TOSHIBA Photocoupler GaAs IRed & Photo-Transistor

4N25(Short),4N25A(Short),4N26(Short),4N27(Short),4N28(Short)

AC Line / Digital Logic Isolator.

Digital Logic / Digital Logic Isolator.

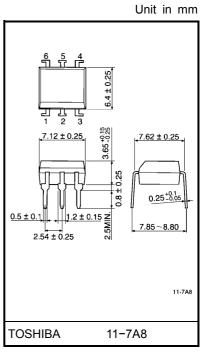
Telephone Line Receiver.

Twisted Pair Line Receiver

High Frequency Power Supply Feedback Control.

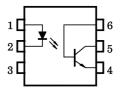
Relay Contact Monitor.

The TOSHIBA 4N25 (Short) through 4N28 (Short) consists of a gallium arsenide infrared emitting diode coupled with a silicon phototransistor in a dual in–line package.


• Switching speeds: 3µs (typ.)

• DC current transfer ratio: 100% (typ.)

• Isolation resistance: $10^{11}\Omega$ (min.)


• Isolation voltage: 2500Vrms (min.)

• UL recognized: UL1577, file No. E67349

Weight: 0.4g

Pin Configurations(top view)

1:ANODE

2: CATHODE

3 : N.C.

4:EMITTER

5 : COLLECTOR

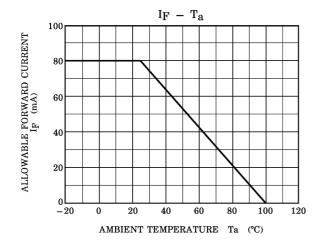
6 : BASE

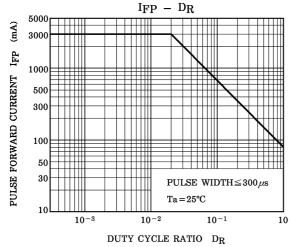
Maximum Ratings (Ta = 25°C)

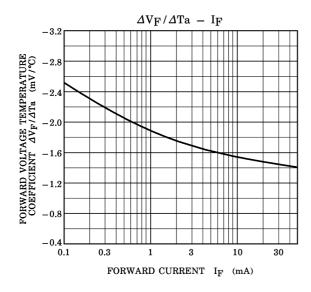
	Characteristic	Symbol	Rating	Unit
LED	Forward current (continuous)	IF	80	mA
	Forward current derating	ΔI _F / °C	1.07 (*)	mA / °C
	Peak forward current (Note 1)	I _{PF}	3	Α
	Power dissipation	P _D	150	mW
	Power dissipation derating	ΔP _D / °C	2.0 (*)	mW / °C
	Reverse voltage	V _R	3	V
	Collector-emitter voltage	BV _{CEO}	30	V
Detector	Collector-base voltage	BV _{CBO}	70	V
	Emitter–collector voltage	BV _{ECO}	7	V
	Collector current (continuous)	IC	100	mA
	Power dissipation	PC	150	mW
	Power dissipation derating	ΔP _C / °C	2.0 (*)	mW / °C
	Storage temperature range	T _{stg}	-55~150	°C
_	Operating temperature range	T _{opr}	-55~100	°C
Coupled	Lead soldering temperature (10s)	T _{sol}	260	°C
	Total package power dissipation	P _T	250	mW
	Total package power dissipation derating	ΔP _T / °C	3.3 (*)	mW / °C

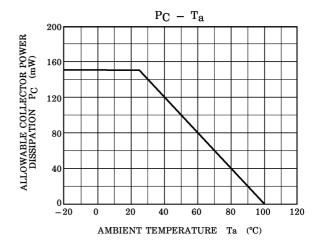
(Note 1) Pulse width 300µs, 2% duty cycle.

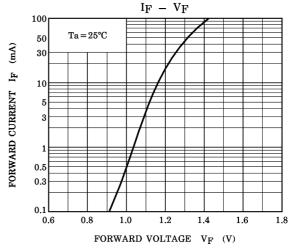
2

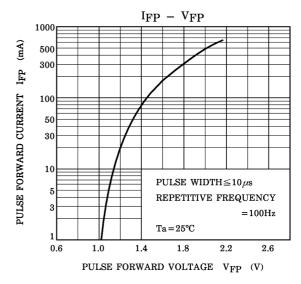

^(*) Above 25°C ambient.

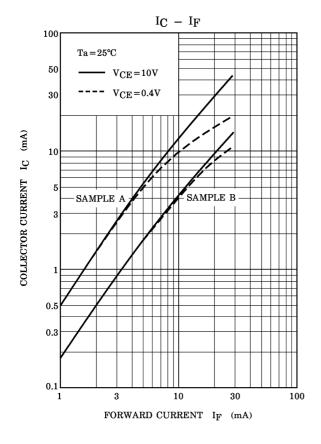


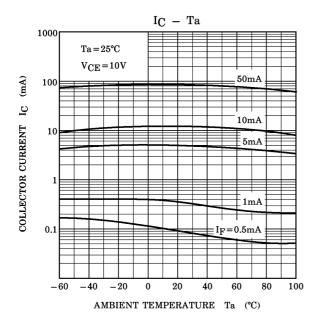

Electrical Characteristics (Ta = 25°C)

