & NT600M-MR641 \\
\hline 128 K & SRAM & NT600M-MR151 \\
\hline 256 K & SRAM & NT600M-MR251 \\
\hline
\end{tabular}


\section*{General Information}

Omron's Data Access Console provides on-line monitoring and alteration of data in the PLC's data memory, I/O and internal relay and special relay areas. Two levels of accessibility allow secure areas of data as well as password protection. The DAC displays messages when alarm or message instructions are used in programming.
The Data Access Console can be used with the C20, K-type, block-style H-type, C200H, C1000H, and C2000H PLCs.

\section*{11 Peripheral Devices}
Ladder Support Software ..... 138
GPC, Programming Consoles ..... 140
Factory Intelligent Terminal, PROM Writer, Printer Interface ..... 141
Programmable Terminal Support Software ..... 142


Ladder Support Software
BM PC/AT or compatible computer

Programming


Monitoring


\section*{PLC Setup}

The LSS provides two different means to set the operating parameters in the PLC Setup, which determine the basic operating environment for the C 200 H . For standard settings you can take advantage of the speed and ease of menu settings, or you can use direct bit settings in the DM PLC Setup Area to make for detailed settings for sophisticated applications.

\section*{Ladder Support Software (LSS)}

C 200 H programming and monitoring can be handled easily using an IBM PC/AT or compatible computer running OMRON's LSS. The LSS is the most powerful programming device for C 200 H . Besides creating programs, the LSS can be used to generate all kinds of lists, create I/O, line, and block comments, print out ladder programs in mnemonic form or as ladder diagrams, store programs on disk, etc.

\section*{Programming}

The LSS provides fast and easy programming operations based on function keys and instruction function codes that make it easy to input, search through, and edit ladder diagrams. You can also use the LSS to edit the program in the PLC online in MONITOR or PROGRAM mode to make file program adjustments during actual test runs.

\section*{Monitoring and Operation Control}

You can not only monitor bit status in the ladder diagram, specified I/O status, word content, or DM content, but you can also control status or memory contents during monitoring operations to control the CQM1 or to aid in debugging the program.

\section*{Comments}

Three forms of comments are available to aid in programming, debugging, troubleshooting, and program management. I/O comments let you keep track of I/O applications; block comments can be used to tell what instruction blocks (e.g., output instructions) are being used for; and line comments can be used to provide more detailed information on sections of the program.

\section*{New Differential Monitor}

Ensure accurate detection of ON-to-OFF or OFF-to-ON transition bits in the C200HS memory.

\section*{Peripheral Software and Devices}

\section*{Ladder Support Software}


\section*{Tracing}


\section*{Reporting}

User configurable for custom printouts. Print out complete of partial programs in ladder or mnemonics. Selectively choose which tables and cross references are to be included and documentation.

\section*{Debugging}

In addition to syntactical program checks, you can use any of a number of LSS to debug your ladder-diagram programs before and during trial operation, including step-by-step execution or block execution, as well as any of the monitoring or tracing operations.

\section*{Data Management}

Programs, DM data, trace results, PLC Setups, I/O tables, and other forms of data can be easily transferred around the system or to and from data disks to achieve a complete data management system.
In addition, LSS3 easily saves and retrieves partial programs for simple creation of a library of commonly used sections of code.

\section*{Tracing}

Debugging, monitoring, and system management are greatly aided by tracing operations that record the status of executed instructions or the contents of specified memory bits/words. Trace result can be stored for later analysis or archiving.

\section*{LSS Ordering Information}
\begin{tabular}{llll} 
Description & Part number & \\
\hline Single-user license & C500-Y9LS11-EV3 & \\
\hline 5-user license & C500-Y9LS15-EV3 & \\
\hline 10-user license & C500-Y9LS10-EV3 & Built-In Host Link Port to computer (9-pin RS-232) & C200HS-CN220-EU \\
\hline Programming Cable & Built-In Host Link Port to computer (25-pin RS-232) & C200HS-CN229-EU \\
\cline { 2 - 3 } & C200H-LK201 to computer (9-pin RS-232) & C500-CN221-EU \\
\cline { 2 - 3 } & C200H-LK201 to computer (25-pin RS-232) & C500-CN222-EU
\end{tabular}

\section*{System Information}
\begin{tabular}{ll} 
PLCs supported & \(\mathrm{C}^{* * K}, \mathrm{C}^{* *} \mathrm{H}, \mathrm{CQM1}, \mathrm{C} 200 \mathrm{H}, \mathrm{C} 200 \mathrm{HS}, \mathrm{C} 500, \mathrm{C} 1000 \mathrm{H}, \mathrm{C} 2000 \mathrm{H}\) \\
\hline Communications supported & SYSMAC NET, SYSMAC LINK, HOST LINK \\
\hline Computer requirements & IBM-PC XT/AT or fully compatible computer \\
\hline Specifications & \\
\(\quad\) RAM capacity & At least 640 KB RAM \\
Free work disk capacity & At least 3MD of free disk space \\
Floppy disk drive & Either a 5.25 or 3.5 double density drive, Communication port 1 or 2, with RS-232C or RS-422 \\
Video & Color/monochrome monitor (CGA, EGA, VGA, MDA)
\end{tabular}


\section*{Graphic Programming Console: 3G2C5-GPC03-E/GPC04-E}

The Graphic Programming Console has a 32 K -word memory and is a complete programming, monitoring and debugging tool. The GPC has a backlit LCD display and function key panel for programming and montioring mnemonics or ladder logic. The GPC can also communicate over SYSMAC NET or SYSMAC LINK Networks by being connected to any PLC running on either Network. The GPC is available in 110-VAC and 220-VAC versions.


\section*{Programming Console: C200H-PRO27-E}

The C200H-PRO27-E is a complete on-line and off-line programming and monitoring hand-held console. The C200H-PRO27-E comes with an LCD display with LED illumination, 16 characters x 2 lines, adjustable sound and contrast.

In addition to programming and monitoring with the Programming Console, users can verify programs, compare and create I/O tables, monitor multiple I/O, force set/reset bits, and choose from Run, Monitor, Debug, or Program modes.


Programming Console: 3G2A6-PRO15-E
All of the functions are identical to C200H-PRO27-E. The 3G2A6-PRO15-E mounts directly to the CPU.


\section*{Factory Intelligent Terminal (FIT10-SET11E)}

Compatible with all C-Series PLCs, the FIT combines the functions of several peripherals into one. In addition to programming functions, the FIT incorporates a PROM writer and two 3.5 -inch floppy disk drives, plus interfaces for printers and other devices. The FIT allows program loading, editing, and monitoring of any C-series PLC. Easy-to-use editing functions include cut/paste/move, and pull-down window menus. The FIT lets you transfer programs, data memory contents and ladder diagram comments quickly. Powerful diagnostic and debugging capabilities include data trace, timing charts, and I/O monitoring. Even with all its capabilities the FIT is small enough and light enough to take on-site for trial operation and system debugging.
The large plasma screen shows 9 inputs and one output across and 11 ladder rungs and 1 message line or 30 mnemonic programming lines or 120 line comments, as well as a function key template for easy use. The FIT has one each of RS-232C and RS-422 ports.

FIT can be used with the C20, K-type, block-style H-type, C200H, C1000H, and C2000H PLCs.

\section*{PROM Writer: C500-PRW06}

Compatible with all C-series PLCs, Omron's PROM writer is used to write data from the program memory (UM), holding relay (HR), timer/counter (TC), data memory (DM) and auxiliary relay (AR) areas to an EPROM chip or C200H Memory Pack. You then have a permanent copy of the program or data and can make further copies of the same data if it is required by another PLC of the same model. The PROM writer can be attached either directly to the PLC or through the GPC.
The PROM Writer can be used with the C20, K-type, Block-style H-type, \(\mathrm{C} 200 \mathrm{H}, \mathrm{C} 1000 \mathrm{H}\), and C 2000 H PLCs.

\section*{Printer Interface: 3G2A5-PRT01-E}

With the Printer Interface, you can easily print various lists, such as program lists, cross-reference lists, and error lists. Desktop program debugging is easier because the program and error lists can be printed out in both mnemonics format and ladder diagram format. You can see at a glance the I/Os, TIM/CNTs, etc. that are used by printing out the cross-reference list for the program. In addition, you can print the contents of the data memory (DM) area, which will greatly help you manage and check the process the PLC performs.
The Printer Interface can be used with the C20, K-type, block-style H-type, \(\mathrm{C} 200 \mathrm{H}, \mathrm{C} 1000 \mathrm{H}\), and C2000H PLCs. Refer to Standard Parts for the proper memory pack.


\section*{General Information}

Programmable Terminal Support Software allows the user to configure messages, operator prompts, alarms, touch switches, indicators, simple graphics, or any combination of these to provide the best overview of the machine or process to the operator. Control programming is accomplished using relay ladder logic (RLL) for SYSMAC BUS and Host Link interfaces, or ASCII characters for RS-232C and RS-422 configurations.

\section*{Features}
- Design, upload, and download Programmable Terminal screens
- IBM-PC XT/AT, or fully compatible computer
- Either a 5.25 " or 3.5 " double density disk drive
- A hard disk with at least 3 MB of free disk space
- At least 640 Kb RAM
- PC-DOS, MS-DOS, or equivalent (version 3.2 or higher)
- Communication port 1 or 2, with RS-232C or RS-422
- Color/monochrome monitor (CGA, EGA, VGA, MDA)
- Edit and copy screen layouts
- Save screen files to disk
- Configure screen messages, graphics, data display, touch switches (touch-type only), and indicator lamps

System Requirements
\begin{tabular}{|l|l|}
\hline Part number & NT20M-ZASAT-EV4 \\
\hline System disk & 3.5 inch, 2DD and 5 inch, 2HD \\
\hline Applicable computers & IBM PC/AT or IBM PC/AT compatible \\
\hline DOS version & MS-DOS Version 3.2 or later \\
\hline Floppy disk drives necessary & 1 minimum \\
\hline RAM & 640 Kbytes minmum \\
\hline Graphic monitor & VGA \\
\hline Communication settings & \begin{tabular}{l} 
Baud rate: 9,600 bps \\
Stop bits: 1 bit \\
Data length: 8 bits \\
Parity: None \\
The Intel HEX file format can be used.
\end{tabular} \\
\hline PROM writer & Commercially available PROM writer \\
\hline
\end{tabular}

\section*{12 Communication Systems}
System Applications ..... 144
SYSMAC NET Token Ring Network ..... 146
SYSMAC LINK Token Bus Network ..... 148
SYSMAC WAY Host Link ..... 150
PC Link System ..... 152
SYSMAC BUS Remote I/O ..... 153
Fiber-optic Communication Technology ..... 155

\section*{Plantwide Information Management and Control Networks}

Omron's advanced plantwide information management networks let you harness the power of valuable manufacturing and production data stored throughout your plant and turn it into a competitive advantage. Omron's fiber-optic based SYSMAC NET communications network links your supervisory computers and factory controllers in a seamless, high-speed, high-capacity network. Twin fiber-optic cables, automatic loopback, and a token ring configuration provide a reliable, deterministic interface to a variety of information systems.
SYSMAC NET's fast, 2 Mbps transmission speed and 2 Kb message size moves large amounts of data quickly.

\section*{Distributed Control Networks}

By more tightly integrating their control systems, many manufacturers have been able to increase productivity and manufacturing flexibility. Omron's SYSMAC LINK distributed control network provides a high speed (2 Mbps) link for exchanging critical production data between supervisory computers and programmable controllers in real time.
The token bus peer-to-peer network uses noise resistant fiber-optic or low cost co-axial cable media for reliable, deterministic communications. A special data link feature provides an easy to set up, shared memory system for even tighter integration between multiple controls and computers.

\section*{Man-Machine Interface Networks}

Omron's SYSMAC WAY Host Link serial network provides an ideal interface for today's data-hungry data acquisition and control software, or local operator interface. Multiple man-machine interfaces (MMI) can be connected to a PLC using the Host Link module.
Drivers for this openly available protocol have been developed for all major third-party operator interface and control software packages and operator interface devices.

\section*{High-Speed Distributed I/O Systems}

Omron's SYSMAC BUS remote I/O system significantly lower wiring and maintenance costs. The high speed ( 187.5 Kpbs ) system connect CPUs and distant I/O using low-cost twisted pair wiring or fiber-optic cables. Built-in diagnostics and status indicators simplify troubleshooting and maintenance.
Remote expansion racks, remote I/O blocks, programmable terminals, AC drives, pneumatic valves, and other devices can be connected to provide cost-effective distribution of I/O systems.


\section*{General Information}

SYSMAC NET is a fiber-optic token ring network designed to transfer large amounts of data between PLCs, IBM PC/AT-compatible computers, VME computers, and any ASCII RS-232C devices. Network Bridges are also available to connect more than one SYSMAC NET loop. Any node in the network can initiate communications using simple program instructions. Fiber-optic transmission media provides reliable long distance communications in harsh environments. Automatic loopback, extensive diagnostics, and network utility software provide added reliability and ease of configuration.
- Token ring fiber-optic network with backloop redundancy
- Interface to PLCs, IBM PC/IBM PC/AT-compatible computers, VME computers, or any ASCII device
- TCP/IP protocol, 2 Mbps transmission speed

The following guidelines should be taken into account when configuring a SYSMAC NET network:
- At least one SYSMAC NET module per PLC system, two maximum per C200H System
- One SYSMAC NET Network Service board per computer
- One Line Server per network

\section*{Specifications}
\begin{tabular}{ll}
\hline Network topology & Fiber-optic token ring \\
\hline Number of nodes & 126 nodes per loop \\
\hline Transmission media & \(200 \mu \mathrm{HPCF}\) duplex fiber-optic cable \\
\hline Distance between nodes & \(800 \mathrm{~m}(0.5\) mile \(), 3 \mathrm{~km}(1.8\) miles \()\) with repeater \\
\hline Transmission speed & 2 Mbps \\
\hline Protocol & TCP/IP \\
\hline PLC interfaces & C200H, C500, C1000H, C2000H, CVM1, CV500, CV1000, CV2000 \\
\hline Message size & 2 Kb maximum \\
\hline Network Service Boards & AT bus, VME bus \\
\hline Network Service Units & Serial computer interface, SYSMAC NET Bridge \\
\hline Diagnostics & \begin{tabular}{l} 
Automatic loopback, node bypass with UPS, self-diagnostic functions, error detection, network utility \\
software
\end{tabular}
\end{tabular}


SYSMAC LINK is a high-speed token bus network designed to transfer large amounts of control data in real time between small and large rack PLCs. A variety of methods can be used to initiate communications between nodes; automatic data link allows transfer of data without any special programming; custom data link tables can be used for special data transfers between nodes. Each node can initiate transfers in send/receive mode using ladder logic instructions. This also allows each PLC to control communications and network data handling. Any node can be monitored or programmed using the Factory Intelligent Terminal (FIT) connected to a node on the network.
- High-speed token bus communications
- Large amounts of data transfered between PLCs or computers in a single command
- Automatic data link, custom data link, and peer-to-peer event communications options
- Send and receive instructions for PLC-initiated communications
- SYSMAC LINK can be connected to CV, C200H, C1000H, or C2000H simplex systems

The following guidelines should be taken into account when configuring a SYSMAC LINK network:
- At least one SYSMAC LINK module per PLC system
- One SYSMAC LINK Network Support Board per computer (co-axial only)

Specifications
\begin{tabular}{|c|c|}
\hline Network topology & Token bus \\
\hline Number of nodes & 62 nodes per network \\
\hline Transmission media & Wire: \(75 \Omega\) impedance co-axial cable Fiber-optic: \(200 \mu\) HPCF duplex fiber-optic cable \\
\hline Distance & \begin{tabular}{l}
Wire: 1 km ( 0.62 mile) total \\
Fiber-optic: 800 m ( 0.5 mile) between nodes, 10 km ( 6.2 miles) total
\end{tabular} \\
\hline Transmission speed & 2 Mbps \\
\hline Functions & Send, Receive, Deliver commands with FINS support (CV PLCs), automatic and custom data link \\
\hline PLC interfaces & C200H, C1000H, C2000H, CVM1, CV500, CV1000, CV2000 \\
\hline Message size & 512 bytes ( 256 words) maximum \\
\hline Data link capacity per node & Link relay area: 64 words (128 bytes) Data memory area: 254 words ( 508 bytes) \\
\hline \multicolumn{2}{|l|}{Data link capacity per network} \\
\hline \begin{tabular}{l}
C 200 H \\
C1000H, C2000H CV500, CV1000
\end{tabular} & 918 words max. 2966 words max. 2966 words max. \\
\hline Diagnostics & Transmission path backup (fiber-optic backloop), failed node bypass, polling link backup, self-diagnostic and echo-back test, watchdog timer, error detection \\
\hline
\end{tabular}


Host Link allows any computer to communicate with one (RS-232C), or several (RS-422) Omron PLCs. Multiple system levels can be connected to the same PLC with up to 32 PLCs connnected to one computer. Omron's Host Link protocol is well defined and available for custom software driver development and operator interface connection to Omron PLCs. Most major operator interface companies have Host Link interfaces and drivers available. Host Link systems allow using Ladder Support Software (LSS) to program and monitor any PLC in the system.

The Host Link protocol is common to all Omron PLCs including the C20, K-type, Block-style H-type, C200H, C1000H, C2000H, and CV-series PLCs.
- Up to 32 PLCs can be connected to a single host computer
- Twisted pair or fiber-optic transmission media

The following guidelines should be taken into account when configuring a Host Link system:
- The computer must have one serial port available
- If a fiber-optic, or RS-422 Host Link module is used, Link Adapters must be included in the system

Specifications
\begin{tabular}{|c|c|}
\hline Communications protocol & Software: Omron host link protocol
Hardware: RS-232C, RS-422 multi-drop; fiber-optic, or combination using Omron Link Adapters \\
\hline Synchronization & Start-stop (1 or 2 stop bits) \\
\hline Distance & RS-232C: 15 m ( 49 ft .) maximum RS-422: 10 m ( 32.8 ft .) maximum for any one cable Distances can be extended using Link Adapters \\
\hline Transmission speed & 300, 600, 1200, 2400, 4800, 9600, 19,200 bps (switch-selectable) \\
\hline PLC interfaces & C20, K-type, Block-style H-type (built-in), C200H, C500, C1000H, C2000H, CVM1, CV500, CV1000 CV2000 \\
\hline Character code & ASCII (7 bits) or JIS (8 bits) \\
\hline Error check & Parity and frame check sum \\
\hline Functions & Program upload/download, PLC status control, error handling, read (any) memory area, write (any) memory area, read timer/counter, write timer/counter, etc. \\
\hline
\end{tabular}

\section*{Communication Systems}

\section*{System Configuration}


\section*{General Information}

PC Link is a peer-to-peer communication system allowing high-speed transfer of data between PLCs over long distances. Both small and large rack PLCs can be connected to the same system. Standard Link Adapters are available for fiber-optic media and longer transmission distances. No special programming is required to transfer data and multi-level systems can be connected to a single PLC.

\section*{Features}
- High-speed data transfer between up to 32 PLCs
- No special programming required
- Multi-level capability

Specifications
\begin{tabular}{llllll}
\hline Communication method & Peer-to-peer & & \\
\hline Network topology & Multi-drop using Omron Link Adapters & & \\
\hline Number of nodes & PLC of polling link & Single-level & Multi-level & \\
\cline { 2 - 6 } & C200H, C1000H, C2000H & 32 & 16 & \\
\cline { 2 - 6 } & C500 & 8 & 8 & \\
\hline Transmission media & Twisted pair; fiber-optic when using Omron Link Adapters & & \\
\hline Distance & \(500 \mathrm{~m}(1640\) ft) total cable length (without fiber-optic links), including branch lines \\
& Distances can be extended using Link Adapters & & \\
\hline Transmission speed & 128 kbps & & & & \\
\hline Protocol & Omron PC Link, RS-485 & & & & \\
\hline PLC interfaces & C200H, C500, C1000H, C2000H & & & \\
\hline Data transfer capacity & PLC of polling link & 2 links & \(3-4\) links & \(5-8\) links & \(9-16\) links \\
(bits/node) & C200H, C1000H, C2000H & 512 & 256 & 128 & 64 \\
\hline & C500 & 256 & 128 & 64 & - \\
\hline Diagnostic functions links & CPU watchdog timer, CRC transmission error check & & - \\
\hline
\end{tabular}


\section*{General Information}

The SYSMAC BUS Remote I/O system is ideal for distribution of I/O and other devices at long distances from the CPU. Multiple remote I/O systems can be connected to a single CPU allowing maximum configuration flexibility.
A SYSMAC BUS Remote I/O system consists of a Remote Master and one or more Remote Slave modules. Both small and large rack-style I/O can be mixed in the same remote I/O system. Remote terminal blocks allow for distribution of 8 - and 16 -point I/O blocks in a wired remote I/O system. Stand-alone fiber-optic I/O modules allow distribution of 8-point I/O blocks in a fiber-optic remote I/O system. I/O Link modules allow connection of a K-type PLC to a fiber-optic remote I/O system. Special link adapters are available for extended distances and mixing media types.

\section*{Features}
- Wired twisted pair or fiber-optic cable versions
- Variety of I/O styles and types in a given remote I/O system
- RS-485 communications at 187.5 Kbps
- Connect C 200 H I/O, C500 I/O, G7 remote I/O terminals, programmable terminals

Specifications
\begin{tabular}{ll}
\hline PLC & C200H-RM001/RM002 \\
\hline Masters per PLC & 2 \\
\hline \begin{tabular}{l} 
Remote expansion racks per \\
master
\end{tabular} & 5 Slaves per PLC max \\
\hline Remote I/O devices per master & Up to 32 \\
\hline I/O points per master & 512 \\
\hline I/O points per PLC & 512
\end{tabular}

\section*{SYSMAC BUS Fiber-optic System}


\section*{SYSMAC BUS Wired System}


\section*{General Information}

Omron pioneered the use of fiber-optics for factory floor communicaitons in 1985 by introducing standard fiber-optic interfaces for Remote I/O and all Omron industrial communicaitons networks. Fiber-optic communications offer distinct advantages over conventional wiring, including electrical noise immunity and increased transmission distances.
Recent developments in fiber-optic and communications technology have provided a variety of cost-effective and easy-to-install solutions. Simple field termination, lower cable costs and a variety of fiber-optic cable types allow for the effective use of fiber-optic communications in most industrial applications.
Omron offers a variety of standard direct-connect fiber-optic modules for fiber-optic communications. Two types of modules are available: -P suffix types are for use with APF, HPCF and PCF Cable types. Non -P suffix types are for use with HPCF and PCF Cable types. Both of these module types accept the fiber-optic cable directly. No adapter is needed.

\section*{All Plastic Fiber (APF)}

All Plastic Fiber is ideal for short transmission distances up to 20 meters in remote I/O, or Host Link communications. Field termination requires no special tools or skills. APF requires the use of -P modules. The connectors used with APF are the 3G5A2 connectors.


\section*{Hard Plastic-clad Fiber (HPCF)}

Hard Plastic-clad Fiber has a 200 micron core cable for maximum distances of up to 200 meters without repeaters. It is available in both a zipcord style and a reinforced plastic-jacketed style with stress relief for pulling through conduit. A termination tool kit is required for field terminations. Bulk cable lengths up to 1 km are available. The connectors used with HPCF are the S3200 connectors.


\section*{Plastic-clad Fiber (PCF)}

Plastic-clad Fiber is a high performance fiber allowing maximum distances of up to 800 meters ( 0.5 mile) without repeaters. Pre-terminated lengths from 0.1 to 800 meters are available. Connector bodies can be easily removed for running cable through ducts, then re-assembled.

\section*{All Glass Crystal Fiber (AGF)}

Special cable and configurations are available for longer distance requirements, up to 3 km . The maximum transmission distance with each type of fiber-optic cable is determined by the kind of Remote I/O or Host Link modules used. These modules either have a - P or no - P in the part number. The table below shows maximum transmission distances. Longer distances are possible using standard repeaters.

\section*{System Compatibility}

The following table shows which Fiber-optic Cable can be used with each system. The table also shows the maximum length of each Cable.
\begin{tabular}{|c|c|c|c|}
\hline Fiber-optic Cable & APF & HPCF & PCF \\
\hline SYSMAC BUS with -P modules & 20 m (65 ft.) & 100 m (328 ft.) & 200 m (656 ft.) \\
\hline SYSMAC BUS with non -P modules & - & 200 m (656 ft.) & 800 m (0.5 mile) \\
\hline SYSMAC WAY with -P modules (C-series only) & 20 m (65 ft.) & 100 m (328 ft.) & 200 m (656 ft.) \\
\hline SYSMAC WAY with non -P modules (C-series only) & - & 200 m (656 ft.) & 800 m ( 0.5 mile) \\
\hline SYSMAC NET & - & 800 m (0.5 mile) & 1000 m (0.62 mile) \\
\hline
\end{tabular}

\section*{S3200 Connectors}

S3200 is the part number prefix. Refer to Standard Parts for complete part numbers.
\begin{tabular}{llllll} 
& SYSMAC NET & SYSMAC LINK & SYSMAC WAY & \begin{tabular}{c} 
SYSMAC \\
BUS/2
\end{tabular} & SYSMAC BUS \\
\hline C200H & COCF2511 & COCF2511 & COCH82 & - & COCH82 \\
\hline C1000H, C2000H & COCH62M & COCF2011 & COCH82 & - & COCH82 \\
\hline CVM1, CV500, CV1000, CV2000 & COCF2011 & COCF2011 & COCF2011 & COCF2011 & COCF2011 \\
\hline \begin{tabular}{lllll} 
SYSMAC NET Network Support \\
Board
\end{tabular} & COCH62M & - & - & - & - \\
\hline SYSMAC NET Line Server & COCH62M & - & - & - & - \\
\hline SYSMAC NET Bridge & COCH62M & - & - & - & - \\
\hline \begin{tabular}{llll} 
SYSMAC NET Network Service & COCH62M & - & - \\
Unit
\end{tabular} & & - & - & - & - \\
\hline SYSMAC NET VME Interface & COCH62M & - & - & - & -
\end{tabular}

\section*{3G5A2 Connectors (-P modules only)}

3G5A2 is the part number prefix. B500 part number prefixes are equivalent to 3G5A2 prefixes. Refer to Standard Parts for complete part numbers.
\begin{tabular}{lll} 
& SYSMAC WAY & SYSMAC BUS \\
\hline \(\mathbf{C 2 0 0 H}\) & CO001, CO002 & CO001, CO002 \\
\hline \(\mathbf{C 1 0 0 0 H}, \mathbf{C 2 0 0 0 H}\) & CO001, CO002 & CO001, CO002 \\
\hline CVM1, CV500, CV1000, CV2000 & - & CO001, CO002
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Description & Part Number \\
\hline \multicolumn{3}{|l|}{All Plastic Fiber-optic (APF) Cable} \\
\hline Fiber-optic Cable & 20 m (65.6 ft.), without connectors & B500-PF212 \\
\hline \multirow[t]{2}{*}{Fiber-optic Connectors} & Brown, for cable 0 to 10 m (0 to 32.8 ft .) long (includes 2) & 3G5A2-C0001 \\
\hline & Black, for cable 8 to 20 m (0 to 65.6 ft .) long (includes 2) & 3G5A2-CO002 \\
\hline \multicolumn{3}{|l|}{Hard Plastic-Clad Fiber-optic (HPCF) Cable} \\
\hline \multirow[t]{5}{*}{Fiber-optic Cable} & 50 m (164 ft.), without connectors & FCS-HCR-LB-501 \\
\hline & 100 m (328 ft.), without connectors & FCS-HCR-LB-102 \\
\hline & 500 m ( 0.31 mile), without connectors & FCS-HCR-LB-502 \\
\hline & 1 km ( 0.62 mile), without connectors & FCS-HCR-LB-103 \\
\hline & Zipcord style, orange, 50 m (164 ft.), without connectors & FCS-HCR-CO-501 \\
\hline \multirow[t]{4}{*}{Fiber-optic Connectors} & SYSMAC BUS or SYSMAC WAY only & S3200-COCH82 \\
\hline & SYSMAC BUS/2 (all PLCs), SYSMAC LINK (other than C200H) & S3200-COCF2011 \\
\hline & SYSMAC NET (other than C200H) & S3200-COCH62M \\
\hline & SYSMAC NET, LINK (C200H only) & S3200-COCF2511 \\
\hline \multirow[t]{3}{*}{In-line Fiber-optic Connectors} & SYSMAC NET In-line male connector & S3200-COCF62M \\
\hline & SYSMAC NET In-line female connector & S3200-COCF62F \\
\hline & SYSMAC LINK In-line adapter & S3200-COIAT2000 \\
\hline Termination Kit & For HPCF Cable & FCS-CAK6230-US \\
\hline \multicolumn{3}{|l|}{Plastic-Clad Fiber-optic (PCF) Cable} \\
\hline \multirow[t]{9}{*}{Indoor Fiber-optic Cable} & 10 cm (0.32 ft.), with connectors & 3G5A2-OF011 \\
\hline & 1 m ( 3.2 ft ), with connectors & 3G5A2-OF101 \\
\hline & 2 m (6.56 ft.), with connectors & 3G5A2-OF201 \\
\hline & 3 m (9.8 ft.), with connectors & 3G5A2-OF301 \\
\hline & 5 m (16.4 ft.), with connectors & 3G5A2-OF501 \\
\hline & 10 m ( 32.8 ft ), with connectors & 3G5A2-OF111 \\
\hline & 20 m (65.6 ft.), with connectors & 3G5A2-OF211 \\
\hline & 30 m (98 ft.), with connectors & 3G5A2-OF311 \\
\hline & 50 m (164 ft.), with connectors & 3G5A2-OF511 \\
\hline \multirow[t]{4}{*}{Indoor/Outdoor Fiber-optic Cable} & 100 m (328 ft.), with connectors & 3G5A2-OF002-100M \\
\hline & 200 m ( 656 ft ), with connectors & 3G5A2-OF002-200M \\
\hline & 400 m ( 0.25 mile), with connectors & 3G5A2-OF002-400M \\
\hline & 800 m ( 0.5 mile), with connectors & 3G5A2-OF002-800M \\
\hline
\end{tabular}

Communication Systems Technology

\section*{13 Standard Parts}
CPU Rack and Local Expansion Rack ..... 160
Backplane, Rack Accessories and Replacement Parts ..... 161
SYSMAC BUS ..... 162
Special I/O Modules and Accessories ..... 164
Discrete I/O Modules ..... 166
I/O Module Accessories, I/O Wiring Accessories ..... 167
I/O Wiring Accessories ..... 168
I/O Wiring Accessories, Power Supplies ..... 171
Communication Modules and Accessories ..... 172
Peripheral Software, Devices, and Accessories ..... 173
Fiber-optic Cables ..... 174
Manuals ..... 175

CPU Rack
\begin{tabular}{|c|c|c|}
\hline Name & Description & Part number \\
\hline \multicolumn{3}{|l|}{Required Parts} \\
\hline \multirow[t]{11}{*}{CPU} & C200H AC power supply & C200H-CPU01-E \\
\hline & C200H DC power supply & C200H-CPU03-E \\
\hline & C200H AC power supply & C200H-CPU21-E \\
\hline & C200H DC power supply & C200H-CPU23-E \\
\hline & C200H AC power supply with clock; SYSMAC NET/LINK capable & C200H-CPU31-E \\
\hline & C200HS AC power supply & C200HS-CPU01-E \\
\hline & C200HS DC power supply & C200HS-CPU03-E \\
\hline & C200HS AC power supply, RS-232C Port & C200HS-CPU21-E \\
\hline & C200HS DC power supply, RS-232C Port & C200HS-CPU23-E \\
\hline & C200HS AC power supply, SYSMAC NET/LINK capable, RS-232C Port & C200HS-CPU31-E \\
\hline & C200HS DC power supply, SYSMAC NET/LINK capable, RS-232C Port & C200HS-CPU33-E \\
\hline \multirow[t]{4}{*}{CPU Backplane} & 3-slot backplane & C200H-BC031-V2 \\
\hline & 5-slot backplane & C200H-BC051-V2 \\
\hline & 8-slot backplane & C200H-BC081-V2 \\
\hline & 10-slot backplane & C200H-BC101-V2 \\
\hline \multirow[t]{11}{*}{Memory Packs (Not required for C200HS)} & RAM, 4 K words, battery back-up; no clock & C200H-MR431 \\
\hline & RAM, 8 K words, battery back-up; no clock & C200H-MR831 \\
\hline & RAM, 4 K words, capacitor back-up; no clock & C200H-MR432 \\
\hline & RAM, 8 K words, capacitor back-up; no clock & C200H-MR832 \\
\hline & RAM, 4 K words, battery back-up; with clock (CPU21, CPU23 only) & C200H-MR433 \\
\hline & RAM, 8 K words, battery back-up; with clock (CPU21, CPU23 only) & C200H-MR833 \\
\hline & EPROM, 8 K words, no clock & C200H-MP831 \\
\hline & EEPROM, 4 K words, no clock & C200H-ME431 \\
\hline & EEPROM, 8 K words, no clock & C200H-ME831 \\
\hline & EEPROM, 4 K words, battery back-up; with clock (CPU21, CPU23 only) & C200H-ME432 \\
\hline & EEPROM, 8 K words, battery back-up; with clock (CPU21, CPU23 only) & C200H-ME832 \\
\hline \multicolumn{3}{|l|}{Optional Parts} \\
\hline \multirow[t]{2}{*}{File Memory Boards (C200HS only)} & EPROM, 16K words & C200HS-MP16K \\
\hline & EEPROM, 16K words & C200HS-ME16K \\
\hline
\end{tabular}

Local Expansion Rack
\begin{tabular}{|c|c|c|}
\hline Name & Description & Part number \\
\hline \multicolumn{3}{|l|}{Required Parts} \\
\hline \multirow[t]{4}{*}{CPU Backplane} & 3-slot backplane & C200H-BC031-V2 \\
\hline & 5-slot backplane & C200H-BC051-V2 \\
\hline & 8-slot backplane & C200H-BC081-V2 \\
\hline & 10-slot backplane & C200H-BC101-V2 \\
\hline \multirow[t]{2}{*}{Power supply} & 24 VDC & C200H-PS211 \\
\hline & 120/240 VAC & C200H-PS221 \\
\hline \multirow[t]{5}{*}{Local Expansion I/O Connecting Cable} & 30 cm (11.8 in.) & C200H-CN311 \\
\hline & 70 cm (2.3 ft.) & C200H-CN711 \\
\hline & 2 m (6.6 ft.) & C200H-CN221 \\
\hline & 5 m (16.4 ft.) & C200H-CN521 \\
\hline & 10 m (32.8 ft.) & C200H-CN131 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Description & Part number \\
\hline Back-up Battery & Replacement for memory & C200H-BAT09 \\
\hline 1/O Simulator & For programming and debugging, requires ID001; 8 inputs & C200H-ETL01 \\
\hline Space Module & For I/O Module slots & C200H-SP001 \\
\hline Backplane Connector Cover & For I/O Module connectors & 3G2A5-COV02 \\
\hline \multirow[t]{3}{*}{I/O Terminal Block Cover} & For 10-pin I/O Terminal Blocks & C200H-COV02 \\
\hline & For 19-pin I/O Terminal Blocks & C200H-COV03 \\
\hline & For 5-and 8-point Modules & C200H-COV11 \\
\hline DIN Rail Adapter Kit & For mounting Backplane to DIN rail (includes two pieces) & C200H-DIN01 \\
\hline \multirow[t]{4}{*}{DIN Rail} & Track, 50 cm (1.6 ft.) & PFP-50N \\
\hline & Track, 1 m (3.2 ft.) & PFP-100N \\
\hline & End Plate & PFP-M \\
\hline & Spacer & PFP-S \\
\hline \multirow[t]{3}{*}{Backplane Isolating Panel} & For 3-slot Backplane & C200H-ATT31 \\
\hline & For 5-slot Backplane & C200H-ATT51 \\
\hline & For 8-slot Backplane & C200H-ATT81 \\
\hline \multirow[t]{3}{*}{I/O Mounting Bracket} & For 3-slot rack & C200H-ATT33 \\
\hline & For 5-slot rack & C200H-ATT53 \\
\hline & For 8-slot rack & C200H-ATT83 \\
\hline
\end{tabular}

\section*{SYSMAC BUS Remote I/O Control Modules}
\begin{tabular}{|c|c|c|}
\hline Name & Description & Part number \\
\hline \multicolumn{3}{|l|}{SYSMAC BUS Remote Master Modules} \\
\hline \multirow[t]{2}{*}{Remote Master} & Fiber-optic: APF, PCF, HPCF (1 port) & C200H-RM001-P \\
\hline & Wired & C200H-RM201 \\
\hline \multicolumn{3}{|l|}{C200H SYSMAC BUS Remote Expansion Rack Backplanes and Power Supply/Slaves} \\
\hline \multirow[t]{4}{*}{Backplane} & 3-slot & C200H-BC031-V2 \\
\hline & 5-slot & C200H-BC051-V2 \\
\hline & 8-slot & C200H-BC081-V2 \\
\hline & 10-slot & C200H-BC101-V2 \\
\hline \multirow[t]{4}{*}{Power Supply/Remote Slave} & \[
\begin{aligned}
& \text { Fiber-optic: APF, PCF, HPCF (1 port) } \\
& 120 \text { VAC }
\end{aligned}
\] & C200H-RT001-P \\
\hline & Fiber-optic: APF, PCF, HPCF (1 port) 24 VDC & C200H-RT002-P \\
\hline & Wired, 120 VAC & C200H-RT201 \\
\hline & Wired, 24 VDC & C200H-RT202 \\
\hline \multicolumn{3}{|l|}{C500 SYSMAC BUS Remote Expansion Rack Backplanes, Power Supplies and Slaves} \\
\hline \multirow[t]{3}{*}{Backplane} & \(3 \mathrm{I} / \mathrm{O}\) slots & C500-BL031 \\
\hline & \(5 \mathrm{I} / \mathrm{O}\) slots & 3G2A5-BI051 \\
\hline & \(8 \mathrm{I} / \mathrm{O}\) slots & 3G2A5-B1081 \\
\hline \multirow[t]{2}{*}{Power Supply} & 120/240 VAC & 3G2A5-PS222-E \\
\hline & 24 VDC & 3G2A5-PS212-E \\
\hline \multirow[t]{5}{*}{Remote Slave Module} & Fiber-optic: PCF, HPCF (1 port) & 3G2A5-RT001-EV1 \\
\hline & Fiber-optic: APF, PCF, HPCF (1 port) & 3G2A5-RT001-PEV1 \\
\hline & Fiber-optic: PCF, HPCF (2 ports) & 3G2A5-RT002-EV1 \\
\hline & Fiber-optic: APF, PCF, HPCF (2 ports) & 3G2A5-RT002-PEV1 \\
\hline & Wired & C500-RT201 \\
\hline
\end{tabular}