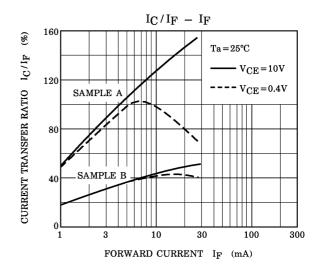

Characteristic			Symbol	Test Condition	Min.	Тур.	Max.	Unit
LED	Forward voltage		V _F	I _F = 10 mA	_	1.15	1.5	V
	Reverse current		I _R	V _R = 3 V	_	_	100	μA
	Capacitance		C _D	V = 0, f = 1 MHz	_	30	_	pF
Detector	DC forward current gain		h _{FE}	V _{CE} = 5V, I _C = 500 μA	_	200	_	_
	Collector-emitter breakdown voltage		V (BR) CEO	I _C = 1 mA, I _F = 0	30	_	_	V
	Collector-base breakdown voltage		V (BR) CBO	I _C = 100 μA	70	_	_	V
	Emitter–collector breakdown voltage		V (BR) ECO	ΙΕ = 100 μΑ	7	_	_	V
	Collector dark current		I _{CEO}	V _{CE} = 10 V	_	1	50	nA
	Collector dark current		I _{CBO}	V _{CB} = 10 V	_	0.1	20	nA
	Collector-emitter capacitance		C _{CE}	V = 0, f = 1 MHz	_	10	_	pF
pa	Current transfer ratio		I _C / I _F	I _F = 10 mA, V _{CE} = 10 V	20	100	_	%
	Collector–emitter saturation voltage		V _{CE (sat)}	I _F = 50 mA, I _C = 2 mA	_	0.1	0.5	V
	Capacitance input to output		CS	V _S = 0, f = 1 MHz	_	0.8	_	pF
	Isolation resistance		R _S	V _S = 500 V, R.H. ≤ 60 %	10 ¹¹	_	_	Ω
			BVS	AC, 1 minute	2500	_	_	Vrms
Coupled	Isolation voltage	4N25, 4N25A	BV _S (*)	AC, peak	2500	_	_	
S		4N26, 4N27			1500	_	_	Vpk
		4N28			500	_	_	
		4N25A		AC, 1 second	1775	_	_	Vrms
	Rise / fall time		t _r / t _f	V_{CE} = 10 V, I_{C} = 2 mA R_{L} = 100 Ω	_	2		μs
	Rise / fall time		t _r / t _f	V _{CB} = 10 V, I _{CB} = 50 μA R _L = 100Ω	_	200	_	ns

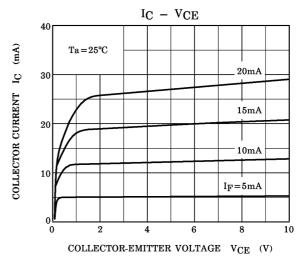

^(*) JEDEC registered minimum BV_S, however, TOSHIBA specifies a minimum BV_S of 2500 Vrms, 1 minute.

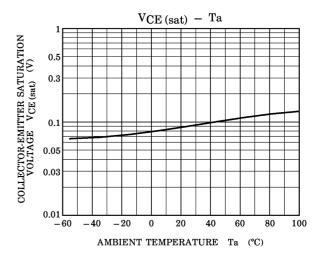


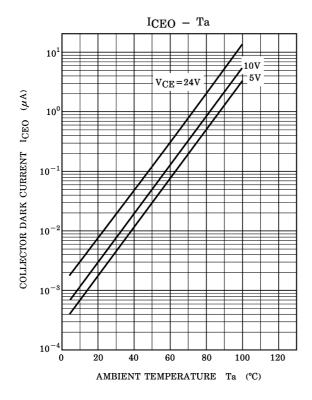


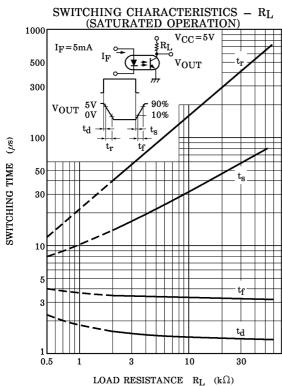


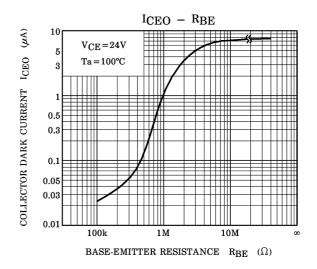


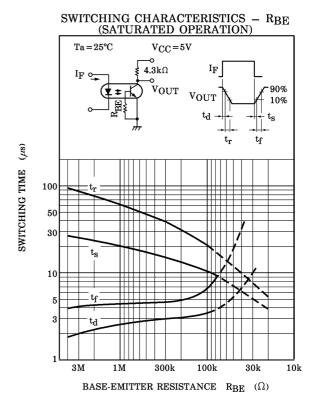



4









RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes
 are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the
 products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with
 domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET Output Optocouplers category:

Click to view products by Toshiba manufacturer:

Other Similar products are found below:

TLP3131(F) TLP598GAF CPC2014NTR TLP4026G(F) LTV-817S-B CPC2017NTR TLP152(TPL,E(T PS2505L-4-E3-A TLP3106A(TP,F TLP3107A(F TLP3106A(F TLP4176A(F TLP3149(F TLP3147(F TLP3145(F TLP3146(F TLP3149(TP,F H11AV1XSM CNY17-1-000E CNY17-1-300E CNY17-1S CNY17-2-000E CNY17-2S CNY173SR2VM CNY17-4-000E HCPL-181-06DE HCPL-J312-000E LTV-3120S-TA1 LTV-817-L LTV-817M-D LTV-817S-A TIL111 TIL191 MCT6X MCT6XSM TLP170A(F) TLP170G(F) TLP197GA(F)

TLP197G(TP,F) TLP222A-2(LF1,F) TLP291(GR-TP.E(O TLP597A(F) TLP797J(F) 4N35X 4N35XSM MOC213M HMHA2801R2 ILQ2X IS357A ISP521-1X