\section*{SYSMAC BUS Remote I/O Devices}

\section*{SYSMAC BUS Fiber-optic Remote I/O Blocks}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{|c|}{ Fiber-optic Cable type } & \multicolumn{1}{c|}{ Points } & \multicolumn{1}{c|}{ Part number } \\
\hline 120 VAC input & PCF, HPCF & 8 & 3G5A2-IA121-E \\
\hline 240 VAC input & PCF, HPCF & 8 & 3G5A2-IA221-E \\
\hline Non-voltage contact input & PCF, HPCF & 8 & 3G5A2-ID001-E \\
\hline Non-voltage contact input & APF, PCF, HPCF & 8 & 3G5A2-ID001-PE \\
\hline 12 to 24 VAC/DC input & PCF, HPCF & 8 & 3G5A2-IM211-E \\
\hline Triac output, 120 VAC & PCF, HPCF & 8 & 3G5A2-OA121-E \\
\hline Triac output, 1 A, 85 to 250 VAC & PCF, HPCF & 8 & 3G5A2-OA222-E \\
\hline Relay output, 2 A, 24 VDC/250 VAC & PCF, HPCF & 8 & 3G5A2-OC221-E \\
\hline Relay output, 2 A, 24 VDC/250 VAC & APF, PCF, HPCF & 8 & 3G5A2-OD411-E \\
\hline Transistor output, 0.3 A, 12 to 48 VDC & PCF, HPCF & 8 & 3G5A2-OD411-PE \\
\hline Transistor output, 0.3 A, 12 to 48 VDC & APF, PCF, HPCF & & \\
\hline
\end{tabular}

\section*{G72C SYSMAC BUS Remote I/O Blocks}
\begin{tabular}{|c|c|c|c|c|}
\hline Power supply & Input voltage/ Switching capacity & Internal circuit & Points & Part number \\
\hline \multicolumn{5}{|l|}{SYSMAC BUS Remote Input Blocks} \\
\hline 24 VDC (200 mA, max.) & \(9.7 \mathrm{~mA}, 24 \mathrm{VDC} / \mathrm{pt}\) & NPN, positive common & 16 & G72C-ID16-DC24V \\
\hline 24 VDC (200 mA, max.) & \(9.7 \mathrm{~mA}, 24 \mathrm{VDC} / \mathrm{pt}\) & PNP, negative common & 16 & G72C-ID16-1-DC24V \\
\hline 24 VDC (200 mA, max.) & 9.7 mA, \(24 \mathrm{VDC} / \mathrm{pt}\) & NPN, positive common & 16 & G72C-VID16-DC24 \\
\hline \multicolumn{5}{|l|}{SYSMAC BUS Remote Output Blocks} \\
\hline 24 VDC (200 mA, max.) & 0.3 A, 24 VDC/point & NPN, positive common & 16 & G72C-OD16-DC24V \\
\hline 24 VDC (200 mA, max.) & 0.3 A, \(24 \mathrm{VDC} /\) point & PNP, negative common & 16 & G72C-OD16-1-DC24V \\
\hline 24 VDC (200 mA, max.) & 0.3 A, \(24 \mathrm{VDC} /\) point 2.4 A/Terminal & NPN, negative common & 16 & G72C-VOD16-DC24 \\
\hline
\end{tabular}

\section*{G71 SYSMAC BUS Remote Stand-alone Slaves}

These Interfaces are used with the G7TC, G7VC, and P7TF I/O Blocks (1 Block/Interface).
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Power supply } & \multicolumn{1}{c|}{ Internal circuit } & Points & Part number \\
\hline SYSMAC BUS Remote Input Stand-alone Slave & 16 & G71-IC16-DC24V \\
\hline \begin{tabular}{l}
24 VDC (200 mA, max.) supplied \\
through Input Block
\end{tabular} & & 16 & G71-OD16-DC24V \\
\hline SYSMAC BUS Remote Output Stand-alone Slave & \\
\hline \begin{tabular}{l} 
24 VDC (500 mA, max.) supplied \\
through Output Block
\end{tabular} & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Description & Part number \\
\hline \multicolumn{2}{|l|}{ASCII/BASIC Coprocessor} \\
\hline PLC module (rack-mount); EEPROM; RS-232C & C200H-ASC02 \\
\hline ASCII/BASIC module Utility Software & SYSMATE-ASC91-V1 \\
\hline Battery set for PLC module & C200H-BAT09 \\
\hline \multicolumn{2}{|l|}{Analog Input Modules} \\
\hline 4 pts .; 4 to \(20 \mathrm{~mA}, 1\) to \(5 \mathrm{~V}, 0\) to 10 V & C200H-AD001 \\
\hline 2 pts.; 0 to 10 V & C200H-AD002 \\
\hline \multicolumn{2}{|l|}{Analog Output Modules} \\
\hline \(2 \mathrm{pts} . ; 4\) to \(20 \mathrm{~mA}, 1\) to \(5 \mathrm{~V}, 0\) to 10V & C200H-DA001 \\
\hline \multicolumn{2}{|l|}{High-speed Counter} \\
\hline PLC module (rack-mount); up to 50 kHz ; up to 5 m & C200H-CT001-V1 \\
\hline PLC module (rack-mount); up to 75 kHz ; up to 25 m & C200H-CT002 \\
\hline \multicolumn{2}{|l|}{1-axis Position Control} \\
\hline PLC module (rack-mount); 1 axis & C200H-NC112 \\
\hline \multicolumn{2}{|l|}{2-axis Position Control} \\
\hline PLC module (rack-mount); 2 axis & C200H-NC211 \\
\hline \multicolumn{2}{|l|}{Temperature Sensor Input Modules} \\
\hline PLC module (rack-mount); type J and K thermocouples & C200H-TS001 \\
\hline PLC module (rack-mount); platinum RTD & C200H-TS101 \\
\hline \multicolumn{2}{|l|}{Temperature Controller Modules} \\
\hline PLC modules (rack-mount) Thermocouple & C200H-TC001/002/003 \\
\hline PLC modules (rack-mount) platinum RTD & C200H-TC101/102/103 \\
\hline \multicolumn{2}{|l|}{Heat/Cool Temperature Controller Modules} \\
\hline PLC modules (rack-mount) Thermocouple & C200H-TV001/002/003 \\
\hline PLC modules (rack-mount) platinum RTD & C200H-TV101/102/103 \\
\hline \multicolumn{2}{|l|}{PID Control} \\
\hline PLC modules (rack-mount) & C200H-PID-01/02/03 \\
\hline \multicolumn{2}{|l|}{Voice} \\
\hline PLC module (rack-mount) & C200H-OV001 \\
\hline RS-232C cable for message transfer between module and computer & C200H-CN224 \\
\hline \multicolumn{2}{|l|}{Analog Timer Input Module} \\
\hline PLC module (rack-mount); 4 timers, externally set values & C200H-TM001 \\
\hline Variable resistor connector cable & C4K-CN223 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{c|}{ Part number } \\
\hline Cam Positioner & \\
\hline PLC module (rack-mount) & C200H-CP114 \\
\hline Resolver with 1 m (3.28 ft.) cable & 3F88L-RS17 \\
\hline Resolver cable, 3 m (9.84 ft.) & 3F88L-CR003C \\
\hline Resolver cable, 5 m (16.4 ft.) & 3F88L-CR005C \\
\hline Resolver cable, 10 m (32.8 ft.) & 3F88L-CR010C \\
\hline Resolver cable, 20 m (65.6 ft.) & 3F88L-CR020C \\
\hline Resolver shaft coupler & 3F88L-RL10 \\
\hline Radio Frequency Identification Systems (V600 Short-range RF ID Systems) & \\
\hline PLC module (rack-mount) & C200H-IDS01-V1 \\
\hline Radio Frequency Identification Systems (V620 Long-range RF ID Systems) & \\
\hline PLC module (rack-mount) & C200H-IDS21 \\
\hline Interrupt Input & \\
\hline PLC module, (rack-mount); 8 inputs, 12 to 24 VDC (C200HS CPU only) & C200HS-INT01 \\
\hline Fuzzy Inferencing Coprocessor & \\
\hline PLC module, (rack-mount); 8 inputs, 2 outputs & C200HS-FZ001 \\
\hline
\end{tabular}

\section*{Special High-density I/O Modules}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Voltage } & \multicolumn{1}{c|}{ Points (/common) } & \multicolumn{1}{c|}{ Part number } \\
\hline 5 VDC TTL & 32 (8/common, 4 circuits), 8 points can be quick-reponse & C200H-ID501 \\
\hline 24 VDC & 32 (8/common, 4 circuits), 8 points can be quick-reponse & C200H-ID215 \\
\hline 5 VDC TTL & 32 (8/common, 4 circuits), or 128 multiplexed, selectable & C200H-OD501 \\
\hline 24 VDC & 32 (8/common, 4 circuits), or 128 multiplexed, selectable & C200H-OD215 \\
\hline \begin{tabular}{l} 
Input: 5 VDC \\
Output: 5 VDC
\end{tabular} & \begin{tabular}{l}
16 inputs \& 16 outputs (8/common, 2 circuits each), or 128 dynamic \\
multiplexed inputs, selectable; 8 points can be quick-reponse in static \\
mode
\end{tabular} & C200H-MD501 \\
\hline \begin{tabular}{l} 
Input: 12 VDC \\
Output: 5 to 24 VDC
\end{tabular} & \begin{tabular}{l}
16 inputs \& 16 outputs (8/common, 2 circuits each), or 128 dynamic \\
multiplexed inputs, selectable; 8 points can be quick-reponse in static \\
mode
\end{tabular} & C200H-MD115 \\
\hline \begin{tabular}{l} 
Input: 24 VDC \\
Output: 5 to 24 VDC
\end{tabular} & \begin{tabular}{l}
16 inputs \& 16 outputs (8/common, 2 circuits each), or 128 dynamic \\
multiplexed inputs, selectable; 8 points can be quick-reponse in static \\
mode
\end{tabular} & C200H-MD215 \\
\hline
\end{tabular}

Group 2 High-Density I/O Modules for CPU21, CPU23, CPU31, and HS only
\begin{tabular}{|l|l|l|}
\hline Voltage & Description & Part number \\
\hline 24 VDC & 32 (32/common, 1 circuit) & C200H-ID216 \\
\hline 24 VDC & 64 (32/common, 2 circuits) & C200H-ID217 \\
\hline 4.5 VDC to 26.4 VDC & 32 (32/common, 1 circuit) & C200H-OD218 \\
\hline 4.5 VDC to 26.4 VDC & 64 (32/common, 2 circuits) & C200H-OD219 \\
\hline
\end{tabular}

\section*{Discrete Input Modules}
\begin{tabular}{|c|c|c|}
\hline Voltage & Points (/common) & Part number \\
\hline \multicolumn{3}{|l|}{DC Inputs} \\
\hline 12 to 24 VDC & 8 (8/common, 1 circuit) & C200H-ID211 \\
\hline 24 VDC & 16 (16/common, 1 circuit) & C200H-ID212 \\
\hline \multicolumn{3}{|l|}{AC Inputs} \\
\hline 100 to 120 VAC & 8 (8/common, 1 circuit) & C200H-IA121 \\
\hline 100 to 120 VAC & 16 (16/common, 1 circuit) & C200H-IA122 \\
\hline 200 to 240 VAC & 8 (8/common, 1 circuit) & C200H-IA221 \\
\hline 200 to 240 VAC & 16 (16/common, 1 circuit) & C200H-IA222 \\
\hline \multicolumn{3}{|l|}{AC/DC Inputs} \\
\hline 12 to 24 VAC/VDC & 8 (8/common, 1 circuit) & C200H-IM211 \\
\hline 24 VAC/VDC & 16 (16/common, 1 circuit) & C200H-IM212 \\
\hline
\end{tabular}

Discrete Output Modules
\begin{tabular}{|c|c|c|}
\hline Current/voltage & Points (/common) & Part number \\
\hline \multicolumn{3}{|l|}{Transistor Outputs} \\
\hline 0.3 A, 5 to 24 VDC & 8 (8/common, 1 circuit), PNP & C200H-OD216 \\
\hline \(0.3 \mathrm{~A}, 12\) to 24 VDC & 12 (12/common, 1 circuit), PNP & C200H-OD217 \\
\hline 1 A, 12 to 24 VDC & 8 (8/common, 1 circuit) & C200H-OD411 \\
\hline 0.3 A, 24 VDC & 12 (12/common, 1 circuit) & C200H-OD211 \\
\hline 0.3 A, 24 VDC & 16 (16/common, 1 circuit) & C200H-OD212 \\
\hline 0.8 A, 24 VDC & 8 (8/common, 1 circuit) & C200H-OD214 \\
\hline 2.1 A, 24 VDC & 8 (8/common, 1 circuit) & C200H-OD213 \\
\hline \multicolumn{3}{|l|}{Triac Outputs} \\
\hline 120 VAC & 8 (8/common, 1 circuit) & C200H-OA121-E \\
\hline 250 VAC & 8 (8/common, 1 circuit) & C200H-OA221 \\
\hline 250 VAC & 12 (12/common, 1 circuit) & C200H-OA222 \\
\hline \multicolumn{3}{|l|}{Relay Outputs} \\
\hline 24 VDC/250 VAC & 5 (independent commons) & C200H-OC223 \\
\hline 24 VDC/250 VAC & 8 (independent commons) & C200H-OC224 \\
\hline 24 VDC/250 VAC & 8 (8/common, 1 circuit) & C200H-OC221 \\
\hline 24 VDC/250 VAC & 12 (12/common, 1 circuit) & C200H-OC222 \\
\hline 24 VDC/250 VAC & 16 (16/common, 1 circuit) & C200H-OC225 \\
\hline
\end{tabular}

\section*{I/O Module Accessories}
\begin{tabular}{|c|c|c|}
\hline Name & Description & Part number \\
\hline \multirow[t]{3}{*}{I/O Terminal BLock Cover} & For 10 pin I/O Terminal Blocks & C200H-COV02 \\
\hline & For 19 pin I/O Terminal Blocks & C200H-COV03 \\
\hline & For 5- and 8- point Modules & C200H-COV11 \\
\hline \multirow[t]{10}{*}{Connector} & 24-pin, solder type, straight & C500-CE241 \\
\hline & 24-pin, crimp type & C500-CE242 \\
\hline & 24-pin, for ribbon cable & C500-CE243 \\
\hline & 24-pin, solder type, \(90^{\circ}\) angle & C500-CE244 \\
\hline & 40-pin, solder type, straight & C500-CE401 \\
\hline & 40-pin, crimp type & C500-CE402 \\
\hline & 40-pin, for ribbon cable & C500-CE403 \\
\hline & 40-pin, solder type, \(90^{\circ}\) angle & C500-CE404 \\
\hline & RS-232C, 25 pins & 0020756-4, RS-232 connector \\
\hline & RS-422, 9 pins & 0020757-2, RS-422 connector \\
\hline \multirow[t]{2}{*}{Connector Cover} & RS-232C, 25 pins & 0020758-0, RS-232 cover \\
\hline & RS-422, 9 pins & 0020759-9, RS-422 cover \\
\hline
\end{tabular}

\section*{XW2B Screw Terminals}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{c|}{ Screw size } & \multicolumn{1}{c|}{ Part number } \\
\hline Blocks for 32-point I/O Modules & M 2.4 & XW2B-20G4 \\
\hline 20 terminals & M 3.5 & XW2B-20G5 \\
\hline 20 terminals & M 3.5 & XW2B-40G5-T \\
\hline 40 terminals (2 connectors) & M 3.5 & XW2B-20G5-D \\
\hline 20 terminals (daisy chain applications) & M 2.4 & \\
\hline Blocks for 64-point I/O Modules & M 3.5 & XW2B-40G4 \\
\hline 40 terminals & & XW2B-40G5 \\
\hline 40 terminals &
\end{tabular}

\section*{Connecting Cables for XW2B Screw Terminals}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{c|}{ Length } & \\
\hline \multirow{4}{|c|}{ For 32-point blocks } & \(1 \mathrm{~m}(3.28 \mathrm{ft})\). & XW2Z-100A \\
\cline { 2 - 3 } & \(2 \mathrm{~m}(6.56 \mathrm{ft})\) & XW2Z-200A \\
\cline { 2 - 3 } & \(3 \mathrm{~m}(9.84 \mathrm{ft})\). & XW2Z-300A \\
\cline { 2 - 3 } & \(5 \mathrm{~m}(16.4 \mathrm{ft})\) & XW2Z-500A \\
\hline \multirow{4}{*}{ For 64-point blocks } & \(1 \mathrm{~m}(3.28 \mathrm{ft})\) & XW2Z-100B \\
\cline { 2 - 3 } & \(2 \mathrm{~m}(6.56 \mathrm{ft})\). & XW2Z-200B \\
\cline { 2 - 4 } & \(3 \mathrm{~m}(9.84 \mathrm{ft})\) & XW2Z-300B \\
\cline { 2 - 4 } & \(5 \mathrm{~m}(16.4 \mathrm{ft})\). & XW2Z-500B \\
\hline
\end{tabular}

\section*{Output Connectors, Input Blocks}

\section*{B7A Output Connectors}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Rated load voltage & Rated load current & Output configuration & 1/O delay & Error
processing & Points & Part number \\
\hline 5 to 24 VDC & 50 mA max./point & NPN open collector & Normal-speed 19.2 ms & Hold & 16 & B7A-R6A13 \\
\hline 5 to 24 VDC & 50 mA max./point & NPN open collector & Normal-speed 19.2 ms & Load OFF & 16 & B7A-R6A33 \\
\hline 5 to 24 VDC & 50 mA max./point & NPN open collector & High-speed 3 ms & Hold & 16 & B7A-R6A18 \\
\hline 5 to 24 VDC & 50 mA max./point & NPN open collector & High-speed 3 ms & Load OFF & 16 & B7A-R6A38 \\
\hline 5 to 24 VDC & 50 mA max./point & NPN open collector & Normal-speed 19.2 ms & Hold & 32 & B7A-R3A13 \\
\hline 5 to 24 VDC & 50 mA max./point & NPN open collector & Normal-speed 19.2 ms & Load OFF & 32 & B7A-R3A33 \\
\hline 5 to 24 VDC & 50 mA max./point & NPN open collector & High-speed 3 ms & Hold & 32 & B7A-R3A18 \\
\hline 5 to 24 VDC & 50 mA max./point & NPN open collector & High-speed 3 ms & Load OFF & 32 & B7A-R3A38 \\
\hline
\end{tabular}

\section*{B7A Input Blocks}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Input
configuration & Input voltage & Input current range & Input voltage range & I/O delay & Common & Pts & Part number \\
\hline NPN compatible & No-voltage contact, two-wire sensors with DC output, NPN output type & 3 to 6 mA & 0 VDC to supply voltage & Normalspeed 19.2 ms & - common & 16 & B7A-T6A1 \\
\hline NPN compatible & No-voltage contact, two-wire sensors with DC output, NPN output type & 3 to 6 mA & 0 VDC to supply voltage & Normalspeed 19.2 ms & \(\pm\) common & 16 & B7A-T6B1 \\
\hline NPN compatible & No-voltage contact, two-wire sensors with DC output, NPN output type & 3 to 6 mA & 0 VDC to supply voltage & High-speed 3 ms & - common & 16 & B7A-T6C1 \\
\hline NPN compatible & No-voltage contact, two-wire sensors with DC output, NPN output type & 3 to 6 mA & 0 VDC to supply voltage & High-speed 3 ms & \(\pm\) common & 16 & B7A-T6A6 \\
\hline PNP compatible & No-voltage contact, two-wire sensors with DC output, NPN output type & 3 to 6 mA & 0 VDC to supply voltage & High-speed 3 ms & \(\pm\) common & 16 & B7A-T6B6 \\
\hline PNP compatible & No-voltage contact, two-wire sensors with DC output, NPN output type & 3 to 6 mA & 0 VDC to supply voltage & High-speed 3 ms & \(\pm\) common & 16 & B7A-T6C6 \\
\hline
\end{tabular}

P7TF Input Block Base without Modules
\begin{tabular}{|l|l|l|}
\hline Internal circuit & Points & Part number \\
\hline NPN, negative common & 16 & P7TF-IS16-DC24V \\
\hline
\end{tabular}

Modules are available with 24 VDC, \(5-24\) VDC, \(100-120\) VAC, 200-240 VAC, and 100-240 VAC rated input voltages.
G7T, and G3TA Relay and SSR Input Modules
These relay and SSR modules are for use with G7TC and P7TF Input Blocks.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Input voltage } & Internal circuit & \multicolumn{1}{c|}{ Part number } \\
\hline Input relay & \(100 / 120\) VAC & NO & G7T-1122S-AC100/110V \\
\hline Input relay & \(200 / 240\) VAC & NO & G7T-1122S-AC200/220V \\
\hline Input relay & 12 VDC & NO & G7T-1122S-DC12V \\
\hline Input relay & 24 VDC & NO & G7T-1122S-DC24V \\
\hline Input SSR & 100 to 240 VAC & NO & G3TA-IAZR02S-AC100/240V \\
\hline Input SSR & 5 to 24 VDC & G3TA-IDZR02S-DC5-24V \\
\hline
\end{tabular}

\section*{G7TC Input Blocks with Modules}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Power supply } & \multicolumn{1}{|c|}{ Input voltage } & \multicolumn{1}{c|}{ Internal circuit } & \multicolumn{1}{c|}{ Points } & \multicolumn{1}{c|}{ Part number } \\
\hline 24 VDC* \(^{*}\) & \(100 / 120\) VAC & NPN, negative common & 16 & G7TC-IA16-AC100/110V \\
\hline 24 VDC* \(^{*}\) & \(200 / 240\) VAC & NPN, negative common & 16 & G7TC-IA16-AC200/220V \\
\hline 24 VDC* \(^{2}\) & 24 VDC & NPN, negative common & 16 & G7TC-ID16-DC24V \\
\hline
\end{tabular}

\footnotetext{
*Using G71 Remote Interface
}

\section*{Input Connectors, Output Blocks}

\section*{B7A Input Connectors}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \begin{tabular}{c} 
Input \\
configuration
\end{tabular} & Input voltage & \begin{tabular}{l} 
Input current \\
range
\end{tabular} & \begin{tabular}{l} 
Input voltage \\
range
\end{tabular} & I/O delay & Pts & Part number \\
\hline \begin{tabular}{l} 
NPN \\
compatible
\end{tabular} & \begin{tabular}{l} 
No-voltage \\
contact, three \\
wire NPN
\end{tabular} & \begin{tabular}{l}
0.6 mA to \\
1.5 mA
\end{tabular} & \begin{tabular}{l} 
0 VDC to \\
supply voltage
\end{tabular} & \begin{tabular}{l} 
Normal-speed \\
19.2 ms
\end{tabular} & 16 & B7A-T6E3 \\
\hline \begin{tabular}{l} 
NPN \\
compatible
\end{tabular} & \begin{tabular}{l} 
No-voltage \\
contact, three \\
wire NPN
\end{tabular} & \begin{tabular}{l}
0.6 mA to \\
1.5 mA
\end{tabular} & \begin{tabular}{l} 
0 VDC to \\
supply voltage
\end{tabular} & \begin{tabular}{l} 
High-speed \\
3 ms
\end{tabular} & 16 & B7A-T6E8 \\
\hline \begin{tabular}{l} 
NPN \\
compatible
\end{tabular} & \begin{tabular}{l} 
No-voltage \\
contact, three \\
wire NPN
\end{tabular} & \begin{tabular}{l}
0.6 mA to \\
1.5 mA
\end{tabular} & \begin{tabular}{l} 
0 VDC to \\
supply voltage
\end{tabular} & \begin{tabular}{l} 
Normal-speed \\
19.2 ms
\end{tabular} & 32 & B7A-T3E3 \\
\hline \begin{tabular}{l} 
NPN \\
compatible
\end{tabular} & \begin{tabular}{l} 
No-voltage \\
contact, three \\
wire NPN
\end{tabular} & \begin{tabular}{l}
0.6 mA to \\
1.5 mA
\end{tabular} & \begin{tabular}{l} 
0 VDC to \\
supply voltage
\end{tabular} & \begin{tabular}{l} 
High-speed \\
3 ms
\end{tabular} & 32 & B7A-T3E8 \\
\hline
\end{tabular}

\section*{B7A Output Blocks}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Output configuration & Rated load voltage & Rated load current & I/O delay & Common & \[
\begin{gathered}
\text { Error } \\
\text { processing }
\end{gathered}
\] & Pts & Part number \\
\hline NPN open collector & 5 to 24 VDC & 100 mA max./point & Normalspeed 19.2 ms & +common & Hold & 16 & B7A-R6B11 \\
\hline NPN open collector & 5 to 24 VDC & 100 mA max./point & Normalspeed 19.2 ms & +common & Load OFF & 16 & B7A-R6B31 \\
\hline NPN open collector & 5 to 24 VDC & 100 mA max./point & High-speed 3 ms & +common & Hold & 16 & B7A-R6B16 \\
\hline NPN open collector & 5 to 24 VDC & 100 mA max./point & High-speed 3 ms & +common & Load OFF & 16 & B7A-R6B36 \\
\hline PNP open collector & 5 to 24 VDC & 100 mA max./point & Normalspeed 19.2 ms & - common & Hold & 16 & B7A-R6F11 \\
\hline PNP open collector & 5 to 24 VDC & 100 mA max./point & Normalspeed 19.2 ms & - common & Load OFF & 16 & B7A-R6F31 \\
\hline PNP open collector & 5 to 24 VDC & 100 mA max./point & High-speed 3 ms & - common & Hold & 16 & B7A-R6F16 \\
\hline PNP open collector & 5 to 24 VDC & 100 mA max./point & High-speed 3 ms & - common & Load OFF & 16 & B7A-R6F36 \\
\hline NPN open collector & 5 to 24 VDC & 500 mA max./point & Normalspeed 19.2 ms & + common & Hold & 16 & B7A-R6C11 \\
\hline NPN open collector & 5 to 24 VDC & 500 mA max./point & Normalspeed 19.2 ms & + common & Load OFF & 16 & B7A-R6C31 \\
\hline NPN open collector & 5 to 24 VDC & 500 mA max./point & High-speed 3 ms & + common & Hold & 16 & B7A-R6C16 \\
\hline NPN open collector & 5 to 24 VDC & 500 mA max./point & High-speed 3 ms & + common & Load OFF & 16 & B7A-R6C36 \\
\hline PNP open collector & 5 to 24 VDC & 500 mA max./point & Normalspeed 19.2 ms & - common & Hold & 16 & B7A-R6G11 \\
\hline PNP open collector & 5 to 24 VDC & 500 mA max./point & Normalspeed 19.2 ms & - common & Load OFF & 16 & B7A-R6G31 \\
\hline PNP open collector & 5 to 24 VDC & 500 mA max./point & High-speed 3 ms & - common & Hold & 16 & B7A-R6G16 \\
\hline PNP open collector & 5 to 24 VDC & 500 mA max./point & High-speed 3 ms & - common & Load OFF & 16 & B7A-R6G36 \\
\hline
\end{tabular}

\section*{P7TF Output Block Base without Modules}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Internal circuit } & \multicolumn{1}{c|}{ Points } & \multicolumn{1}{c|}{ Part number } \\
\hline NPN, positive common & 8 & P7TF-OS08 \\
\hline PNP, negative common & 8 & P7TF-OS08-1 \\
\hline NPN, positive common & 16 & P7TF-OS16 \\
\hline PNP, negative common & 16 & P7TF-OS16-1 \\
\hline
\end{tabular}

Modules are available with 12 VDC, and 24 VDC rated input voltages.
G7T, and G3TA Relay and SSR Output Modules
These relay and SSR modules are for use with G7TC and P7TF Output Blocks.
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Input voltage & Switching capacity & Internal circuit & Part number \\
\hline Output Relay & 12 VDC & 5 A, 125 VDC/250 VAC & NC & G7T-1012S DC12V \\
\hline Output Relay & 24 VDC & \(5 \mathrm{~A}, 125 \mathrm{VDC} / 250 \mathrm{VAC}\) & NC & G7T-1012S DC24V \\
\hline Output Relay & 12 VDC & \(5 \mathrm{~A}, 125 \mathrm{VDC} / 250\) VAC & NO & G7T-1112S-DC12V \\
\hline Output Relay & 24 VDC & \(5 \mathrm{~A}, 125 \mathrm{VDC} / 250 \mathrm{VAC}\) & NO & G7T-1112S-DC24V \\
\hline Output SSR, triac & 12 VDC & \(2 \mathrm{~A}, 75\) to 250 VAC & NO & G3TA-OA202SZ-DC12V \\
\hline Output SSR, triac & 24 VDC & \(2 \mathrm{~A}, 75\) to 250 VAC & NO & G3TA-OA202SZ-DC24V \\
\hline Output SSR, transistor & 24 VDC & \(2 \mathrm{~A}, 4\) to 60 VDC & NO & G3TA-ODX02S-DC24V \\
\hline Output SSR, transistor & 24 VDC & 1 A, 40 to 200 VAC & NO & G3TA-OD201S-DC24V \\
\hline
\end{tabular}

\section*{G77-S Short-circuit Output Module}

This module is for use with G7TC and P7TF Output Blocks.
\begin{tabular}{|l|l|}
\hline Description & \multicolumn{1}{c|}{ Part number } \\
\hline Short-circuiting output module for direct connection of load to output block & G77-S \\
\hline
\end{tabular}

\section*{G7TC Output Blocks with Modules}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Coil voltage } & \multicolumn{1}{c|}{ Switching capacity } & \multicolumn{1}{c|}{ Internal circuit } & \multicolumn{1}{c|}{ Points } & \multicolumn{1}{c|}{ Part number } \\
\hline 12 VDC & \(5 \mathrm{~A}, 125 \mathrm{VDC/250} \mathrm{VAC}\) & NPN, positive common & 8 & G7TC-OC08-DC12V \\
\hline 24 VDC & \(5 \mathrm{~A}, 125 \mathrm{VDC/250} \mathrm{VAC}\) & NPN, positive common & 8 & G7TC-OC08-DC24V \\
\hline 12 VDC & \(5 \mathrm{~A}, 125 \mathrm{VDC/250} \mathrm{VAC}\) & NPN, positive common & 16 & G7TC-OC16-DC12V \\
\hline 24 VDC & \(5 \mathrm{~A}, 125 \mathrm{VDC/250} \mathrm{VAC}\) & NPN, positive common & 16 & G7TC-OC16-DC24V \\
\hline 24 VDC & \(5 \mathrm{~A}, 125 \mathrm{VDC/250} \mathrm{VAC}\) & PNP, negative common & 16 & G7TC-OC16-1-DC24V \\
\hline
\end{tabular}

Connecting Cables, Shorting Bar
\begin{tabular}{|c|c|c|}
\hline Name & Description & Part number \\
\hline \multirow[t]{5}{*}{Spade Connector I/O Block Cable} & 50 cm (1.6 ft.) & G79-Y050C \\
\hline & 1 m (3.3 ft.) & G79-Y100C \\
\hline & 1.5 m (4.9 ft.) & G79-Y150C \\
\hline & 2 m (6.6 ft.) & G79-Y200C \\
\hline & 5 m (16.5 ft.) & G79-Y500C \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { Quick-connect I/O } \\
& \text { Block Cable (24 pins) }
\end{aligned}
\]} & For 1 Block, 1 m (3.3 ft.) & G79-100C \\
\hline & For 1 Block, 1.5 m (4.9 ft.) & G79-150C \\
\hline & For 1 Block, 2 m (6.6 ft.) & G79-200C \\
\hline & For 1 Block, 2 m (6.6 ft.) & G79-300C \\
\hline & For 1 Block, 5 m (16.5 ft.) & G79-500C \\
\hline \multirow[t]{5}{*}{Quick-connect Input Block Cable (40 pins)} & For 2 Blocks, 1 m (3.3 ft.) & G79-I100C-75 \\
\hline & For 2 Blocks, 1.5 m (3.3 ft.) & G79-I150C-125 \\
\hline & For 2 Blocks, 2 m (6.6 ft.) & G79-I200C-175 \\
\hline & For 2 Blocks, 3 m (6.6 ft.) & G79-I300C-275 \\
\hline & For 2 Blocks, 5 m (16.5 ft.) & G79-I500C-475 \\
\hline \multirow[t]{5}{*}{Quick-connect Output Block Cable (40 pins)} & For 2 Blocks, 1 m (3.3 ft.) & G79-0100C-75 \\
\hline & For 2 Blocks, 1.5 m (3.3 ft.) & G79-0150C-125 \\
\hline & For 2 Blocks, 2 m (6.6 ft.) & G79-O200C-175 \\
\hline & For 2 Blocks, 3 m (6.6 ft.) & G79-0300C-275 \\
\hline & For 2 Blocks, 5 m (16.5 ft.) & G79-0500C-475 \\
\hline Shorting Bar & Short circuits 2 to 4 adjacent terminals & G78-04 \\
\hline
\end{tabular}

Panel-mount, Stand-alone Power Supplies
\begin{tabular}{|c|c|c|}
\hline Output & Input & Part number \\
\hline \(5 \mathrm{VDC}, 1.5 \mathrm{~A}\) & 85 to 132 VAC & S82K-0705 \\
\hline \(5 \mathrm{VDC}, 2.5 \mathrm{~A}\) & 85 to 132 VAC & S82K-0105 \\
\hline \(12 \mathrm{VDC}, 0.6 \mathrm{~A}\) & 85 to 132 VAC & S82K-0712 \\
\hline \(12 \mathrm{VDC}, 1.2 \mathrm{~A}\) & 85 to 132 VAC & S82K-0112 \\
\hline \(12 \mathrm{VDC}, 2.5 \mathrm{~A}\) & 85 to 132 VAC & S82K-0312 \\
\hline \(24 \mathrm{VDC}, 0.3 \mathrm{~A}\) & 85 to 132 VAC & S82K-0724 \\
\hline 24 VDC, 0.6 A & 85 to 132 VAC & S82K-0124 \\
\hline 24 VDC, 1.3 A & 85 to 132 VAC & S82K-0324 \\
\hline \(24 \mathrm{VDC}, 2.1 \mathrm{~A}\) & 85 to 132 VAC & S82K-0524 \\
\hline 24 VDC, 4.6 A & 85 to 132/170 to 264 VAC & S82H-3024 \\
\hline 24 VDC, 7 A & 85 to 132/170 to 264 VAC & S82G-1524 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{c|}{ Part number } \\
\hline SYSMAC NET & C200HS-SNT32 \\
\hline PLC module (rack-mount) & \begin{tabular}{l} 
C200H-APS01 \\
C200H-APS02
\end{tabular} \\
\hline \begin{tabular}{l} 
Power supply adapter for 1 SYSMAC NET module \\
(rack-mount PLC module) for 2 SYSMAC NET modules
\end{tabular} & \begin{tabular}{l} 
C200H-CN001 \\
C200H-CN002
\end{tabular} \\
\hline \begin{tabular}{l} 
Cable to connect for APS01 \\
Power supply adapter for APS02
\end{tabular} & \begin{tabular}{l} 
C200H-CE001 \\
C200H-CE002
\end{tabular} \\
\hline \begin{tabular}{l} 
SYSMAC NET LINK for 1 SYSMAC NET module \\
Power supply adapter for 2 SYSMAC NET modules
\end{tabular} & S3200-LSU03-01E \\
\hline Line server, 24 VDC & S3200-NSB11-E \\
\hline IBM PC/AT interface board & S3200-NSUA1-00E \\
\hline RS-232C interface, 24 VDC & S3200-NSUG4-00E \\
\hline Bridge, DC-powered & 3G8B3-CL001 \\
\hline VME interface board & FIT10-IF401 \\
\hline FIT interface board & \\
\hline SYSMAC LINK & C200HS-SLK12 \\
\hline PLC module (rack-mount), fiber-optic; bus connector required & C200HS-SLK22 \\
\hline PLC module (rack-mount), coaxial; bus connector required & C200H-CE001 \\
\hline \begin{tabular}{l} 
SYSMAC NET LINK for 1 SYSMAC LINK module \\
Power supply adapter for 2 SYSMAC LINK modules
\end{tabular} & C1000H-TER01 \\
\hline \multicolumn{2}{|c|}{ 75-ohm terminator for coaxial module } \\
\hline \multicolumn{2}{|c|}{ Connector, F-type for coaxial module } \\
\hline \multicolumn{2}{|c|}{ Connector cover for coaxial module } \\
\hline SYSMAC WAY Host Link & C1000H-CE001 \\
\hline PLC module (rack-mount), fiber optic APF, PCF, HPCF & \\
\hline PLC module (rack-mount), RS-422 & C200H-LK101-P \\
\hline PLC module (rack-mount), RS-232C & C200H-LK202 \\
\hline PC Link PLC module (rack-mount), RS-485 (twisted pair) & C200H-LK201 \\
\hline
\end{tabular}

\section*{Link Adapters}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Cable type } & \multicolumn{1}{c|}{ Part number } \\
\hline PC Link SYSMAC WAY Host Link & 3G2A99-AL001 \\
\hline 3 RS-422 & 3G2A9-AL002-E \\
\hline SYSMAC BUS Fiber-optic Remote I/O, PC Link, SYSMAC WAY Host Link \\
\hline 3 fiber-optic: PCF, HPCF & 3G2A9-AL002-PE \\
\hline 3 fiber-optic: APF, PCF, HPCF & 3G2A9-AL004-E \\
\hline 1 fiber-optic: PCF, HPCF, 1 RS-232C, 1 RS-422 & 3G2A9-AL004-PE \\
\hline 1 fiber-optic: APF, PCF, HPCF, 1 RS-232C, 1 RS-422 & 3G2A9-AL005-E \\
\hline 2 fiber-optic: PCF, HPCF to AGF & 3G2A9-AL005-PE \\
\hline 2 fiber-optic: APF, PCF, HPCF to AGF & 3G2A9-AL006-E \\
\hline 3 fiber-optic: AGF trunk, PCF, HPCF branches & 3G2A9-AL006-PE \\
\hline 3 fiber-optic: AGF trunk, APF, PCF, HPCF branches & \\
\hline SYSMAC BUS Wired Remote I/O & B500-AL007-P \\
\hline RS-485 to fiber-optic: APF, PCF, HPCF & \\
\hline SYSMAC NET & B700-AL001 \\
\hline 3 fiber-optic: HPCF & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Description & Part number \\
\hline \multicolumn{2}{|l|}{SYSMATE LSS} \\
\hline Ladder diagram programming software for AT-compatible computers ( \(3.5^{"}\) and \(5.25^{\prime \prime}\) disks), all
C-Series PLCs: Single user license & C500-Y9LS11-EV3 \\
\hline Ladder diagram programming software for AT-compatible computers (3.5" and 5.25" disks), all C-Series PLCs: Five user license & C500-Y9LS15-EV3 \\
\hline Ladder diagram programming software for AT-compatible computers (3.5" and 5.25" disks), all C-Series PLCs: Ten user license & C500-Y9LS10-EV3 \\
\hline \multicolumn{2}{|l|}{Programming Cable} \\
\hline Built-In Host Link Port to computer (9-pin RS-232) & C200HS-CN220-EU \\
\hline Built-In Host Link Port to computer (25-pin RS-232) & C200HS-CN229-EU \\
\hline C200H-LK201 to computer (9-pin RS-232) & C500-CN221-EU \\
\hline C200H-LK201 to computer (25-pin RS-232) & C500-CN222-EU \\
\hline \multicolumn{2}{|l|}{Graphic Programming Console} \\
\hline All C-Series PLCs, requires memory pack; 120 VAC & 3G2C5-GPC03-E \\
\hline All C-Series PLCs, requires memory pack; 240 VAC & 3G2C5-GPC04-E \\
\hline Carrying case, nylon & 3G2C5-CS001 \\
\hline Memory pack for C20, P-type, C120, C500 & C500-MP303-EV2 \\
\hline Memory pack for K-type, Block-style H-type, C200H, C1000H, C2000H & 3G2C5-MP304-EV3 \\
\hline Peripheral interface unit to PLC CPU & C200H IP006 \\
\hline Peripheral interface cable, 2 m & 3G2A2-CN221 \\
\hline Peripheral interface cable, 10 m & 3G2A5-CN131 \\
\hline CRT interface & 3G2C5-GDI01 \\
\hline Replacement key sheet for GPC & Key sheet of 3G2C5-GPC03 \\
\hline \multicolumn{2}{|l|}{Factory Intelligent Terminal} \\
\hline Set includes FIT, system disks, and FIT MS-DOS disk & FIT10-SET11-E \\
\hline MS-DOS floppy disk & FIT10-MF001-E \\
\hline System floppy disk & FIT10-MF101-EV4 \\
\hline Peripheral interface to PLC CPU & C200H IP006 \\
\hline Peripheral interface cable, 2 m & 3G2A2-CN221 \\
\hline Peripheral interface cable, 10 m & 3G2A5-CN131 \\
\hline SYSMAC NET interface board for FIT & FIT10-IF401 \\
\hline \multicolumn{2}{|l|}{ASCII/BASIC Module Utility Software} \\
\hline For AT-compatible computers; enables program development, downloading, uploading, etc. & SYSMATE-ASC91-V1 \\
\hline Programming Cable C200H-ASC02 to computer (9-pin RS-232) & C200H-CN229-EU \\
\hline Programming Cable C200H-ASC02 to computer (25-pin RS-232) & C200H-CN220-EU \\
\hline \multicolumn{2}{|l|}{Programming Console} \\
\hline Console (CPU-mount) with back-lit LCD & 3G2A5-PRO13-E \\
\hline Extension cable for PRO13-E, 1 m (3.28 ft.) & 3G2C7-CN122 \\
\hline Console (Desk-top, panel-mount) with back-lit LCD, requires cable and interface & C200H-PRO27-E \\
\hline PRO27 interface & C500-AP003 \\
\hline PRO27 extension cable, 2 m & C200H-CN222 \\
\hline PRO27 extension cable, 4 m & C200H-CN422 \\
\hline PRO27 panel-mounting bracket & C200H-ATT01 \\
\hline \multicolumn{2}{|l|}{PROM Writer} \\
\hline All C-Series PLCs & C500-PRW06 \\
\hline \multicolumn{2}{|l|}{Printer Interface} \\
\hline All C-Series PLCs, requires memory pack & 3G2A5-PRT01-E \\
\hline Memory pack, C500 & C500-MP102-EV3 \\
\hline Memory pack, C1000H, C2000H & 3G2A5-MP103-EV3 \\
\hline Printer cable, RS-232C & SCY-CN201 \\
\hline \multicolumn{2}{|l|}{Cassette Interface} \\
\hline All C-series PLCs & 3G2A5-CMT01-E \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Description & Part number \\
\hline \multicolumn{3}{|l|}{All Plastic Fiber-optic (APF) Cable} \\
\hline Fiber-optic cable & 20 m (65.6 ft.), without connectors & B500-PF212 \\
\hline \multirow[t]{2}{*}{Fiber-optic
connectors} & Brown, for cable 0 to 10 m (0 to 32.8 ft ) long (set of 2) & 3G5A2-CO001 \\
\hline & Black, for cable 8 to 20 m (0 to 65.6 ft .) long (set of 2) & 3G5A2-CO002 \\
\hline \multicolumn{3}{|l|}{Hard Plastic-Clad Fiber-optic (HPCF) Cable} \\
\hline \multirow[t]{5}{*}{\[
\begin{array}{|l}
\hline \text { Fiber-optic } \\
\text { cable }
\end{array}
\]} & 50 m (164 ft.), without connectors & FCS-HCR-LB-501 \\
\hline & 100 m ( 328 ft ), without connectors & FCS-HCR-LB-102 \\
\hline & 500 m ( 0.31 mile), without connectors & FCS-HCR-LB-502 \\
\hline & 1 km ( 0.62 mile), without connectors & FCS-HCR-LB-103 \\
\hline & Zipcord style, orange, 50 m (164 ft.), without connectors & FCS-HCR-CO-501 \\
\hline \multirow[t]{6}{*}{Fiber-optic connectors} & SYSMAC BUS or SYSMAC WAY only & S3200-COCH82 \\
\hline & SYSMAC BUS/2 (all PLCs), SYSMAC LINK (other than C200H) & S3200-COCF2011 \\
\hline & SYSMAC NET (other than C200H) & S3200-COCH62M \\
\hline & SYSMAC NET, LINK (C200H only) & S3200-COCF2511 \\
\hline & SYSMAC NET in-line male & S3200-COCF62M \\
\hline & SYSMAC NET in-line female & S3200-COCF62F \\
\hline Termination kit & For HPCF cable & FCS-CAK6230-US \\
\hline \multicolumn{3}{|l|}{Plastic-Clad Fiber-optic (PCF) Cable} \\
\hline \multirow[t]{9}{*}{Indoor fiber-optic cable} & 10 cm (0.32 ft.), with connectors & 3G5A2-OF011 \\
\hline & 1 m ( 3.2 ft ), with connectors & 3G5A2-OF101 \\
\hline & 2 m (6.56 ft.), with connectors & 3G5A2-OF201 \\
\hline & 3 m (9.8 ft.), with connectors & 3G5A2-OF301 \\
\hline & 5 m (16.4 ft.), with connectors & 3G5A2-OF501 \\
\hline & 10 m ( 32.8 ft ), with connectors & 3G5A2-OF111 \\
\hline & 20 m ( 65.6 ft ), with connectors & 3G5A2-OF211 \\
\hline & 30 m (98 ft.), with connectors & 3G5A2-OF311 \\
\hline & 50 m (164 ft.), with connectors & 3G5A2-OF511 \\
\hline \multirow[t]{4}{*}{Indoor/Outdoor fiber-optic cable} & 100 m (328 ft.), with connectors & 3G5A2-OF002-100M \\
\hline & 200 m ( 656 ft .), with connectors & 3G5A2-OF002-200M \\
\hline & 400 m ( 0.25 mile), with connectors & 3G5A2-OF002-400M \\
\hline & 800 m ( 0.5 mile), with connectors & 3G5A2-OF002-800M \\
\hline
\end{tabular}

\section*{PLC Installation, Operation}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Title } & \multicolumn{1}{c|}{ Cat. No. } \\
\hline C200H PLCs & \multicolumn{1}{c|}{ Subtitle } & W111 \\
\hline C200HS PLCs & Installation Guide & W130 \\
\cline { 2 - 3 } & Operation Manual & W236 \\
\hline
\end{tabular}

\section*{Special I/O Modules}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Title } & \multicolumn{1}{c|}{ Cabtitle } & \multicolumn{1}{c|}{ Cat. No. } \\
\hline ASC02 ASCII/BASIC Module & Operation Manual & W165 \\
\hline Analog I/O Modules & Operation Guide & W127 \\
\hline 8-pt Analog Input Module & Operation Manual & W229 \\
\hline Temperature Sensor Input Module & Operation Guide & W124 \\
\hline Temperature Controller Module & Operation Manual & W225 \\
\hline Heat/Cool Temperature Controller Module & Operation Manual & W240 \\
\hline PID Process Controller Module & Operation Manual & W241 \\
\hline Cam Positioner Module & Operation Manual & W224 \\
\hline CT001-V1, CT002 High-speed Counter Modules & Operation Manual & W141 \\
\hline NC111 Position Control Module & Operation Manual & W137 \\
\hline NC112 Position Control Module & Operation Manual & W128 \\
\hline NC221 Position Control Module & Operation Manual & W166 \\
\hline RF ID Interface Modules & Operation Guide & W153 \\
\hline OV001 Voice Output Module & Operation Manual & W172 \\
\hline
\end{tabular}

\section*{Peripheral Devices}

Software manuals (such as for SYSMATE LSS and Programmable Terminal Support Software) are available only with a Software or site-license purchase.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Title } & \multicolumn{1}{c|}{ Subtitle } & \multicolumn{1}{c|}{ Cat. No. } \\
\hline FIT & Operation Manual & W150 \\
\hline Graphic Programming Console & Operation Manual & W084 \\
\hline PROM Writer & Operation Guide & W155 \\
\hline Printer Interface & Operation Guide & W107 \\
\hline Cassette Interface & User's Manual & W064 \\
\hline
\end{tabular}

\section*{Communication Systems}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Title } & \multicolumn{1}{c|}{ Subtitle } & Cat. No. \\
\hline SYSMAC NET & System Manual & W178 \\
\hline SYSMAC NET Line Server & Installation Guide & W161 \\
\hline SYSMAC NET Module & Operation Manual & W114 \\
\hline SYSMAC NET RS-232C Interface (Network Service Unit) & Operation Manual & W160 \\
\hline SYSMAC NET IBM AT Interface Board & Operation Manual & W161 \\
\hline SYSMAC NET Fiber-optic Cable & Installation Guide & W156 \\
\hline SYSMAC NET Bridge & Installation Guide & W159 \\
\hline C-series SYSMAC LINK & System Manual & W174 \\
\hline CV-series SYSMAC LINK & System Manual & W212 \\
\hline CV-series PLCs Host LINK & System Manual & W143 \\
\hline SYSMAC BUS Fiber-optic Remote I/O & System Manual & W136 \\
\hline SYSMAC BUS Wired Remote I/O & System Manual & W120 \\
\hline C-, CV-series Fiber-optic Cable & Installation Guide & W152 \\
\hline Link Adapters & Installation Guide & W123 \\
\hline
\end{tabular}

Reference
\begin{tabular}{|c|l|c|}
\hline Title & \multicolumn{1}{c|}{ Subtitle } & Cat. No. \\
\hline Programming instructions, programming console operations & Reference Manual & W184 \\
\hline
\end{tabular}

\section*{14 Instruction Set}
Overview ..... 178
Basic Instructions ..... 179
Data Comparison Instructions ..... 182
Data Transfer Instructions ..... 184
Data Conversion Instructions ..... 187
BCD Math Instructions ..... 190
Binary Math Instructions ..... 192
Data Shift Instructions ..... 194
Logic Instructions ..... 196
Subroutine, Program Step Instructions ..... 197
Special Instructions ..... 198
Network Instructions ..... 203

\section*{Overview}

The C200HS instruction set offers easy-to-program interrupts that allow high-speed response outside the normal scan cycle. There are many step-saving instructions, such as a macro similar to ones that are programmed into computers.
Many application-specific instructions are available to simplify position and speed control, process control, and input/output to operator displays.
There are 52 "expansion instructions" that can be used to customize the instruction set to suit your application needs. Up to 18 of these expansion instructions can be substituted for other instructions that may not be needed in a program.

\section*{To Input PLC Instructions}

A PLC instruction is input either by pressing the corresponding Programming Console key(s) (e.g., LD, AND, OR, NOT) or by using function codes. To input an instruction with its function code, press FUN, the function code, and the WRITE. Refer to the pages listed programming and instruction details.

\section*{Differentiated Instructions}

An instruction marked with @ can be used as a differentiated instruction that will be executed only once each time the instruction executing condition is turned ON.

\section*{Using Expansion Instructions}

All shaded instructions are expansion instructions. Those marked with an asterisk do not have default function numbers. Before using any expansion instruction (marked with an asterisk and within shaded boxes), it is necessary to set the function number for the expansion instruction. The following 18 function codes can be replaced with expansion instructions using LSS or the programming console: 17, 18, 19, 47, 48, 60, 61, 62, 63, \(64,65,66,67,68,69,87,88\), and 89.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function Code & Mnemonic & Function Code & Mnemonic & Function Code & Mnemonic & \begin{tabular}{|l} 
Function \\
Code
\end{tabular} \\
\hline ASFT & 17 & BCNT & 67 & DBSL & - & NEGL & - \\
\hline SCAN & 18 & BCMP & 68 & DSW & - & PID & - \\
\hline MCMP & 19 & APR & 69 & FCS & - & RXD & - \\
\hline LMSG & 47 & TTIM & 87 & FPD & - & SBBL & - \\
\hline TERM & 48 & ZCP & 88 & HEX & - & SCL & - \\
\hline CMPL & 60 & INT & 89 & HKY & - & SRCH & - \\
\hline MPRF & 61 & 7SEG & - & MAX & - & SUM & - \\
\hline XFRB & 62 & ADBL & - & MBS & - & TKY & - \\
\hline LINE & 63 & AVG & - & MBSL & - & TXD & - \\
\hline COLM & 64 & CPS & - & MIN & - & XDMR & - \\
\hline SEC & 65 & CPSL & - & MTR & - & ZCPL & - \\
\hline HMS & 66 & DBS & - & NEG & - & & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Name } \\
\text { Mnemonic }
\end{gathered}
\] & Symbol & Function & Operands & CPU \\
\hline Load LD &  & Used to start instruction line with status of designated bit. Used to define a logic block for use with AND LD and OR LD. & \[
\begin{array}{|l}
\hline \text { B: } \\
\text { IR } \\
\text { SR } \\
\text { HR } \\
\text { AR } \\
\text { TC } \\
\text { LR } \\
\text { TR }
\end{array}
\] & All models \\
\hline Load NOT LD NOT &  & Used to start instruction line with inverse of designated bit. & B:
IR
SR
HR
AR
TC
LR & All models \\
\hline \[
\begin{array}{|l}
\hline \text { AND } \\
\text { AND }
\end{array}
\] &  & Logically ANDs status of designated bit with execution condition. & \[
\begin{array}{|l}
\hline \text { B: } \\
\text { IR } \\
\text { SR } \\
\text { HR } \\
\text { AR } \\
\text { TC } \\
\text { LR }
\end{array}
\] & All models \\
\hline AND NOT AND NOT & \[
\begin{gathered}
\mathrm{B} \\
\longrightarrow
\end{gathered}
\] & Logically ANDs inverse of designated bit with execution condition. & BR
IR
SR
HR
AR
TC
LR & All models \\
\hline \[
\begin{array}{|l|}
\hline \text { OR } \\
\text { OR }
\end{array}
\] &  & Logically ORs status of designated bit with execution condition. & B:
IR
SR
HR
AR
TC
LR & All models \\
\hline OR NOT
OR NOT & \[
\stackrel{B}{X}^{\circ}
\] & Logically ORs inverse of designated bit with execution condition. & \[
\begin{array}{|l|}
\hline \text { B: } \\
\text { IR } \\
\text { SR } \\
\text { HR } \\
\text { AR } \\
\text { TC } \\
\text { LR }
\end{array}
\] & All models \\
\hline AND Load AND LD &  & Logically ANDs results of preceding blocks. & None & All models \\
\hline OR Load OR LD &  & Logically ORs results of preceding blocks. & None & All models \\
\hline Output OUT &  & Turns ON B for ON execution condition; turns OFF B for OFF execution condition. & \[
\begin{aligned}
& \hline \text { B: } \\
& \text { IR } \\
& \text { SR } \\
& \text { HR } \\
& \text { AR } \\
& \text { LR } \\
& \text { TR }
\end{aligned}
\] & All models \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & & Operands & CPU \\
\hline \[
\begin{array}{|l}
\hline \text { RESET } \\
\text { RESET }
\end{array}
\] & RESET B & Turns B OFF for ON execution condition and remains OFF when execution condition returns to OFF & \[
\begin{aligned}
& \hline \text { B: } \\
& \text { IR } \\
& \text { SR } \\
& \text { AR } \\
& \text { HR } \\
& \text { IR }
\end{aligned}
\] & & \[
\begin{aligned}
& \hline \text { HS-CPU01 } \\
& \text { HS-CPU03 }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { SET } \\
& \text { SET }
\end{aligned}
\] & RESET B & Turns B OFF for ON execution condition and remains OFF when execution condition returns to OFF & \[
\begin{array}{|l|}
\hline \text { B: } \\
\text { IR } \\
\text { SR } \\
\text { AR } \\
\text { HR } \\
\text { LR }
\end{array}
\] & & \[
\begin{aligned}
& \text { HS-CPU01 } \\
& \text { HS-CPU03 }
\end{aligned}
\] \\
\hline Output NOT OUT NOT &  & Turns B OFF for ON execution condition; turns B ON for OFF execution condition (i.e., inverts operation). & \[
\begin{aligned}
& \hline \text { B: } \\
& \text { IR } \\
& \text { SR } \\
& \text { HR } \\
& \text { AR } \\
& \text { LR }
\end{aligned}
\] & & All models \\
\hline No Operation NOP (00) & None & Nothing is executed and program moves to next instruction. & Non & & All models \\
\hline End END(01) & END(01) & Required at the end of the program. & Non & & All models \\
\hline Latching Relay KEEP(11) & \[
\begin{array}{l|l|}
\mathrm{S} & \\
\hline \hline \mathrm{R} & \mathrm{KEEP}(11) \\
\hline & \mathrm{B} \\
\hline
\end{array}
\] & Defines a bit (B) as a latch controlled by set ( S ) and reset ( R ) inputs. & B:
IR
HR
AR
LR & & All models \\
\hline Timer TIM & \begin{tabular}{|l|}
\hline TIM N \\
\hline SV \\
\hline
\end{tabular} & ON-delay (decrementing) timer operation. Set value: 999.9 s ; accuracy: \(+0 /-0.1 \mathrm{~s}\). Same TC bit cannot be assigned to more than one timer/counter. The TC bit is input as a constant. & \[
\begin{aligned}
& \mathrm{N}: \\
& \mathrm{TC}
\end{aligned}
\] & SV:
IR
HR
AR
DM
LR
\(\#\) & All models \\
\hline High-speed Timer TIMH(15) & \begin{tabular}{|l|}
\hline TIMH(15) N \\
\hline SV \\
\hline
\end{tabular} & A high-speed, ON-delay (decrementing) timer. SV: 0.01 to 99.99 s ; accuracy: \(+0 /-0.1 \mathrm{~s}\). Must not be assigned the same TC bit as another timer or counter. The TC bit is input as a constant. & \[
\begin{aligned}
& \hline \mathrm{N}: \\
& \mathrm{TC}
\end{aligned}
\] & SV:
IR
SR
HR
AR
DM
LR
\# & All models \\
\hline Counter CNT & \begin{tabular}{l|l|}
\hline CP & CNT N \\
\hline R & SV \\
\cline { 2 - 3 } &
\end{tabular} & A decrementing counter. SV: 0 to 9999; CP: count pulse; R: reset input. The TC bit is input as a constant. & \[
\begin{array}{|l|}
\hline \mathrm{N}: \\
\mathrm{TC}
\end{array}
\] & SV:
IR
HR
AR
DM
LR
\(\#\) & All models \\
\hline Reversible Counter CNTR (12) &  & Increases or decreases PV by one whenever the increment input (II) or decrement input (DI) signals, respectively, go from OFF to ON. SV: 0 to 9999; R: reset input. Must not access the same TC bit as another timer/counter. & \[
\begin{aligned}
& \hline \mathrm{N}: \\
& \mathrm{TC}
\end{aligned}
\] & SV:
IR
SR
HR
AR
DM
LR
\(\#\) & All models \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & \multicolumn{3}{|c|}{Operands} & CPU \\
\hline \begin{tabular}{l}
Differentiate Up \\
DIFU(13) \\
Differentiate Down DIFD(14)
\end{tabular} & \begin{tabular}{cc}
\(-\operatorname{DIFU}(13) \mathrm{B}\) \\
- & \(\mathrm{DIFD}(14) \mathrm{B}\)
\end{tabular} & DIFU turns ON the designated bit (B) for one scan on the rising edge of the input signal; DIFD turns ON the bit for one scan on the trailing edge. & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \hline \text { B: } \\
& \text { IR } \\
& \text { HR } \\
& \text { AR } \\
& \text { LR }
\end{aligned}
\]} & All models \\
\hline Interlock IL(02) Interlock Clear ILC(03) & \[
\begin{aligned}
& -\mathrm{IL}(02) \\
& - \\
& \hline \mathrm{ILC}(03) \\
& \hline
\end{aligned}
\] & If interlock condition is OFF, all outputs are turned OFF and all timer PVs reset between this IL(02) and the next ILC(03). Other instructions are treated as NOP; counter PVs are maintained. & \multicolumn{3}{|l|}{None} & All models \\
\hline Jump JMP(04) Jump End JME(05) & \(\mathrm{JMP}(04) \mathrm{N}\)
\(\mathrm{JME}(05) \mathrm{N}\) & If jump condition is OFF, all instructions between \(\mathrm{JMP}(04)\) and the corresponding JME(05) are ignored. Corresponding JME is one of same number; 01 through 99 only usable once per program (direct jumps); 00 may be used as many times as necessary, but instructions between JMP 00 and JME 00 treated as NOP, increasing scan time compared to other jumps. & \multicolumn{3}{|l|}{\(\mathrm{N}:\) 00 to 99} & All models \\
\hline Totalizing Timer TTIM (87) & \begin{tabular}{|l|}
\hline TTIM(87) \\
\hline\(N\) \\
\hline SV \\
\hline RB \\
\hline
\end{tabular} & Incrementing timer that increments PV every 0.1 s to time between 0.1 s to 999.9 s . Accuracy is \(+0.0 /-0.1 \mathrm{sec}\). Will time as long as execution condition is ON until it reaches SV or until RB turns ON to reset timer. & \[
\begin{aligned}
& \mathrm{N}: \\
& \mathrm{TC}
\end{aligned}
\] & \begin{tabular}{l}
SV: \\
(word, BCD) IR \\
AR \\
DM \\
HR \\
LR
\end{tabular} & \[
\begin{array}{|l}
\hline \text { RB: } \\
\text { IR } \\
\text { SR } \\
\text { AR } \\
\text { HR } \\
\text { LR }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { HS-CPU01 } \\
& \text { HS-CPU03 }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & & peran & & CPU \\
\hline Multi-word Compare (@)MCMP(19) & \begin{tabular}{l} 
MCMP(19) \\
\hline S1 \\
\hline S2 \\
\hline\(D\)
\end{tabular} & Compares the data within a block of 16 words of 4 -digit hexadecimal data ( \(\mathrm{S}_{1}\) to \(S_{1}+15\) ) with that in another block of 16 words ( \(\mathrm{S}_{2}\) to \(\mathrm{S}_{2}+15\) ) on a word-by-word basis. If the words are not in agreement, the bit corresponding to unmatched words turns ON in the result word, D. Bits corresponding to words that are equal are turned OFF. & \begin{tabular}{l}
S1: \\
IR \\
SR \\
HR \\
AR \\
LR \\
TC \\
DM
\end{tabular} & S2:
IR
SR
HR
AR
LR
TC
DM & \[
\begin{array}{|l}
\hline \text { D: } \\
\text { IR } \\
\text { SR } \\
\text { HR } \\
\text { AR } \\
\text { LR } \\
\text { TC } \\
\text { DM }
\end{array}
\] & CPU21
CPU23
CPU31
HS-CPU's \\
\hline \begin{tabular}{l}
Compare \\
(@)CMP(20)
\end{tabular} & \begin{tabular}{|l|}
\hline CMP(20) \\
\hline Cp1 \\
\hline Cp2 \\
\hline
\end{tabular} & Compares two sets of four-digit hexadecimal data (Cp1 and Cp2) and outputs result to GR, EQ, and LE.
\[
\begin{aligned}
& \mathrm{Cp} 1>\mathrm{Cp} 2 \rightarrow \mathrm{GR} \\
& \mathrm{Cp} 1=\mathrm{Cp} 2 \rightarrow \mathrm{EQ} \\
& \mathrm{Cp} 1<\mathrm{Cp} 2 \rightarrow \mathrm{LE}
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Cp1/Cp2: \\
IR \\
SR \\
HR \\
AR \\
TC \\
DM \\
LR \\
\#
\end{tabular}} & All models \\
\hline Double Compare CMPL(60) & \begin{tabular}{|l|}
\hline CMPL(60) \\
\hline S1 \\
\hline S2 \\
\hline
\end{tabular} & Compares the 8-digit hexadecimal values in words \(S_{1}+1\) and \(S_{1}\) with the values in \(\mathrm{S}_{2}+1\) and \(\mathrm{S}_{2}\), and indicates the result using the Greater Than, Less Than, and Equal Flags in the AR area. \(\mathrm{S}_{1}+1\) and \(\mathrm{S}_{2}+1\) are regarded as the most significant data in each pair of words. & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \hline \text { S1/S2 } \\
& \text { IR } \\
& \text { SR } \\
& \text { HR } \\
& \text { AR } \\
& \text { LR } \\
& \text { TC } \\
& \text { DM } \\
& \hline
\end{aligned}
\]} & CPU21
CPU23
CPU31
HS-CPU's \\
\hline Block Compare BCMP(68) & \begin{tabular}{|l|}
\hline BCMP(68) \\
\hline\(S\) \\
\hline\(C B\) \\
\hline\(R\) \\
\hline
\end{tabular} & \begin{tabular}{l}
Compares 1-word binary value (S) with 16 ranges in comparison table (CB: starting word of comparison block). If value falls within any ranges, corresponding bits of result word (R) will set. The comparison block must all be in the same data area. \\
Lower limit Upper limit \\
Lower limit \(\leq \mathrm{S} \leq\) Upper limit \(\rightarrow 1\)
\end{tabular} & \begin{tabular}{l}
S: \\
IR \\
SR \\
HR \\
AR \\
TC \\
DM \\
LR \\
\#
\end{tabular} & CB:
IR
SR
HR
TC
DM
LR & \[
\begin{aligned}
& \hline \text { R: } \\
& \text { IR } \\
& \text { HR } \\
& \text { AR } \\
& \text { TC } \\
& \text { DM } \\
& \text { LR }
\end{aligned}
\] & All models HS-CPU's \\
\hline Table Compare (@)TCMP(85) & \begin{tabular}{|l|}
\hline TCMP(85) \\
\hline S \\
\hline TB \\
\hline R \\
\hline
\end{tabular} & Compares four-digit hexadecimal value (S) with values in table consisting of 16 words (TB: First word of comparison table). If value equals any values, corresponding bits of result word (R) are set. The entire table must be in the same data area. & \begin{tabular}{l}
S: \\
IR \\
SR \\
HR \\
AR \\
TC \\
DM \\
LR \\
\#
\end{tabular} & \begin{tabular}{l}
TB/R \\
IR \\
HR \\
AR \\
TC \\
DM \\
LR
\end{tabular} & & All models \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & \multicolumn{3}{|c|}{Operands} & CPU \\
\hline \begin{tabular}{l}
Move \\
(@)MOV(21)
\end{tabular} & \begin{tabular}{|l|}
\hline\(M O V(21)\) \\
\hline\(S\) \\
\hline\(D\) \\
\hline
\end{tabular} & Transfers source data (S) (word or four-digit constant) to destination word (D). & S:
IR
SR
HR
AR
TC
DM
LR
\(\#\) & D:
IR
HR
AR
DM
LR & & All models \\
\hline \begin{tabular}{l}
Move NOT \\
(@)MVN(22)
\end{tabular} & - \begin{tabular}{|l|}
\hline MVN(22) \\
\hline\(S\) \\
\hline\(D\) \\
\hline
\end{tabular} & Inverts source data (S) (word or four-digit constant) and then transfers it to destination word (D). & S:
IR
SR
HR
AR
TC
DM
LR
\(\#\) & \[
\begin{array}{|l|}
\hline \text { D: } \\
\text { IR } \\
\text { HR } \\
\text { AR } \\
\text { DM } \\
\text { LR }
\end{array}
\] & & All models \\
\hline \begin{tabular}{l}
Column-toWord \\
(@)CTW(63)
\end{tabular} & \begin{tabular}{|l|}
\hline CTW(63) \\
\hline S \\
\hline C \\
\hline\(D\) \\
\hline
\end{tabular} & \begin{tabular}{l}
Fetches data from the same numbered bit (C) in 16 consecutive words (where S is the address of the first source word), and creates a 4-digit word by consecutively placing the data in the bits of the destination word, D. \\
The bit from word \(S\) is placed into bit 00 of \(D\), the bit from word \(S+1\) is placed into bit 01, etc. \\
Bit C \\
D
\end{tabular} & \multirow[t]{2}{*}{S:
IR
SR
HR
AR
LR
TC
DM} & \multirow[t]{2}{*}{C:
IR
SR
HR
AR
LR
TC
DM
\(\#\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { D: } \\
& \text { IR } \\
& \text { SR } \\
& \text { HR } \\
& \text { AR } \\
& \text { LR } \\
& \text { TC } \\
& \text { DM }
\end{aligned}
\]} & \[
\begin{aligned}
& \hline \text { CPU21 } \\
& \text { CPU23 } \\
& \text { CPU31 }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Column-toLine \\
(@)LINE(63)
\end{tabular} & \begin{tabular}{|l|}
\hline LINE(63) \\
\hline S \\
\hline C \\
\hline D \\
\hline
\end{tabular} &  & & & & HS-CPU's \\
\hline Word-toColumn (@)WTC(64) & \begin{tabular}{|l|}
\hline WTC(64) \\
\hline S \\
\hline D \\
\hline C \\
\hline
\end{tabular} & \begin{tabular}{l}
Places bit data from the source word (S), consecutively into the same numbered bits of the 16 consecutive destination words (where D is the address of the first destination word). Bit 00 from word \(S\) is placed into bit \(C\) of word D, bit 01 from word \(S\) is placed into bit C of word \(\mathrm{D}+1\), etc. \\
s \\
Bit C
\end{tabular} & \multirow[t]{2}{*}{\begin{tabular}{l}
S: \\
IR \\
SR \\
HR \\
AR \\
LR \\
TC \\
DM
\end{tabular}} & \multirow[t]{2}{*}{D:
IR
SR
HR
AR
LR
TC
DM} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { C: } \\
& \text { IR } \\
& \text { SR } \\
& \text { HR } \\
& \text { AR } \\
& \text { LR } \\
& \text { TC } \\
& \text { DM } \\
& \#
\end{aligned}
\]} & \[
\begin{aligned}
& \text { CPU21 } \\
& \text { CPU23 } \\
& \text { CPU31 }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Line-toColumn \\
(@)COLM(64)
\end{tabular} & \begin{tabular}{|l|}
\hline COLM(64) \\
\hline S \\
\hline D \\
\hline C \\
\hline
\end{tabular} &  & & & & HS-CPU's \\
\hline \begin{tabular}{l}
Block Set \\
(@)BSET(71)
\end{tabular} & \begin{tabular}{r} 
BSET(71) \\
\hline S \\
\hline St \\
\hline E \\
\hline
\end{tabular} & Copies content of one word or constant (S) to several consecutive words (starting word (St) through ending word (E)). St and E must be in the same data area. & St/E:
IR
HR
AR
TC
DM
LR & S:
IR
SR
HR
AR
TC
DM
LR
\(\#\) & & All models \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & \multicolumn{3}{|c|}{Operands} & CPU \\
\hline Transfer Bits (@XFRB(62) & \begin{tabular}{|l|}
\hline XFER(62) \\
\hline C \\
\hline S \\
\hline\(D\) \\
\hline
\end{tabular} & Copies the status of up to 255 specified source bits to the specified destination bits. & C:
IR
SR
AR
DM
TC
HR
LR
\# & S:
IR
SR
AR
DM
HR
LR & D:
IR
SR
AR
DM
HR
LR & HS-CPU's \\
\hline \begin{tabular}{l}
Block Transfer \\
(@)XFER(70)
\end{tabular} & \begin{tabular}{|l|}
\hline XFER(70) \\
\hline\(N\) \\
\hline\(S\) \\
\hline\(D\) \\
\hline
\end{tabular} & Moves content of several consecutive source words (S: starting source word; N : number of transfer words) to consecutive destination words (D: starting destination word). All source words must be in the same data area, as must all destination words. Transfers can be within one or between two data areas, but the source words and destination word must not overlap. & \begin{tabular}{l}
\(\mathrm{N}:\) \\
IR \\
SR \\
HR \\
AR \\
TC \\
DM \\
LR \\
\#
\end{tabular} & \begin{tabular}{l}
S: \\
IR \\
HR \\
AR \\
TC \\
DM \\
LR
\end{tabular} & \begin{tabular}{l}
D: \\
IR \\
SR \\
HR \\
AR \\
TC \\
DM \\
LR \\
\#
\end{tabular} & All models \\
\hline \begin{tabular}{l}
Single Word Distribute \\
(@)DIST(80)
\end{tabular} & \begin{tabular}{|l|}
\hline \(\mathrm{DIST}(80)\) \\
\hline S \\
\hline DBs \\
\hline Of \\
\hline
\end{tabular} & \begin{tabular}{l}
Moves one word of source data (S) to destination word whose address is given by destination base word (DBs) plus offset (Of). \\
(S) \(\rightarrow\) (DBs+Of)
\end{tabular} & \begin{tabular}{l}
S: \\
IR SR HR AR TC DM LR \\
\#
\end{tabular} & DBs:
IR
HR
AR
TC
DM
LR & Of:
IR
HR
AR
TC
DM
LR
\(\#\) & All models \\
\hline Data Collect (@)COLL(81) & \begin{tabular}{|l|}
\hline \(\operatorname{COLL}(81)\) \\
\hline SBs \\
\hline Of \\
\hline D \\
\hline
\end{tabular} & Extracts data from source word and writes it to destination word (D). Source word is determined by adding offset (Of) to source base word (SBs). & SBs:
IR
SR
HR
AR
TC
DM
LR & Of:
IR
HR
AR
TC
DM
LR
\(\#\) & \[
\begin{aligned}
& \hline \text { D: } \\
& \text { IR } \\
& \text { HR } \\
& \text { AR } \\
& \text { TC } \\
& \text { DM } \\
& \text { LR }
\end{aligned}
\] & All models \\
\hline \begin{tabular}{l}
Move Bit \\
(@)MOVB(82)
\end{tabular} & \begin{tabular}{l|l|}
\hline & MOVB(82) \\
\hline S \\
\hline Bi \\
\hline D \\
\hline
\end{tabular} & \begin{tabular}{l}
Transfers designated bit of source word or constant (S) to designated bit of destination word (D). Rightmost two digits of bit designator (Bi) designate the source bit; leftmost two, the destination bit. \\
S \(\square\) \\
D \(\square\)
\end{tabular} & S:
IR
SR
HR
AR
DM
LR
\(\#\) & Bi:
IR
HR
AR
TC
DM
LR
\(\#\) & \[
\begin{aligned}
& \text { D: } \\
& \text { IR } \\
& \text { HR } \\
& \text { AR } \\
& \text { DM } \\
& \text { LR }
\end{aligned}
\] & All models \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & \multicolumn{3}{|c|}{Operands} & CPU \\
\hline \begin{tabular}{l}
BCD to Binary \\
(@) \(\operatorname{BIN}(23)\)
\end{tabular} & \begin{tabular}{|l|}
\hline \(\operatorname{BIN}(23)\) \\
\hline\(S\) \\
\hline\(R\) \\
\hline
\end{tabular} & Converts four-digit, BCD data in source word (S) into 16-bit binary data, and outputs converted data to result word (R). & \begin{tabular}{l}
S: \\
IR \\
SR \\
HR \\
AR \\
TC \\
DM \\
LR
\end{tabular} & \begin{tabular}{l}
R: \\
IR \\
HR \\
AR \\
DM \\
LR
\end{tabular} & & All models \\
\hline Double BCD to Double Binary (@)BINL(58) & \begin{tabular}{|l|}
\hline BINL(58) \\
\hline S \\
\hline R \\
\hline
\end{tabular} & Converts BCD value in two source words (S: starting word) into binary and outputs converted data to two result words (R: starting word). All words for any one operand must be in the same data area. & \begin{tabular}{l}
S: \\
IR \\
SR \\
HR \\
AR \\
TC \\
DM \\
LR
\end{tabular} & \begin{tabular}{l}
R: \\
IR \\
HR \\
AR \\
DM \\
LR
\end{tabular} & & All models C 1000 H C 2000 H \\
\hline Binary to BCD (@)BCD(24) & - \begin{tabular}{|l|}
\hline\(B C D(24)\) \\
\hline\(S\) \\
\hline\(R\) \\
\hline
\end{tabular} & Converts binary data in source word (S) into BCD, and outputs converted data to result word (R). & \[
\begin{array}{|l|}
\hline \text { S: } \\
\text { IR } \\
\text { SR } \\
\text { HR } \\
\text { AR } \\
\text { DM } \\
\text { LR }
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { R: } \\
\text { IR } \\
\text { HR } \\
\text { AR } \\
\text { DM } \\
\text { LR }
\end{array}
\] & & All models \\
\hline Double Binary to Double BCD (@)BCDL(59) & \begin{tabular}{|l|l|}
\hline BCDL(59) \\
\hline\(S\) \\
\hline\(R\) \\
\hline
\end{tabular} & Converts binary value in two source words (S: starting word) into eight digits of BCD data, and outputs converted data to two result words (R: starting result word). Both words for any one operand must be in the same data area. & \[
\begin{array}{|l|}
\hline \text { S: } \\
\text { IR } \\
\text { SR } \\
\text { HR } \\
\text { AR } \\
\text { DM } \\
\text { LR }
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { R: } \\
\text { IR } \\
\text { HR } \\
\text { AR } \\
\text { DM } \\
\text { LR }
\end{array}
\] & & \[
\begin{aligned}
& \text { All models } \\
& \mathrm{C} 1000 \mathrm{H} \\
& \mathrm{C} 2000 \mathrm{H}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
4 to 16 Decoder \\
(@)MLPX(76)
\end{tabular} & \begin{tabular}{|l|}
\hline MLPX(76) \\
\hline\(S\) \\
\hline Di \\
\hline\(R\) \\
\hline
\end{tabular} & \multirow[t]{2}{*}{\begin{tabular}{l}
Converts up to four hexadecimal digits in source word (S) into decimal values from 0 to 15 and turns ON, in result word(s) (R), bit(s) whose position corresponds to converted value. Digits to be converted designated by Di (rightmost digit: indicates the first digit; next digit to left: gives the number of digits minus 1 ). 0 to \(F\) \\
Can also convert up to eight hexadecimal digits and turn ON corresponding bits in result words R to \(\mathrm{R}+15\).
\end{tabular}} & S:
IR
SR
HR
AR
TC
DM
LR & Di:
IR
HR
AR
TC
DM
LR
\(\#\) & R:
IR
HR
AR
DM
LR & All models \\
\hline 8 to 256 Decoder (@)MLPX(76) & & & & & & HS-CPU's \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & \multicolumn{3}{|c|}{Operands} & CPU \\
\hline \multirow[t]{5}{*}{16 to 4 Encoder (@)DMPX(77)} & \multirow[t]{7}{*}{\begin{tabular}{|l|l|}
\hline DMPX(77) \\
\hline\(S\) \\
\hline\(R\) \\
\hline\(D i\) \\
\hline
\end{tabular}} & \multirow[t]{7}{*}{\begin{tabular}{l}
Determines position of highest ON bit in source word(s) (starting word: S) and turns ON corresponding bit(s) in result word (R). Digits to receive converted value are designated by Di (rightmost digit: indicates the first digit; next digit to left: gives number of words to be converted minus 1). \\
Can also determine the position of highest ON bit in one or two groups of 16 words and write the ON bits position (00 to FF) to byte(s) in R.
\end{tabular}} & \multirow[t]{7}{*}{S:
IR
SR
HR
AR
TC
DM
LR} & \multirow[t]{7}{*}{\begin{tabular}{|l|l} 
R: \\
IR \\
HR \\
AR \\
DM \\
LR
\end{tabular}} & \multirow[t]{7}{*}{\[
\begin{aligned}
& \hline \text { Di: } \\
& \text { IR } \\
& \text { HR } \\
& \text { AR } \\
& \text { TC } \\
& \text { DM } \\
& \text { LR } \\
& \#
\end{aligned}
\]} & \multirow[t]{5}{*}{All models} \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{256 to 8 Encoder (@)DMPX(77)} & & & & & & \multirow[t]{2}{*}{HS-CPU's} \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
7-Segment Decoder \\
(@)SDEC(78)
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{|l|}
\hline \(\operatorname{SDEC}(78)\) \\
\hline S \\
\hline Di \\
\hline D \\
\hline
\end{tabular}} & \multirow[t]{5}{*}{Converts hexadecimal values from source word (S) to data for seven-segment display. Results placed in consecutive half words starting at the first destination word (D). Di designates digit and destination details (rightmost digit: gives the first digit to be converted; next digit to the left: number of digits to be converted minus 1; next digit: \(1=\) transfer first digit to left half of first destination word, \(0=\) transfer to right half).} & \multirow[t]{5}{*}{S:
IR
SR
HR
AR
TC
DM
LR} & \multirow[t]{5}{*}{Di:
IR
HR
AR
TC
DM
LR
\(\#\)} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \hline \text { D: } \\
& \text { IR } \\
& \text { HR } \\
& \text { AR } \\
& \text { DM } \\
& \text { LR }
\end{aligned}
\]} & \multirow[t]{5}{*}{All models} \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
ASCII Code Convert \\
(@)ASC(86)
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{|l|}
\hline ASC(86) \\
\hline\(S\) \\
\hline Di \\
\hline\(D\) \\
\hline
\end{tabular}} & \multirow[t]{5}{*}{Converts hexadecimal values from source word (S) to eight-bit ASCII code starting at leftmost or rightmost half of starting destination word (D). Rightmost digit of Di designates first source digit; the next digit to the left, the number of digits; the next digit, the rightmost (1) or leftmost (0) half of the first destination word; and the leftmost digit even (1) or odd (0) parity.} & \multirow[t]{5}{*}{S:
IR
SR
HR
AR
TC
DM
LR} & \multirow[t]{5}{*}{Di:
IR
HR
TC
DM
LR
\(\#\)} & \multirow[t]{5}{*}{\[
\begin{array}{|l}
\hline \text { D: } \\
\text { IR } \\
\text { HR } \\
\text { DM } \\
\text { LR }
\end{array}
\]} & \multirow[t]{5}{*}{All models} \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
ASCII to Hex \\
(@)HEX(*)
\end{tabular}} & \multirow[t]{5}{*}{- HEX (-) \begin{tabular}{|l|}
\hline S \\
\hline Di \\
\hline D \\
\hline
\end{tabular}} & \multirow[t]{5}{*}{Converts ASCII data to hexadecimal data.} & \multirow[t]{5}{*}{S:
IR
SR
HR
AR
TC
DM
LR} & \multirow[t]{5}{*}{\[
\begin{array}{|l|}
\hline \text { Di: } \\
\text { IR } \\
\text { SR } \\
\text { HR } \\
\text { AR } \\
\text { TC } \\
\text { DM } \\
\text { LR }
\end{array}
\]} & \multirow[t]{5}{*}{D:
IR
SR
HR
AR
TC
DM
LR} & \multirow[t]{5}{*}{HS-CPU's} \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{Hours-toSeconds (@)HTS(65)} & \multirow[t]{5}{*}{\begin{tabular}{|l|}
\hline HTS(65) \\
\hline S \\
\hline R \\
\hline- \\
\hline
\end{tabular}} & \multirow[t]{5}{*}{Converts a time given in hours/minutes/seconds (S and S+1) to an equivalent time in seconds only ( \(R\) and \(R+1)\). \(S\) and \(S+1\) must be BCD and within one data area. \(R\) and \(R+1\) must also be within one data area.} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \hline \text { S: } \\
& \text { IR } \\
& \text { SR } \\
& \text { HR } \\
& \text { AR } \\
& \text { LR } \\
& \text { TC } \\
& \text { DM }
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{|l|}
\hline R: \\
\hline IR \\
SR \\
HR \\
AR \\
LR \\
TC \\
DM \\
\hline
\end{tabular}} & \multirow[t]{5}{*}{Not used} & \multirow[t]{5}{*}{CPU21
CPU23
CPU31
HS-CPU's} \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & \multicolumn{3}{|c|}{Operands} & CPU \\
\hline \begin{tabular}{l}
Seconds-toHours \\
(@)STH(66)
\end{tabular} & \begin{tabular}{|l|l|}
\hline STH(66) \\
\hline S \\
\hline R \\
\hline- \\
\hline
\end{tabular} & Converts a time given in seconds (S and \(S+1\) ) to an equivalent time in hours/minutes/seconds (R and R+1). S and \(\mathrm{S}+1\) must be BCD between 0 and 35,999,999, and within the same data area. R and \(\mathrm{R}+1\) must also be within one data area. & \begin{tabular}{l}
S: \\
IR \\
SR \\
HR \\
AR \\
LR \\
TC \\
DM
\end{tabular} & \[
\begin{array}{|l}
\hline \text { R: } \\
\text { IR } \\
\text { SR } \\
\text { HR } \\
\text { AR } \\
\text { LR } \\
\text { TC } \\
\text { DM }
\end{array}
\] & Not used & CPU21
CPU23
CPU31
HS-CPU's \\
\hline \begin{tabular}{l}
2's Complement \\
(@)NEG(*)
\end{tabular} & \[
\begin{array}{|l}
\hline \text { NEG(-) } \\
\hline \text { S } \\
\hline \text { R } \\
\hline
\end{array}
\] & Converts the four digit hexadecimal content of the source word to its 2's complement and outputs the result to \(R\) & \begin{tabular}{l}
S: \\
IR \\
SR \\
AR \\
DM \\
HR \\
TC \\
LR \\
\#
\end{tabular} & \[
\begin{array}{|l}
\hline \text { R: } \\
\text { IR } \\
\text { SR } \\
\text { AR } \\
\text { DM } \\
\text { HR } \\
\text { LR }
\end{array}
\] & & HS-CPU's \\
\hline Double 2's Complement (@)NEGL(*) & \begin{tabular}{|l|}
\hline NEGL(-) \\
\hline S \\
\hline R \\
\hline- \\
\hline
\end{tabular} & Converts the eight-digit hexadecimal content of the source word to its 2's complement and outputs the result to \(R\). & \[
\begin{array}{|l}
\hline \text { S: } \\
\text { IR } \\
\text { SR } \\
\text { AR } \\
\text { DM } \\
\text { HR } \\
\text { TC } \\
\text { LR }
\end{array}
\] & \[
\begin{array}{|l}
\hline \text { R: } \\
\text { IR } \\
\text { SR } \\
\text { AR } \\
\text { DM } \\
\text { HR } \\
\text { LR }
\end{array}
\] & & HS-CPU's \\
\hline 7-Segment Display Output 7SEG(*) & \begin{tabular}{|l|}
\hline 7SEG(-) \\
\hline S \\
\hline\(O\) \\
\hline\(C\) \\
\hline
\end{tabular} & Converts 4- or 8- BCD data to 7segment display format and then outputs the converted data. & \[
\begin{array}{|l}
\hline \text { S: } \\
\text { IR } \\
\text { SR } \\
\text { AR } \\
\text { DM } \\
\text { HR } \\
\text { TC } \\
\text { LR }
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { O: } \\
\text { IR } \\
\text { SR } \\
\text { AR } \\
\text { HR } \\
\text { LR }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { C: } \\
& 000 \\
& \text { to } \\
& 007
\end{aligned}
\] & HS-CPU's \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & Op & ands & CPU \\
\hline \begin{tabular}{l}
Increment \\
(@) INC(38)
\end{tabular} & \[
\begin{aligned}
& \mathrm{INC}(38) \\
& \hline \mathrm{Wd} \\
& \hline
\end{aligned}
\] & Increments four-digit BCD word (Wd) by one, without affecting carry (CY). & \[
\begin{aligned}
& \hline \text { Wd: } \\
& \text { IR } \\
& \text { HR } \\
& \text { AR } \\
& \text { DM } \\
& \text { LR }
\end{aligned}
\] & & All models \\
\hline \begin{tabular}{l}
Decrement \\
(@)DEC(39)
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { DEC(39) } \\
\hline W d \\
\hline
\end{array}
\] & Decrements four-digit BCD word by 1, without affecting carry (CY). & Wd:
IR
HR
AR
DM
LR & & All models \\
\hline \begin{tabular}{l}
Set Carry \\
(@)STC(40)
\end{tabular} & - STC(40) & Sets carry flag (i.e., turns CY ON). & None & & All models \\
\hline \begin{tabular}{l}
Clear Carry \\
(@)CLC(41)
\end{tabular} & - CLC(41) & CLC clears carry flag (i.e, turns CY OFF). & None & & All models \\
\hline \begin{tabular}{l}
BCD Add \\
(@)ADD(30)
\end{tabular} & \begin{tabular}{|l|}
\hline\(A D D(30)\) \\
\hline\(A u\) \\
\hline\(A d\) \\
\hline\(R\) \\
\hline
\end{tabular} & Adds two four-digit BCD values (Au and Ad ) and content of CY, and outputs result to specified result word (R).
\[
\mathrm{Au}+\mathrm{Ad}+\mathrm{CY} \rightarrow \mathrm{CY}, \mathrm{R}
\] & \begin{tabular}{l}
Au/Ad: \\
IR \\
SR \\
HR \\
AR \\
TC \\
DM \\
LR \\
\#
\end{tabular} & \[
\begin{aligned}
& \hline \text { R: } \\
& \text { IR } \\
& \text { HR } \\
& \text { AR } \\
& \text { DM } \\
& \text { LR }
\end{aligned}
\] & All models \\
\hline \begin{tabular}{l}
Double BCD Add \\
(@)ADDL(54)
\end{tabular} & \begin{tabular}{|l|}
\hline ADDL(54) \\
\hline Au \\
\hline\(A d\) \\
\hline\(R\) \\
\hline
\end{tabular} & Adds two eight-digit values (2 words each) and content of CY, and outputs result to specified result words. All words for any one operand must be in the same data area. & \begin{tabular}{l}
Au/Ad: \\
IR \\
SR \\
HR \\
AR \\
TC \\
DM \\
LR
\end{tabular} & R:
IR
HR
AR
DM
LR & All models \\
\hline \begin{tabular}{l}
BCD Subtract \\
(@)SUB(31)
\end{tabular} & \begin{tabular}{|l|}
\hline \(\operatorname{SUB}(31)\) \\
\hline Mi \\
\hline Su \\
\hline R \\
\hline
\end{tabular} & \begin{tabular}{l}
Subtracts both four-digit BCD subtrahend ( Su ) and content of CY from four-digit BCD minuend (Mi) and outputs result to specified result word (R).
\(\square\) \\
Mi \\
\(-\mathrm{Su}\) \\
CY \\
CY \\
R
\end{tabular} & Mi/Su:
IR
SR
HR
AR
TC
DM
LR
\(\#\) & \[
\begin{array}{|l|}
\hline \text { R: } \\
\text { IR } \\
\text { HR } \\
\text { AR } \\
\text { DM } \\
\text { LR }
\end{array}
\] & All models \\
\hline \begin{tabular}{l}
Double BCD Subtract \\
(@)SUBL(55)
\end{tabular} & \begin{tabular}{|l|}
\hline \(\operatorname{SUBL}(55)\) \\
\hline Mi \\
\hline Su \\
\hline R \\
\hline
\end{tabular} & Subtracts both eight-digit BCD subtrahend and content of CY from eight-digit BCD minuend and outputs result to specified result words. All words for any one operand must be in the same data area.
\[
\] & Mi/Su:
IR
SR
HR
AR
TC
DM
LR & R:
IR
HR
AR
DM
LR & All models \\
\hline \begin{tabular}{l}
BCD Multiply \\
(@)MUL(32)
\end{tabular} & \begin{tabular}{l} 
MUL(32) \\
\hline Md \\
\hline Mr \\
\hline R \\
\hline
\end{tabular} & \begin{tabular}{l}
Multiplies four-digit BCD multiplicand (Md) and four-digit BCD multiplier (Mr) and outputs result to specified result words ( \(R\) and \(R+1\) ). \(R\) and \(R+1\) must be in the same data area.
> \begin{tabular}{|l|} \hline Md \\ \hline \end{tabular} \\
\(\times\) \(\square\) \\
Mr \(\square\) R + 1
\end{tabular} & Md/Mr:
IR
SR
HR
AR
TC
DM
LR
\(\#\) & R:
IR
HR
AR
DM
LR & All models \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & & ands & CPU \\
\hline \begin{tabular}{l}
Double BCD Multiply \\
(@)MULL(56)
\end{tabular} & \begin{tabular}{|l|}
\hline MULL(56) \\
\hline Md \\
\hline Mr \\
\hline R \\
\hline
\end{tabular} & Multiplies eight-digit BCD multiplicand and eight-digit BCD multiplier and outputs result to specified result words. All words for any one operand must be in the same data area. & \[
\begin{aligned}
& \hline \text { Md/Mr: } \\
& \text { IR } \\
& \text { SR } \\
& \text { HR } \\
& \text { AR } \\
& \text { TC } \\
& \text { DM } \\
& \text { LR }
\end{aligned}
\] & \begin{tabular}{l}
R: \\
IR \\
HR \\
AR \\
DM \\
LR
\end{tabular} & All models \\
\hline BCD Divide (@)DIV(33) & \begin{tabular}{|l|}
\hline DIV(33) \\
\hline Dd \\
\hline Dr \\
\hline R \\
\hline
\end{tabular} & \begin{tabular}{l}
Divides four-digit BCD dividend (Dd) by four-digit BCD divisor (Dr) and outputs result to specified result words. R receives quotient; R + 1 receives remainder. \(R\) and \(R+1\) must be in the same data area. \\
Dd \\
\(\div\) \(\square\) \\
Dr \\
\(\rightarrow\) \\
R + 1 
\end{tabular} & \begin{tabular}{l}
Dd/Dr: \\
IR \\
SR \\
HR \\
AR \\
TC \\
DM \\
LR \\
\#
\end{tabular} & \begin{tabular}{l}
R: \\
IR \\
HR \\
AR \\
DM \\
LR
\end{tabular} & All models \\
\hline \begin{tabular}{l}
Double BCD Divide \\
(@)DIVL(57)
\end{tabular} & \begin{tabular}{|l|}
\hline DIVL(57) \\
\hline Dd \\
\hline Dr \\
\hline R \\
\hline
\end{tabular} & Divides eight-digit BCD dividend by eight-digit BCD divisor and outputs result to specified result words. All words for any one operand must be in the same data area. & \begin{tabular}{l}
Dd/Dr: \\
IR \\
SR \\
HR \\
AR \\
TC \\
DM \\
LR
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { R: } \\
\text { IR } \\
\text { HR } \\
\text { AR } \\
\text { DM } \\
\text { LR }
\end{array}
\] & All models \\
\hline \begin{tabular}{l}
Floating Point Divide \\
(@)FDIV(79)
\end{tabular} & \begin{tabular}{|l|}
\hline \multicolumn{1}{|l|}{\(\mathrm{FDIV}(79)\)} \\
\hline Dd \\
\hline Dr \\
\hline R \\
\hline
\end{tabular} & Divides one floating point value by another and outputs floating point result. Rightmost seven digits of each set of two words (eight digits) are used for mantissa, and leftmost digit used for the exponent and its sign. & \[
\begin{array}{|l|}
\hline \text { Dd/Dr: } \\
\text { IR } \\
\text { SR } \\
\text { HR } \\
\text { AR } \\
\text { TC } \\
\text { DM } \\
\text { LR }
\end{array}
\] & \begin{tabular}{l}
R: \\
IR \\
HR \\
AR \\
DM \\
LR
\end{tabular} & All models \\
\hline Square Root (@)ROOT(72) & \begin{tabular}{l} 
ROOT(72) \\
\hline Sq \\
\hline\(R\) \\
\hline
\end{tabular} & \begin{tabular}{l}
Computes square root of eight-digit \(B C D\) value ( Sq and \(\mathrm{Sq}+1\) ) and outputs truncated four-digit integer result to specified result word (R). Sq and \(S q+1\) must be in the same data area. \\
R
\end{tabular} & Sq:
IR
SR
HR
AR
TC
DM
LR & \begin{tabular}{l}
R: \\
IR \\
HR \\
AR \\
DM \\
LR
\end{tabular} & All models \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & \multicolumn{3}{|c|}{Operands} & CPU \\
\hline \begin{tabular}{l}
Binary Add \\
(@)ADB(50)
\end{tabular} & \begin{tabular}{|l|}
\hline ADB(50) \\
\hline\(A u\) \\
\hline\(A d\) \\
\hline\(R\) \\
\hline
\end{tabular} & Adds four-digit augend (Au), four-digit addend (Ad), and content of CY and outputs result to specified result word (R).
\[
\mathrm{Au}+\mathrm{Ad}+\mathrm{CY} \rightarrow \mathrm{CY}, \mathrm{R}
\] & Au/Ad:
IR
SR
HR
AR
TC
DM
LR
\(\#\) & R:
IR
HR
AR
DM
LR & & All models \\
\hline \begin{tabular}{l}
Binary Subtract \\
(@)SBB(51)
\end{tabular} & \begin{tabular}{|l|}
\hline \hline SBB(51) \\
\hline Mi \\
\hline Su \\
\hline\(R\) \\
\hline
\end{tabular} & \begin{tabular}{l}
Subtracts four-digit hexadecimal subtrahend (Su) and content of carry from four-digit hexadecimal minuend (Mi) and outputs result to specified result word (R). \\
Mi \\
- Su \\
- \(\square\) \\
CY \\
CY \\
R
\end{tabular} & Mi/Su:
IR
SR
HR
AR
TC
DM
LR
\(\#\) & R:
IR
HR
AR
DM
LR & & All models \\
\hline \begin{tabular}{l}
Binary Multiply \\
(@)MLB(52)
\end{tabular} & \begin{tabular}{|l|}
\hline MLB(52) \\
\hline Md \\
\hline Mr \\
\hline R \\
\hline
\end{tabular} & \begin{tabular}{l}
Multiplies four-digit hexadecimal multiplicand (Md) by four-digit multiplier (Mr) and outputs eight-digit hexadecimal result to specified result words ( \(R\) and \(R+1\) ). \(R\) and \(R+1\) must be in the same data area.
\(\square\) \\
Md \\
\(\times\) \(\square\) Mr \(\square\) R + 1 \(\square\)
\end{tabular} & Md/Mr:
IR
SR
HR
AR
TC
DM
LR
\(\#\) & R:
IR
HR
AR
DM
LR & & All models \\
\hline Binary Divide (@)DVB(53) & \begin{tabular}{|l|}
\hline \hline DVB(53) \\
\hline Dd \\
\hline Dr \\
\hline\(R\) \\
\hline
\end{tabular} & \begin{tabular}{l}
Divides four-digit hexadecimal dividend (Dd) by four-digit divisor (Dr) and outputs result to designated result words ( \(R\) and \(R+1\) ). \(R\) and \(R+1\) must be in the same data area.
\(\square\) \\
Dd \\
\(\div\) Dr
\(\square\) \(\rightarrow B\) R + 1 \(\square\)
\end{tabular} & Dd/Dr:
IR
SR
HR
AR
TC
DM
LR
\(\#\) & R:
IR
HR
AR
LR & & All models \\
\hline \begin{tabular}{l}
Double Binary ADD \\
(@)ADBL(*)
\end{tabular} & \begin{tabular}{|l|}
\hline ADBL(-) \\
\hline\(A u\) \\
\hline\(A d\) \\
\hline\(R\)
\end{tabular} & Adds two 8-digit binary valves (normal or signed data) and outputs the result to \(R\) and \(R+1\). & \[
\begin{aligned}
& \hline \text { Au: } \\
& \text { IR } \\
& \text { SR } \\
& \text { AR } \\
& \text { DM } \\
& \text { HR } \\
& \text { LR }
\end{aligned}
\] & Ad
l
IR
SR
AR
\(D\)
M
HR
LR & R:
IR
SR
AR
D
M
HR
LR & HS-CPU's \\
\hline \begin{tabular}{l}
Double Binary Subtract \\
(@)SBBL(*)
\end{tabular} & \begin{tabular}{|l|}
\hline \hline SBBL(-) \\
\hline Mi \\
\hline Su \\
\hline R \\
\hline
\end{tabular} & Subtracts an 8-digit binary valves (normal or signed data) from another and outputs the result to R and \(\mathrm{R}+1\). & \[
\begin{aligned}
& \hline \text { Mi: } \\
& \text { IR } \\
& \text { SR } \\
& \text { AR } \\
& \text { DM } \\
& \text { HR } \\
& \text { TC }
\end{aligned}
\] & Su
I
IR
SR
AR
\(D\)
\(M\)
HR
TC
LR & R:
IR
SR
AR
\(D\)
M
HR
LR & HS-CPU's \\
\hline Signed Binary Divide (@)DBS(*) & \begin{tabular}{|l|}
\hline \hline DBS(-) \\
\hline Dd \\
\hline Dr \\
\hline\(R\) \\
\hline
\end{tabular} & Divides one 16-bit signed binary valve by another and outputs the 32-bit signed result to \(\mathrm{R}+1\) and R & Dd:
IR
SR
AR
DM
HR
TC
LR
\(\#\) & Dr:
IR
SR
AR
D
M
HR
TC
LR
\(\#\) & R:
IR
SR
AR
D
M
HR
LR & HS-CPU's \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & Operands & CPU \\
\hline Shift Register SFT(10) & \[
\begin{array}{l|l}
\hline \begin{array}{l}
\text { I }
\end{array} \\
\hline \mathrm{P} & \mathrm{SFT}(10) \\
\hline \mathrm{R} & \mathrm{St} \\
& \mathrm{E} \\
\hline
\end{array}
\] & Creates a bit shift register from the starting word (St) through the ending word (E). I: input bit; P: shift pulse; R: reset input. St must be less than or equal to \(E\) and \(S t\) and \(E\) must be in the same data area.
\[
\begin{array}{lll}
15 & 00 & 15 \\
\hline \mathrm{E} & ---\mathrm{St} & 00 \\
\hline
\end{array}
\] & \[
\begin{array}{|l}
\hline \text { St/E: } \\
\text { IR } \\
\text { HR } \\
\text { AR } \\
\text { LR }
\end{array}
\] & All models \\
\hline Reversible Shift Register (@)SFTR(84) & \begin{tabular}{|l|}
\hline SFTR(84) \\
\hline C \\
\hline St \\
\hline\(E\) \\
\hline
\end{tabular} & Shifts data in specified word or series of words to either left or right. Starting (St) and ending words (E) must be specified. Control word (C) contains shift direction, reset input, and data input. St and E must be in the same data area and St must be less than or equal to \(E\). & \[
\begin{array}{|l|}
\hline \text { St/E/C: } \\
\text { IR } \\
\text { HR } \\
\text { AR } \\
\text { TC } \\
\text { DM } \\
\text { LR }
\end{array}
\] & All models \\
\hline \begin{tabular}{l}
Arithmetic Shift Left \\
(@)ASL(25)
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { ASL(25) } \\
\hline \text { Wd } \\
\hline
\end{array}
\] & Shifts each bit in single word (Wd) of data one bit to left, with CY. & Wd:
IR
HR
AR
DM
LR & All models \\
\hline \begin{tabular}{l}
Arithmetic Shift Right \\
(@)ASR(26)
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { ASR(26) } \\
\hline W d \\
\hline
\end{array}
\] & Shifts each bit in single word (Wd) of data one bit to right, with CY .
\[
0 \rightarrow \mathrm{Wd}^{15} \quad 00
\] & Wd:
IR
HR
AR
DM
LR & All models \\
\hline Rotate Left (@)ROL(27) & \[
\begin{array}{|l|}
\hline \mathrm{ROL}(27) \\
\hline \mathrm{Wd} \\
\hline
\end{array}
\] & Rotates bits in single word (Wd) of data one bit to left, with carry (CY). & Wd:
IR
HR
AR
DM
LR & All models \\
\hline Rotate Right (@)ROR(28) & \[
\begin{array}{|l|}
\hline \text { ROR(28) } \\
\hline \mathrm{Wd} \\
\hline
\end{array}
\] & Rotates bits in single word (Wd) of data one bit to right, with carry (CY). & Wd:
IR
HR
AR
DM
LR & All models \\
\hline \begin{tabular}{l}
One Digit Shift Left \\
(@)SLD(74)
\end{tabular} & \begin{tabular}{|l|}
\hline \(\operatorname{SLD}(74)\) \\
\hline St \\
\hline E \\
\hline
\end{tabular} & Left shifts data between starting (St) and ending (E) words by one digit (four bits). St and E must be in the same data area. & \[
\begin{aligned}
& \hline \mathrm{St} / \mathrm{E}: \\
& \mathrm{IR} \\
& \mathrm{HR} \\
& \text { AR } \\
& \mathrm{DM} \\
& \text { LR }
\end{aligned}
\] & All models \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & & perands & CPU \\
\hline \begin{tabular}{l}
One Digit Shift Right \\
(@)SRD(75)
\end{tabular} & \begin{tabular}{|l|}
\hline \(\operatorname{SRD}(75)\) \\
\hline E \\
\hline St \\
\hline
\end{tabular} & Right shifts data between starting (St) and ending ( E ) words by one digit (four bits). St and E must be in the same data area. & \[
\begin{array}{|l|}
\hline \text { St/E: } \\
\text { IR } \\
\text { HR } \\
\text { AR } \\
\text { DM } \\
\text { LR }
\end{array}
\] & & All models \\
\hline \[
\begin{array}{|l}
\hline \text { Word Shift } \\
\text { (@)WSFT(16) }
\end{array}
\] & \[
\begin{array}{|l|}
\hline \hline \text { WSFT(16) } \\
\hline \text { St } \\
\hline \mathrm{E} \\
\hline
\end{array}
\] & Left shifts data between starting (St) and ending ( \(E\) ) words in word units, writing zeros into starting word. St must be less than or equal to \(E\) and \(S t\) and \(E\) must be in the same data area. & \begin{tabular}{l}
St/E: \\
IR \\
HR \\
AR \\
DM \\
LR
\end{tabular} & & All models \\
\hline Reversible Word Shift (@)RWS(17) & \begin{tabular}{|l|}
\hline RWS(17) \\
\hline C \\
\hline St \\
\hline E \\
\hline
\end{tabular} & Creates and controls a reversible asynchronous word shift register between St and E. This register only shifts words when the next word in the register is zero, e.g., if no words in the register contain zero, nothing is shifted.
Also, only one word is shifted for each. word in the register that contains zero. When the contents of a word are shifted to the next word, the original word's contents are set to zero. In essence, when the register is shifted, each zero word in the register trades places with the next word. The shift direction (i.e. whether the next word is the next higher or the next lower word) is designated in C. C is also used to reset the register. All of any portion of the register can be reset by designating the desired portion with
St and E. & \[
\begin{array}{|l|l}
\hline \text { IR } \\
\text { IR } \\
\text { HR } \\
\text { AR } \\
\text { DM } \\
\text { LR } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \mathrm{St} / \mathrm{E}: \\
\mathrm{IR} \\
\mathrm{HR} \\
\mathrm{AR} \\
\mathrm{DM} \\
\mathrm{LR}
\end{array}
\] & \[
\begin{aligned}
& \hline \text { CPU21 } \\
& \text { CPU23 } \\
& \text { CPU31 } \\
& \text { HS-CPU's }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & & perands & CPU \\
\hline \begin{tabular}{l}
Complement \\
(@)COM(29)
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { COM(29) } \\
& \hline \text { Wd }
\end{aligned}
\] & \begin{tabular}{l}
Inverts bit status of one word (Wd) of data. \\
\(\mathrm{Wd} \rightarrow \mathrm{Wd}\)
\end{tabular} & Wd:
IR
HR
AR
DM
LR & & All models \\
\hline Logical AND (@)ANDW(34) & \begin{tabular}{|l|}
\hline ANDW(34) \\
\hline I1 \\
\hline I2 \\
\hline R \\
\hline
\end{tabular} & Logically ANDs two 16-bit input words (I1 and I2) and sets corresponding bit in result word \((R)\) if corresponding bits in input words are both are ON. & I1/I2:
IR
SR
HR
AR
TC
DM
LR
\(\#\) & R:
IR
HR
AR
DM
LR & All models \\
\hline Logical OR (@)ORW(35) & \begin{tabular}{|l|}
\hline ORW(35) \\
\hline I 1 \\
\hline I 2 \\
\hline R \\
\hline
\end{tabular} & Logically ORs two 16-bit input words (I1 and I2) and sets corresponding bit in result word ( \(R\) ) if one or both of corresponding bits in input data are ON . & I1/I2:
IR
SR
HR
AR
TC
DM
LR
\(\#\) & \[
\begin{array}{|l|}
\hline \text { R: } \\
\text { IR } \\
\text { HR } \\
\text { AR } \\
\text { DM } \\
\text { LR }
\end{array}
\] & All models \\
\hline Exclusive OR (@)XORW(36) & \begin{tabular}{|l|}
\hline XORW(36) \\
\hline 11 \\
\hline I2 \\
\hline R \\
\hline
\end{tabular} & Exclusively ORs two 16-bit input words (I1 and I2) and sets bit in result (R) word when corresponding bits in input words differ in status. & I1/I2:
IR
SR
HR
AR
TC
DM
LR
\(\#\) & R:
IR
HR
AR
DM
LR & All models \\
\hline Exclusive NOR (@)XNRW(37) & \begin{tabular}{|l|}
\hline XNRW(37) \\
\hline I 1 \\
\hline I 2 \\
\hline R \\
\hline
\end{tabular} & Exclusively NORs two 16-bit input words (I1 and I2) and sets bit in result word ( \(R\) ) when corresponding bits in input words are same in status. & I1/I2:
IR
SR
HR
AR
TC
DM
LR
\(\#\) & R:
IR
HR
AR
DM
LR & All models \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Name } \\
\text { Mnemonic }
\end{gathered}
\] & Symbol & Function & \multicolumn{3}{|c|}{Operands} & CPU \\
\hline Subroutine Define SBS(91) & - SBS(91) N & Calls and executes subroutine N . & \multicolumn{3}{|l|}{\(\mathrm{N}:\) 00 to 99} & All models \\
\hline Subroutine Entry SBN(92) & - SBN(92) N & Marks start of subroutine N . & \multicolumn{3}{|l|}{\(\mathrm{N}:\)
\[
00 \text { to } 99
\]} & All models \\
\hline Subroutine Return
RET(93) & RET(93) & Marks the end of a subroutine and returns control to main program. & \multicolumn{3}{|l|}{None} & All models \\
\hline \begin{tabular}{l}
Macro \\
(@)MCRO(99)
\end{tabular} & \begin{tabular}{|l|}
\hline XNRW(37) \\
\hline I 1 \\
\hline I 2 \\
\hline R \\
\hline
\end{tabular} & Calls and executes a subroutine replacing I/O words but keeping the same subroutine structure. & \[
\begin{array}{l|}
\hline \mathbf{N}: \\
00 \\
\text { to } \\
99
\end{array}
\] & \multicolumn{2}{|l|}{\begin{tabular}{|l|l|}
\hline I1: & O1: \\
IR & IR \\
SR & SR \\
AR & AR \\
DM & DM \\
HR & HR \\
TC & LR \\
LR & \\
\hline
\end{tabular}} & HS-CPU's \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Name } \\
\text { Mnemonic }
\end{gathered}
\] & Symbol & Function & Operands & CPU \\
\hline Step Define STEP(08) & STEP(08) B & When used with a control bit (B), defines the start of a new step and resets the previous step. When used without N , defines the end of step execution. & \[
\begin{aligned}
& \hline \text { B: } \\
& \text { IR } \\
& \text { HR } \\
& \text { AR } \\
& \text { LR }
\end{aligned}
\] & All models \\
\hline Step Start SNXT(09) & - SNXT(09) B & Used with a control bit (B) to indicate the end of the step, reset the step, and start the next step. & B:
IR
HR
AR
LR & All models \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name Mnemonic & Symbol & Function & \multicolumn{3}{|c|}{Operands} & CPU \\
\hline Failure Alarm and Reset FAL(06) & FAL(06) N & FAL is displayed on a programming device. When N is 01 to 99 , an error that will not stop the CPU is indicated by outputting N (the FAL number) to the FAL output area. If N is 00, any data in the FAL output area is cleared and any other FAL number recorded in memory replaces it. The same FAL numbers are used for both \(\operatorname{FAL}(06)\) and FALS(07). & \multicolumn{3}{|l|}{\(\mathrm{N}:\) 00 to 99} & All models \\
\hline Severe Failure Alarm FALS(07) & FALS(07) N & An error is indicated by outputting \(N\) to the FAL output area and the CPU is stopped. The same FAL numbers are used for both FAL(06) and FALS(07). & \multicolumn{3}{|l|}{\[
\begin{array}{|l|}
\hline \mathrm{N}: \\
01 \text { to } 99
\end{array}
\]} & All models \\
\hline \begin{tabular}{l}
Message Display \\
(@)MSG(46)
\end{tabular} & \begin{tabular}{|l|}
\hline MSG(46) \\
\hline FM \\
\hline
\end{tabular} & Displays on the Programming Console, GPC, or FIT 8 words of ASCII code starting from FM. All 8 words must be in the same data area. & \multicolumn{3}{|l|}{FM:
IR
HR
AR
TC
DM
LR
\(\#\)} & All models \\
\hline Bit Counter BCNT(67) & \begin{tabular}{|l|}
\hline BCNT(67) \\
\hline N \\
\hline SB \\
\hline R \\
\hline
\end{tabular} & Counts number of ON bits in one or more words (SB: source beginning word) and outputs result to specified word (R). N : number of words to be counted. All words to be counted must be in the same data area. & \[
\begin{aligned}
& \hline \text { N: } \\
& \text { IR } \\
& \text { SR } \\
& \text { HR } \\
& \text { AR } \\
& \text { TC } \\
& \text { DM } \\
& \text { LR }
\end{aligned}
\] & SB:
IR
SR
HR
AR
TC
DM
LR & \[
\begin{aligned}
& \hline \text { R: } \\
& \text { IR } \\
& \text { HR } \\
& \text { AR } \\
& \text { TC } \\
& \text { DM } \\
& \text { LR }
\end{aligned}
\] & All models HS-CPU's \\
\hline Interrupt Control (@)FUN(89) & \begin{tabular}{|l|}
\hline FUN(89) \\
\hline CC \\
\hline N \\
\hline D \\
\hline
\end{tabular} & Controls interrupts. CC: control code (defines the process); N : Interrupt Module unit number (004: scheduled interrupt); D: control data. & \[
\begin{array}{|l|}
\hline \text { CC: } \\
000 \text { to } \\
002
\end{array}
\] & \begin{tabular}{l}
\(\mathrm{N}:\) \\
000 to \\
004
\end{tabular} & D:
IR
HR
AR
TC
DM
LR
\(\#\) & All models
HS-CPU's \\
\hline Watchdog Timer Refresh (@)WDT(94) & WDT(94) T & \begin{tabular}{l}
Sets the maximum and minimum limits for the watchdog timer (normally 0 to 130 ms ). New limits: \\
Maximum time \(=130+(100 \times T)\) \\
Minimum time \(=130+(100 \times(T-1))\)
\end{tabular} & \multicolumn{3}{|l|}{T: 0 to 63} & All models \\
\hline \begin{tabular}{l}
I/O Refresh \\
(@)IORF(97)
\end{tabular} & \begin{tabular}{|l|}
\hline IORF(97) \\
\hline St \\
\hline E \\
\hline
\end{tabular} & Refreshes all I/O words between the start (St) and end (E) words. Only I/O words may be designated. Normally these words are refreshed only once per scan, but refreshing words before use in an instruction can increase execution speed. St must be less than or equal to E . & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \hline \mathrm{St} / \mathrm{E}: \\
& \text { IR }
\end{aligned}
\]} & All models \\
\hline \begin{tabular}{l}
Scan Time \\
(@)SCAN(18)
\end{tabular} & \begin{tabular}{|l|}
\hline \(\operatorname{SCAN}(18)\) \\
\hline Mi \\
\hline- \\
\hline- \\
\hline
\end{tabular} & Sets the minimum scan time, Mi, in tenths of milliseconds. The possible setting range is from 0 to 999.0 ms . If the actual scan time is less than the time set using \(\operatorname{SCAN}(18)\), the CPU will wait until the designated time has elapsed before starting the next scan. & \begin{tabular}{l}
Mi: \\
IR \\
SR \\
HR \\
AR \\
LR \\
TC \\
DM \\
\#
\end{tabular} & \multicolumn{2}{|l|}{Not used} & CPU21
CPU23
CPU31
HS-CPU's \\
\hline
\end{tabular}







NOTE: DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters to inches divide by 25.4.

\title{
OTRROח. \\ OMRON ELECTRONICS, INC. \\ One East Commerce Drive \\ Schaumburg, IL 60173 \\ 1-800-55-OMRON
}

OMRON CANADA, INC.
885 Milner Avenue
Scarborough, Ontario M1B 5V8
416-286-6465

\section*{X-ON Electronics}

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Ethernet Cables / Networking Cables category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
\(\underline{0152660053}\) 603020002 73-7797-25 73-8890-10 73-8890-14 73-8891-14 73-8891-25 73-8892-50 73-8894-10 73-8894-3 73-8895-14 73-8896-7 MCJB2-10P6Q7-120 \(\underline{84909-0204}\) 9QA0-111-12-3.00 \(1200650742 \underline{1200700174} \underline{1200860368} \underline{1200650013} \underline{1201080008} \underline{1-21919-1}\) \(130050037313001018441300101845 \underline{130050-0004} 13005000141410147\) E16A06002M030 E200102-009-S1 MT14-187L 17-103530 NK5EPC18RDY NK5EPC18VLY NK5EPC18YLY NK5EPC1GRY NK5EPC30BLY NK5EPC30VLY NK5EPC30YLY NK5EPC4Y NK5EPC6YLY NK5EPC8BLY NK5EPC9YLY NK6PC30BUY NK6PC30GRY NK6PC30RDY NK6PC30Y NK6PC30YLY 1969343-6 C501100010 C501106002```

